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Microarray data are high dimension with high noise ratio and relatively small sample size, which makes it a challenge to use
microarray data to identify candidate disease genes. Here, we have presented a hybrid method that combines estimation of
distribution algorithm with support vector machine for selection of key feature genes. We have benchmarked the method using
the microarray data of both diffuse B cell lymphoma and colon cancer to demonstrate its performance for identifying key features
from the pro�le data of high-dimension gene expression. e method was compared with a probabilistic model based on genetic
algorithm and another hybrid method based on both genetics algorithm and support vector machine. e results showed that the
proposed method provides new computational strategy for hunting candidate disease genes from the pro�le data of disease gene
expression. e selected candidate disease genes may help to improve the diagnosis and treatment for diseases.

1. Introduction

Complex diseases are frequently accompanied by changes
in gene expression patterns which can serve as secondary
endpoints or biomarkers [1]. Microarray technology, which
allows researchers to simultaneously measure expression
levels of thousands or tens of thousands of genes in a
single experiment, has been widely used to explore the gene
expression pattern of complex diseases [2]. Typically, there
are only a small number of genes associated with diseases.
us, the selection of feature genes that possess discrimi-
natory power for disease phenotypes is a common task for
miningmicroarray data that are usually high dimension (with
thousands of genes) and have small sample size (with usually
a few dozens of samples) [3].

e method of gene selection generally falls into one
of the following three categories: the �lter, wrapper, and
embedded approaches.e �lter approach collects the intrin-
sic characteristics of genes in discriminating the targeted
phenotype class and usually employs statistical methods,

such as mutual information, statistical tests (𝑡𝑡-test, 𝐹𝐹-test),
and Wilcoxon’s rank test, to directly select feature genes
[4, 5]. is approach is easily implemented, but ignores the
complex interaction between genes.e “wrapper” approach
[6] aims at selecting a subset of feature genes, typically with
an induction algorithm to search for an initial gene subset
which can then be used for further evaluating new feature
gene subsets. e wrapper method is usually superior to
the �lter one since it involves intercorrelation of individual
genes in a multivariate manner. e wrapper method can
automatically determine the optimal number of feature genes
for a particular classi�er. e embedded method is similar
to the wrapper method, while multiple algorithms can be
combined in the embeddedmethod to perform feature subset
selection [6, 7]. In the embedded method, genetic algorithms
(GAs) [8, 9] are generally used as the search engine for
feature subset, while other classi�cation methods, such as
KNN/GA (K nearest neighbors/genetic algorithms) [10],
GA-SVM (genetic algorithms-support vector machine) [11],
and so forth, are used to select feature subset. Estimation of
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Step 1.𝑀𝑀0 ←�ead gene expression pro�le matrix from database,𝑚𝑚 is the number of genes in𝑀𝑀0.
Step 2.𝐷𝐷0 ←Generate𝑁𝑁 individuals (the initial population) randomly. Each individual has an𝑚𝑚-
length vector of bits of either 1 or 0.
Step 3. For each individual 𝑗𝑗 in𝐷𝐷0, determine:

𝐺𝐺𝑗𝑗 ←a gene subset corresponding to individual 𝑗𝑗. If bit i equals to 1, include 𝑔𝑔𝑖𝑖 in the subset.
𝑀𝑀𝑗𝑗 ←gene expression pro�le submatrix.
Fitness𝑗𝑗 ← eval(𝑀𝑀𝑗𝑗).

Step 4.𝐷𝐷𝑟𝑟
𝑙𝑙 ←retain𝑁𝑁𝑁𝑁 individuals with the highest evaluations.

Step 5.𝑀𝑀 arg inal(𝑧𝑧𝑖𝑖, 𝑙𝑙𝑙𝑙 calculate marginal distribution of variable 𝑧𝑧𝑖𝑖 of bit i based on𝐷𝐷𝑟𝑟
𝑙𝑙 by

using the formula:𝑀𝑀𝑀𝑀𝑀 inal(𝑧𝑧𝑖𝑖, 𝑙𝑙𝑙 𝑙 󶀢󶀢∑𝑁𝑁𝑁𝑁
𝑗𝑗𝑗𝑗 𝑧𝑧

𝑗𝑗
𝑖𝑖 󶀲󶀲 / (𝑁𝑁𝑁𝑁), where 𝑧𝑧𝑗𝑗𝑖𝑖 is the value of the variable 𝑧𝑧𝑖𝑖 in

individual 𝑗𝑗.
𝑀𝑀weight(𝑧𝑧𝑖𝑖, 𝑙𝑙𝑙𝑙  calculate weight of 𝑧𝑧𝑖𝑖 corresponding to feature 𝑖𝑖 based on𝐷𝐷𝑟𝑟

𝑙𝑙 .
𝑀𝑀weight(𝑧𝑧𝑖𝑖, 𝑙𝑙𝑙 𝑙 󶁂󶁂∑𝑁𝑁𝑁𝑁

𝑗𝑗𝑗𝑗 Preweight(𝑧𝑧
𝑗𝑗
𝑖𝑖 )󶁒󶁒 / (𝑁𝑁𝑁𝑁), where Preweight (𝑧𝑧

𝑗𝑗
𝑖𝑖 ) is weight of bit 𝑖𝑖 in

individual 𝑗𝑗.
Pr𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖, 𝑙𝑙 𝑙 𝑙𝑙𝑙 compute probability distribution 𝑧𝑧𝑖𝑖 of each bit 𝑖𝑖, which is written
mathematically as:
Pr𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖, 𝑙𝑙 𝑙 𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑖𝑖∗Pr𝑜𝑜𝑜𝑜𝑜𝑜𝑜𝑖𝑖, 𝑙𝑙𝑙 𝑙 𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙𝑙𝑙𝑙   𝑙 𝑙𝑙𝑖𝑖) ∗𝑀𝑀𝑀𝑀𝑀 inal(𝑧𝑧𝑖𝑖, 𝑙𝑙𝑙𝑙𝑙𝑙  weight(𝑧𝑧𝑖𝑖, 𝑙𝑙𝑙.
𝑙𝑙𝑙𝑙 𝑙 𝑙𝑙𝑙𝑙𝑙  is learning rate. 𝛽𝛽𝑖𝑖 ∈ (0, 1) is generated at random.
Step 6.𝐷𝐷new

𝑙𝑙𝑙𝑙 ←generate new𝑁𝑁𝑁𝑁 individuals by sampling the probability distribution.
Step 7.𝐷𝐷𝑙𝑙𝑙𝑙 ← 𝐷𝐷𝑟𝑟

𝑙𝑙 ∪ 𝐷𝐷
new
𝑙𝑙𝑙𝑙 .

Step 8.𝐷𝐷0 ← 𝐷𝐷𝑙𝑙𝑙𝑙.
Step 9. End←output the optimal individual based on the evaluation with: �tness𝑗𝑗 = eval(𝑀𝑀𝑗𝑗).

A 1: e step-by-step recipe for the computational algorithm of the EDA-SVM approach.

distribution algorithm (EDA) [12] is a general framework of
GA. Compared to traditional GA that employs crossover and
mutation operators to create new population, EDA creates
new populations by using a statistical approach to estimate
the probability distribution of all promising individual solu-
tions for the previous generation. EDA can also explicitly
take into account speci�c interactions among the variables.
When EDA is used to search for feature subsets, classi�cation
methods, such as Support vector machine (SVM) [13–19],
which can deal with the high-dimension data in a limited
sample space, can be used to select feature subsets.

In this study, we have developed a hybrid approach
that combines both EDA and SVM (termed EDA-SVM) for
selecting key feature genes. Here, EDA acts as the search
engine, while SVM serves as the classi�er, namely, the
evaluator. We have applied EDA-SVM to two well-known
microarray datasets: a colon data [20] and a diffuse large B cell
lymphoma data [3]. Our results have shown that EDA-SVM
can be used to identify a smaller number of informative genes
with better accuracy in comparison to GA-SVM [11] and an
estimation of distribution algorithm named PMBGA [21].

2. Materials andMethods

2.1. Description of DLBCL Datasets. We have applied the
EDA-SVM method to the two following data sets: the
diffuse large B cell lymphoma (DLBCL) data [3], avail-
able at http://llmpp.nih.gov/lymphoma/data.shtml, and the
colon data [20], available at http://microarray.princeton
.edu/oncology/affydata/index.html. e colon data set con-
sists of 62 tissue samples including 40 tumors and 22
normal tissues, which cover 2000 human gene expression.

e DLBCL data set harbors preprocessed expression pro�le
of 4026 genes in tissues derived from 21 activated B-like
DLBCL (AB-like DLBCL) samples and 21 germinal center B-
like DLBCL (GCB-like DLBCL) samples.

2.2. Data Preprocessing. In DLBCL dataset, among 4026
genes, 6% genes have missing values and are imputed by the
KNN Impute algorithm [22] prior to the EDA-SVM analysis.
e KNN Impute algorithm uses the expression pro�les of𝐾𝐾
nearest neighbors (here 𝐾𝐾 𝐾 𝐾) to impute the missing values
for the target gene. erefore, in colon data 𝑀𝑀0 is a matrix
with 62 rows and 2000 columns. In DLBCL data, 𝑀𝑀0 is a
matrix with 42 rows and 4026 columns.

2.3. EDA-SVM. Figure 1 shows the main �owchart of the
EDA-SVM. EDA acts as the search engine, while SVM serves
as the classi�er, namely, the evaluator. e computational
procedures are described in Algorithm 1. e major ele-
ments of the EDA include feature subset coding, population
initiali�ation, �tness computation, estimation probability
distribution, generation of offspring and control of parameter
assignment. At the beginning, we randomly generated the N
�xed-length binary strings (individuals) to build up the initial
population. en, we calculated the �tness for each feature
subset. Classi�cation accuracy acted as the �tness index
(�tness) thatwas evaluated using a linear SVM.ealgorithm
is an iterative process in which each successive generation is
produced by estimating the probability distribution model of
the selected individuals (parents) in the current generation
and sampling the probability distribution to generate new
offsprings. In this manner, reasonable subsets are developed
successively until the terminal condition is ful�lled. In two
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F 1: e main �ow of ��A-�V� algorithm. 𝑀𝑀, 𝐷𝐷, 𝐺𝐺, and eval denote gene expression pro�le matrix, population, gene subset, and
evaluation index, respectively.

data sets, lr is a learning rate and is assigned 0.08. Population
size (𝑁𝑁𝑁 is set as 40 and the maximal generations of 50 are
determined, such that the solution space can be sufficiently
searched while the best minimal subset can be obtained
within the evolution time.

For each gene expression submatrix 𝑀𝑀𝑗𝑗, we classify the
microarray samples with genes contained in individual 𝑗𝑗
using a linear �V�.e classi�er, �18], is

󵰁󵰁𝑦𝑦 𝑦 𝑦𝑦 (𝑥𝑥) = sgn󶀧󶀧
𝐿𝐿
󵠈󵠈
𝑖𝑖𝑖𝑖
𝑎𝑎𝑖𝑖𝑦𝑦𝑖𝑖𝐾𝐾 󶀡󶀡𝑥𝑥𝑖𝑖 ⋅ 𝑥𝑥󶀱󶀱 − 𝑏𝑏󶀷󶀷 , (1)

then, the accuracy of classi�cation is

acc =
󶀢󶀢∑𝑇𝑇

𝑡𝑡𝑡𝑡 𝐼𝐼 󶀡󶀡𝑦𝑦𝑡𝑡, 󵰃󵰃𝑦𝑦𝑡𝑡󶀱󶀱󶀱󶀱
𝑇𝑇

, (2)

where 𝑇𝑇 is the number of test samples and

𝐼𝐼 󶀡󶀡𝑦𝑦𝑡𝑡,󵰃󵰃𝑦𝑦𝑡𝑡󶀱󶀱 = 󶁆󶁆
1, if 𝑦𝑦𝑡𝑡 =󵰃󵰃𝑦𝑦𝑡𝑡,
0, otherwise.

(3)

e weight of each feature 𝑖𝑖 in individual 𝑗𝑗 is

Preweight 󶀣󶀣𝑧𝑧
𝑗𝑗
𝑖𝑖 󶀳󶀳 =

󶀂󶀂󶀒󶀒󶀒󶀒
󶀊󶀊󶀒󶀒󶀒󶀒
󶀚󶀚

0, if 𝑧𝑧𝑗𝑗𝑖𝑖 = 0,

󶀧󶀧
𝐿𝐿
󵠈󵠈
ℎ=1

𝛼𝛼ℎ𝑦𝑦ℎ𝑥𝑥ℎ󶀷󶀷
2

, if 𝑧𝑧𝑗𝑗𝑖𝑖 ≠ 0,
(4)

where 𝑥𝑥 is a test sample vector and 𝑥𝑥𝑖𝑖 is the learning sample
vector. 𝐿𝐿 is the number of learning samples. 𝑦𝑦𝑖𝑖 is a class
indicator (for a two-class application, �1 for the �rst class,
−1 for the second class), and 𝑎𝑎𝑖𝑖 is a nonnegative Lagrange
multiplier associated with 𝑥𝑥𝑖𝑖 and 𝑎𝑎𝑖𝑖 ≠ 0 for support vectors.
sgn( ) is the sign function and𝐾𝐾𝐾𝐾𝐾𝑖𝑖 ⋅ 𝑥𝑥𝑥 is the kernel function:
linear kernel (𝐾𝐾𝐾𝐾𝐾𝑖𝑖 ⋅ 𝑥𝑥𝑥𝑥  𝑥𝑥𝑖𝑖 ⋅ 𝑥𝑥, i.e., their inner product).

�n this study, a �vefold cross-validation (CV) resampling
approach is used to construct the learning and test sets.
First, the two-class samples are randomly divided into 5
nonoverlapping subsets of roughly equal size, respectively.
A random combination of the subsets for the two classes
constitutes a test set, and the rest of subsets is totally used
as the learning set. e 5-fold CV resampling produces 25
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pairs of learning and test sets. Individual 𝑗𝑗 is evaluated by the
averaged value over the 25 pairs, that is,

Fitness𝑗𝑗 =
󶀢󶀢∑25

𝑘𝑘𝑘𝑘 acc𝑘𝑘󶀲󶀲
25

,

weight 󶀣󶀣𝑧𝑧𝑗𝑗𝑖𝑖 󶀳󶀳 =
󶀣󶀣∑25

𝑘𝑘𝑘𝑘 Preweight𝑘𝑘 󶀣󶀣𝑧𝑧
𝑗𝑗
𝑖𝑖 󶀳󶀳󶀳󶀳

25
,

(5)

where 𝑘𝑘 is the replicate number and acc𝑘𝑘 is the classi�cation
accuracy for the 𝑘𝑘th replicate.

In the EDA-SVM algorithm, the optimization of the
feature gene subset(s) is realized via survival competitions.
For each generation, we retain 50% of the high-valued
individuals that will directly enter next generation in order to
keep these optimal solutions unchanged. On the other hand,
in order to avoid the loss of the putative important feature
genes, we initially contained about half of genes in each
individual or preserving informative gene. en, we adopt
a stepwise data reduction procedure to minimize the feature
subsets with more reliable classi�cation accuracy. ese gene
expressionmatrices from the optimal individuals serve as the
data on which the new round of iteration is performed. e
data reduction process is completed once a stable gene subset
is obtained.

2.4. GA-SVM. GA-SVM was previously developed [11] by
us as a feature selection method. In GA-SVM, better feature
subsets have a greater chance of being selected to form a
new subset through crossover ormutation.Mutation changes
some of the values (thus adding or deleting features) in a
subset randomly. Crossover combines different features from
a pair of subsets into a new subset. e algorithm is an itera-
tive process in which each successive generation is produced
by applying genetic operators to the members of the current
generation. In this manner, good subsets are “evolved” over
time until the stopping criteria are met. us, coding feature
subset, population initialization, �tness computation, genetic
operation, and control parameter assignment (population
size, the maximal number of generations, and the selection
probability) are the major elements of the GA-SVMmethod.

2.5. PMBGA. PMBGA can be applied for selection of a
smaller size gene subset that would classify patient samples
more accurately [21]. PMGBA generates initial population
and builds a probability model and then selects individuals
from the population. Probability distribution can be esti-
mated based on the collection of selected individuals, and
probability model can accordingly be amended so that a
population is generated by sampling from the model. Instead
of applying crossover and mutation operators in the process
of generating new possible solutions (offspring), population
can be updated in whole or in part relied on probability
model.

3. Results

3.1. Benchmark EDA-SVM. e EDA-SVM method was
applied �rstly to theDLBCL data set.We started analysis with

all 4026 genes and progressively reduced the dimension of the
feature genes successively for 8 iterations aer convergence.
e accuracy of EDA-SVM increased from 0.9339 initially
to 0.9982 at convergence (Figure 2(a)), while the number
of feature genes at the successive generations is 4026, 460,
66, 17, 11, 7, 6, and 6, respectively (Figure 2(b)). For the
colon data set, EDA-SVM reached accuracy of 1.0 aer 7
iterations, and the �nal gene subset includes only 5 genes
(Figure 3).

We compared the performance of EDA-SVM with two
alternative methods: GA-SVM and PMBGA (Figures 2 and
3). e convergence speed of EDA-SVM is the fastest among
the three methods. EDA-SVM converged aer 8 and 7
iterations for the DLBCL and colon datasets, respectively.
In contrast, it took 13 and 10 iterations for GA-SVM to
converge, and 10 and 10 iterations for PMBGA to converge.
Moreover, both the accuracy and the stability of EDA-SVM
also show advantages among the three methods. EDA-SVM
quickly reaches high accuracy aer only a couple of iterations,
while both the other two methods took more iteration to
reach high accuracy. In addition, the accuracy of the other
two methods had large variation during the iteration, while
the accuracy of EDA-SVM kept stable during the iteration
aer it reached the high accuracy.

3.2. Biological Analysis of the Selected Genes in the DLBCL
Data. To understand the biological signi�cance of the
selected genes, we have analyzed the annotations of selected
genes according to Gene Ontology (GO) (http://www
.geneontology.org/) [23] and KEGG (http://www.genome.jp/
kegg/kegg2.html) [24, 25] database. We selected six genes
in the DLBCL data, which are SPIB, IRF8, NFKB2, LMO2,
FCGRT, and BCL7B. e GO annotations of these six
genes are shown in Table 1. Literature reviews of these six
genes suggested that they are highly related to DLBCL.
SPIB is an oncogene involved in the pathogenesis of AB-
like DLBCL [26]. NFKB2 is a subunit of NF-𝜅𝜅B whose
signaling pathway might contribute to the biological and
clinical differences between the GCB-like and the AB-like
DLBCL [27]. LMO2 was found to be located in the most
frequent regime of chromosomal translocation in childhood
T cell acute lymphoblastic leukemia. It was reported that
LMO2 expressed at high level in germinal center B cell
lymphocytes and at low level in AB-like DLBCL, respectively
[3]. LMO2 is also one of the six genes in a multivariate
model previously developed for prolonged survival in the
diffusive large b-cell lymphoma [28]. BCL7B was found
to be directly involved in a three-way gene translocation
together with Myc and IgH in a Burkitt lymphoma cell
line, and the disruption of the N-terminal region of BCL7B
was thought to be related to the pathogenesis of a subset
of high-grade B cell non-Hodgkin lymphoma [29]. BCL2
contributes to the pathogenesis in AB-like DLBCL [10] and
is the common target gene of miR-21 and miR-221, both of
which are overexpressed in AB-like than GCB-like cell lines
[30]. Based on the above evidences, EDA-SVM successfully
identi�ed genes that may play role in the pathogenesis of
DLBCL.
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F 2: �e changes of accuracy of the SVM classi�er (a) and the changes of support vectors (b) over iterations in EDA-SVM, GA-SVM,
and PMBGA based on DLBCL data set.
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4. Discussions and Conclusions

In this study, we have developed a hybrid method, EDA-
SVM, which combines the estimation of distribution algo-
rithms (EDA) with support vector machine (SVM) for
selecting key feature genes from microarray data. Although
similar combination strategies have been explored previously

[21], EDA-SVM shows unique advantages compared with
the alternative methods, GA-SVM or PMBGA. For example,
EDAV-SVM not only converged more quickly, but also
achieved higher accuracy with stable performance than the
other two methods did. Both EDA-SVM and PMBGA [21]
use EDA as the search engine, and SVM acts as evaluation
classi�er in feature selection procedure. �owever, there are
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T 1: e GO annotations of EDA-SVM feature genes.

Gene name
Uigene ID Biological process Cellular component Molecular function

SPIB
(Hs.437905)

GO:0006350 Transcription GO:0005634 Nucleus GO:0003700 Transcription factor activity
GO:0006357 Regulation of transcription from
RNA polymerase II promoter GO:0005737 Cytoplasm GO:0003702: RNA polymerase II

transcription factor activity

IRF8
(Hs.137427)

GO:0000122 Negative regulation of
transcription from RNA polymerase II
promoter

GO:0005634 Nucleus
GO:0003705: RNA polymerase II
transcription factor activity, enhancer
binding

GO:0006355 Regulation of transcription,
DNA-dependent

GO:0006350 Transcription

GO:0006955 Immune response

NFKB2
(Hs.73090)

Go:0006355 Regulation of transcription,
DNA-dependent GO:0005634 Nucleus

GO:0005515 Protein binding

GO:0005737 Cytoplasm

GO:0003713 Transcription coactivator
activity

GO:0007165 Signal transduction GO:0003700 Transcription factor activity

LMO2
(Hs.34560) GO:0008270 Development GO:0005634 Nucleus

GO:0008270 Zinc ion binding

GO:0005515 Protein binding

GO:0046872 Metal ion binding

FCGRT
(Hs.111903)

GO:0019882 Antigen presentation GO:0042612 MHC class I
protein complex GO:0019864 IgG binding

GO:0007565 Pregnancy GO:0016021 Integral to
membrane

GO:0004872 Receptor activity

GO:0006955 Immune response GO:0030106 MHC class I receptor
activity

BCL7B
(Hs.408219) Unknown Unknown GO:0003779 Actin binding

several key differences between the two methods. First,
EDA-SVM weights each feature using “𝑀𝑀weight”, so that the
contribution of each feature was fully considered during
the update of each generation. In contrast, PMBGA assigns
only a small random number to each feature. Second, for
selecting minimal feature genes, EDA-SVM reduced the
feature number step by step, while PMBGA did so by tuning
the learning rate. Finally, theway to create the next generation
in GA is also different between the two methods. As for
the differences between EDA-SVM and GA-SVM, GA-SVM
employs the traditional GA, while EDA-SVM generates new
possible solutions (individuals) by sampling the probability
distribution calculated from the selected solutions of previ-
ous generation.

e structure of genes in a microarray data can be
described by a Bayesian network. However, microarray
data usually contains the expression of thousands or tens
thousands of genes, making it virtually impossible to build
a Bayesian network with so many genes. In this study,
we have shown with EDA-SVM that proper combination
of machine learning algorithms can overcome the high-
dimension problem, and quickly converge to a small set
of feature genes strongly related to target phenotype. e
success of EDA-SVM thus made it readily applicable for
hunting disease genes in microarray data.
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