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Stochastic global optimization (SGO) algorithms such as the particle swarm optimization (PSO) approach have become popular for
solving unconstrained global optimization (UGO) problems.The PSO approach, which belongs to the swarm intelligence domain,
does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods.
Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social
parameter, and constriction coefficient.These parameters are tuned by using trial and error. To reduce the parametrization of a PSO
method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO)
method and an artificial immune algorithm-based PSO (AIA-PSO) method.The specific parameters of the internal PSO algorithm
are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems.
The performances of the proposed RGA-PSO andAIA-PSO algorithms are then evaluated using a set of benchmarkUGOproblems.
Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed
RGA-PSO and AIA-PSO algorithms outperformmany hybrid SGO algorithms.Thus, the RGA-PSO and AIA-PSO approaches can
be considered alternative SGO approaches for solving standard-dimensional UGO problems.

1. Introduction

An unconstrained global optimization (UGO) problem can
generally be formulated as follows:

Minimize 𝑓 (x) , x = [𝑥
1
, 𝑥
2
, . . . , 𝑥

𝑁
]
𝑇

∈ R
𝑁, (1)

where 𝑓(x) is an objective function and x represents a
decision variable vector. Additionally, x ∈ 𝑆, 𝑆 ⊆ R𝑁 denotes
search space (𝑆), which is 𝑁 dimensional and bounded by
parametric constraints as follows:

𝑥𝑙
𝑛
≤ 𝑥
𝑛
≤ 𝑥𝑢
𝑛
, 𝑛 = 1, 2, . . . , 𝑁, (2)

where 𝑥𝑙
𝑛
and 𝑥𝑢

𝑛
are the lower and upper boundaries of the

decision variables 𝑥
𝑛
, respectively.

Many conventional nonlinear programming (NLP) tech-
niques, such as the golden search, quadratic approximation,

Nelder-Mead, steepest descent, Newton, and conjugate gra-
dient methods, have been used to solve UGO problems [1].
Unfortunately, such NLP methods have difficulty in solving
UGO problems when an objective function of an UGO prob-
lem is nondifferential. Many stochastic global optimization
(SGO) approaches developed to overcome this limitation
of the traditional NLP methods include genetic algorithms
(GAs), particle swarm optimization (PSO), ant colony opti-
mization (ACO), and artificial immune algorithms (AIAs).
For instance, Hamzaçebi [2] developed an enhanced GA
incorporating a local random search algorithm for eight
continuous functions. Furthermore, Chen [3] presented a
two-layer PSOmethod to solve nineUGOproblems. Zhao [4]
presented a perturbed PSO approach for 12 UGO problems.
Meanwhile, Toksari [5] developed an ACO algorithm for
solving UGO problems. Finally, Kelsey and Timmis [6]
presented an AIA method based on the clonal selection
principle for solving 12 UGO problems.
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This work focuses on a PSO algorithm, based on it is
being effective, robust and easy to use in the SGO meth-
ods. Research on the PSO method has considered many
critical issues such as parameter selection, integration of
the PSO algorithm with the approaches of self-adaptation,
and integration with other intelligent optimizing methods
[7]. This work surveys two issues: first is a PSO approach
that integrates with other intelligent optimizingmethods and
second is parameter selection for use in a PSO approach.

Regarding the first issue, the conventional PSO algorithm
lacks evolution operators of GAs, such as crossover and
mutation operations. Therefore, PSO has premature conver-
gence, that is, a rapid loss of diversity during optimization
[4]. To overcome this limitation, many hybrid SGO methods
have been developed to create diverse candidate solutions
to enhance the performance of a PSO approach. Hybrid
algorithms have some advantages; for instance, hybrid algo-
rithms outperform individual algorithms in solving certain
problems and thus can solve general problems more effi-
ciently [8]. Kao and Zahara [9] presented a hybrid GA
and PSO algorithm to solve 17 multimodal test functions.
Their study used the operations of GA and PSO methods to
generate candidate solutions to improve solution quality and
convergence rates. Furthermore, Shelokar et al. [10] presented
a hybrid PSO and ACO algorithm to solve multimodal
continuous optimization problems.Their study used an ACO
algorithm to update the particle positions to enhance a
PSO algorithm performance. Chen et al. [11] presented a
hybrid PSO and external optimization based on the Bak–
Sneppen model to solve unimodal and multimodal bench-
mark problems. Furthermore, Thangaraj et al. [12] surveyed
many algorithms that combine the PSO algorithm with other
search techniques and compared the performances obtained
using hybrid differential evolution PSO (DE-PSO), adaptive
mutation PSO (AMPSO), and hybridGA and PSO (GA-PSO)
approaches to solve nine conventional benchmark problems.

Regarding the second issue, a PSO algorithm has numer-
ous parameters that must be set, such as cognitive parameter,
social parameter, inertia weight, and constriction coefficient.
Traditionally, the optimal parameter settings of a PSO algo-
rithm are tuned based on trial and error. The abilities of
a PSO algorithm to explore and exploit are constrained to
optimum parameter settings [13, 14]. Therefore, Jiang et al.
[15] used a stochastic process theory to analyze the parameter
settings (e.g., cognitive parameter, social parameter, and
inertia weight) of a standard PSO algorithm.

This work focuses on the second issue related to the
application of a PSO method. Fortunately, the optimization
of parameter settings for a PSO algorithm can be viewed as an
UGOproblem.Moreover, real-coded GA (RGA) andAIA are
efficient SGO approaches for solving UGO problems. Based
on the advantage of a hybrid algorithm [8], thiswork develops
two hybrid SGO approaches. The first approach is a hybrid
RGA and PSO (RGA-PSO) algorithm, while the second one
is a hybridAIA and PSO (AIA-PSO) algorithm.The proposed
RGA-PSO and AIA-PSO algorithms are considered as a
means of solving the two optimization problems simulta-
neously. The first UGO problem (optimization of cognitive
parameter, social parameter, and constriction coefficient) is

optimized using external RGA and AIA approaches, respec-
tively. The second UGO problem is then solved using the
internal PSO algorithm. The performances of the proposed
RGA-PSO and AIA-PSO algorithms are evaluated using a set
of benchmark UGO problems and compared with those of
many hybrid algorithms [9, 10, 12].

The rest of this paper is organized as follows. Section 2
describes RGA, PSO, and AIA approaches. Section 3 then
presents the proposed RGA-PSO and AIA-PSO methods.
Next, Section 4 compares the experimental results of the
proposed RGA-PSO and AIA-PSO approaches with those
of many hybrid methods. Conclusions are finally drawn in
Section 5.

2. Related Works

The SGO approaches such as RGA, PSO, and AIA [16] are
described as follows.

2.1. Real-Coded Genetic Algorithm. GAs are based on the
concepts of natural selection anduse three genetic operations,
that is, selection, crossover, and mutation, to explore and
exploit the solution space. In solving continuous function
optimization problems, RGA method outperforms binary-
coded GA approach [17]. Therefore, this work describes
operators of a RGA method [18].

2.1.1. Selection Operation. A selection operation picks up
strong individuals from a current population based on their
fitness function values and then reproduces these individuals
into a crossover pool. Many selection operations developed
include the roulette wheel, the ranking, and the tournament
methods [17, 18]. This work employs the normalized geomet-
ric ranking method as follows:

𝑝
𝑗
= 𝑞(1 − 𝑞)

rank −1
, 𝑗 = 1, 2, . . . , psRGA, (3)

where 𝑝
𝑗
= probability of selecting individual 𝑗, 𝑞 = probabil-

ity of choosing the best individual (here 𝑞 = 0.35), 𝑞 = 𝑞/(1−
(1 − 𝑞)psRGA ), and rank = individual ranking based on fitness
value, where 1 represents the best, rank = 1, 2, . . . , psRGA, and
psRGA = population size of the RGA method.

2.1.2. Crossover Operation. While exploring the solution
space by creating new offspring, the crossover operation
randomly chooses two parents from the crossover pool and
then uses these two parents to create two new offspring. This
operation is repeated until the psRGA/2 is satisfied.The whole
arithmetic crossover is easily performed as follows:

v
1
= 𝛽 × v1 + (1 − 𝛽) × v2,

v2 = (1 − 𝛽) × v1 + 𝛽 × v2,
(4)
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where v1 and v
2
= parents (decision variable vectors), v1 and

v
2
= offspring (decision variable vectors), and 𝛽 = uniform

random number in the interval [0, 1.5].

2.1.3. Mutation Operation. Mutation operation can improve
the diversity of individuals (candidate solutions). Multi-non-
uniform mutation is described as follows:

𝑥trial,𝑛 =

{{{{{{
{{{{{{
{

𝑥current,𝑛 + (𝑥
𝑢

𝑛
− 𝑥current,𝑛) pert (𝑔RGA)

if 𝑈
1
(0, 1) < 0.5,

𝑥current,𝑛 − (𝑥current,𝑛 − 𝑥
𝑙

𝑛
) pert (𝑔RGA)

if 𝑈
1
(0, 1) ≥ 0.5,

(5)

where pert(𝑔RGA) = [𝑈
2
(0, 1)(1 − 𝑔RGA/𝑔max,RGA)]

2, per-
turbed factor, 𝑈

1
(0, 1) and 𝑈

2
(0, 1) = uniform random vari-

able in the interval [0, 1], 𝑔max,RGA = maximum generation
of the RGA method, 𝑔RGA = current generation of the RGA
method, 𝑥current,𝑛 = current decision variable 𝑥

𝑛
, and 𝑥trial,𝑛

= trial decision variable (candidate solution) 𝑥
𝑛
.

2.2. Particle Swarm Optimization. Kennedy and Eberhart
[19] first presented a standard PSO algorithm, which is
inspired by the social behavior of bird flocks or fish schools.
Like GAs, a PSO method is a population-based algorithm. A
population of candidate solutions is called a particle swarm.
The particle velocities can be updated by (6) as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝑣𝑗,𝑛 (𝑔PSO) + 𝑐1𝑟𝑗,1 (𝑔PSO)

× [𝑝lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+ 𝑐
2
𝑟
𝑗,2
(𝑔PSO) [𝑝

gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁
(6)

where 𝑣
𝑗,𝑛
(𝑔PSO +1) = particle velocity of decision variable 𝑥

𝑛

of particle 𝑗 at generation𝑔PSO+1, 𝑣𝑗,𝑛(𝑔PSO)=particle veloc-
ity of decision variable 𝑥

𝑛
of particle 𝑗 at generation 𝑔PSO, 𝑐1 =

cognitive parameter, 𝑐
2
= social parameter, 𝑥

𝑗,𝑛
(𝑔PSO) = parti-

cle position of decision variable 𝑥
𝑛
of particle 𝑗 at generation

𝑔PSO, 𝑟𝑗,1(𝑔PSO), 𝑟𝑗,2(𝑔PSO) = independent uniform random
numbers in the interval [0, 1] at generation 𝑔PSO, 𝑝

lb
𝑗,𝑛
(𝑔PSO)

= best local solution at generation 𝑔PSO, 𝑝
gb
𝑗,𝑛
(𝑔PSO) = best

global solution at generation 𝑔PSO, and psPSO = population
size of the PSO algorithm.

Theparticle positions can be obtained using (7) as follows:

𝑥
𝑗,𝑛
(𝑔PSO + 1) = 𝑥𝑗,𝑛 (𝑔PSO) + 𝑣𝑗,𝑛 (𝑔PSO + 1) ,

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁.
(7)

Shi and Eberhart [20] introduced a modified PSO algo-
rithm by incorporating an inertia weight (𝜔in) into (8) to

control the exploration and exploitation capabilities of a PSO
algorithm as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝜔in𝑣𝑗,𝑛 (𝑔PSO) + 𝑐1𝑟𝑗,1 (𝑔PSO)

× [𝑝lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+ 𝑐
2
𝑟
𝑗,2
(𝑔PSO) [𝑝

gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

𝑗 = 1, 2, . . . , 𝑝𝑠PSO, 𝑛 = 1, 2, . . . , 𝑁.

(8)

A constriction coefficient (𝜒) in (9) is used to balance the
exploration and exploitation tradeoff [21–23] as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝜒 {𝑣𝑗,𝑛 (𝑔PSO) + 𝜏1 (𝑔PSO)

× [𝑝lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+𝜏
2
(𝑔PSO) [𝑝

gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]}

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁,
(9)

where

𝜒 =
2𝑈
3
(0, 1)

2 − 𝜏 −
√𝜏 (𝜏 − 4)



, (10)

𝑈
3
(0, 1) = uniform random variable in the interval [0, 1], 𝜏 =

𝜏
1
+ 𝜏
2
, 𝜏
1
= 𝑐
1
𝑟
𝑗,1
, 𝜏
1
= 𝑐
2
𝑟
𝑗,2
.

This work considers parameters 𝜔in and 𝜒 to modify the
particle velocities as follows:

𝑣
𝑗,𝑛
(𝑔PSO + 1) = 𝜒 {𝜔in𝑣𝑗,𝑛 (𝑔PSO) + 𝑐1𝑟𝑗,1 (𝑔PSO)

× [𝑝lb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]

+ 𝑐
2
𝑟
𝑗,2
(𝑔PSO)

× [𝑝
gb
𝑗,𝑛
(𝑔PSO) − 𝑥𝑗,𝑛 (𝑔PSO)]}

𝑗 = 1, 2, . . . , psPSO, 𝑛 = 1, 2, . . . , 𝑁,

(11)

where 𝜔in = ((𝑔max,PSO − 𝑔PSO)/𝑔max,PSO), increased 𝑔PSO
value reduces the 𝜔in, and 𝑔max,PSO = maximum generation
of the PSO algorithm.

According to (11), the optimal values of parameters 𝑐
1
, 𝑐
2
,

and 𝜒 are difficult to obtain through trial and error.This work
thus optimizes these parameter settings by using RGA and
AIA approaches.

2.3. Artificial Immune Algorithm. Wu [24] presented an AIA
approach based on clonal selection and immune network
theories to solve constrained global optimization problems.
The AIAmethod consists of selection, hypermutation, recep-
tor editing, and bone marrow operations. The selection
operation is performed to reproduce strong antibodies (Abs).
Also, diverse Abs are created using hypermutation, receptor
editing, and bone marrow operations, as described in the
following subsections.
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2.3.1. Ab and Ag Representation. In the human system, an
antigen (Ag) has multiple epitopes (antigenic determinants),
which can be recognized by many Abs with paratopes
(recognizers), on its surface. In the AIA approach, an Ag
represents known parameters of a solved problem. The Abs
are the candidate solutions (i.e., decision variables 𝑥

𝑛
, 𝑛 =

1, 2, ..., 𝑁) of the solved problem. The quality of a candidate
solution is evaluated using an Ab-Ag affinity that is derived
from the value of an objective function of the solved problem.

2.3.2. Selection Operation. The selection operation controls
the number of antigen-specificAbs.This operation is defined
according to Ab-Ag and Ab-Ab recognition information as
follows:

𝑝
𝑗,rec =

1

𝑁

𝑁

∑
𝑛=1

1

𝑒𝑑𝑗,𝑛
,

𝑑
𝑗,𝑛
=


𝑥∗
𝑛
− 𝑥
𝑗,𝑛

𝑥∗
𝑛


, 𝑗 = 1, 2, . . . , rsAIA, 𝑛 = 1, 2, . . . , 𝑁,

(12)

where 𝑝
𝑗,rec = probability that Ab

𝑗
recognizes Ab∗ (the best

solution), 𝑥∗
𝑛
= the best Ab∗ with the highest Ab-Ag affinity,

𝑥
𝑗,𝑛

= decision variables 𝑥
𝑛
of Ab

𝑗
, and rsAIA = repertoire

(population) size of the AIA approach.
TheAb∗ is recognized by otherAb

𝑗
in a currentAb reper-

toire. Large 𝑝
𝑗,rec implies that Ab

𝑗
can effectively recognize

Ab∗. The Ab
𝑗
with 𝑝

𝑗,rec that is equivalent to or larger than
the threshold degree of AIA approach 𝑝rt,AIA is reproduced
to generate an intermediate Ab repertoire.

2.3.3. HypermutationOperation. The somatic hypermutation
operation can be expressed as follows:

𝑥trial,𝑛 =

{{{{{{
{{{{{{
{

𝑥current,𝑛 + (𝑥
𝑢

𝑛
− 𝑥current,𝑛) pert (𝑔AIA) ,

if 𝑈
4
(0, 1) < 0.5,

𝑥current,𝑛 − (𝑥current,𝑛 − 𝑥
𝑙

𝑛
) pert (𝑔AIA) ,

if 𝑈
4
(0, 1) ≥ 0.5,

(13)

where pert(𝑔AIA) = {𝑈
5
(0, 1)(1 − 𝑔AIA/𝑔max,AIA)}

2 = pertur-
bation factor, 𝑔AIA = current generation of the AIA method,
𝑔max,AIA = maximum generation number of the AIAmethod,
and 𝑈

4
(0, 1) and 𝑈

5
(0, 1) = uniform random number in the

interval [0, 1].
This operation has two tasks, that is, a uniform search and

local fine tuning.

2.3.4. Receptor-Editing Operation. A receptor-editing opera-
tion is developed based on the standard Cauchy distribution
𝐶(0, 1), in which the local parameter is zero and the scale
parameter is one. Receptor editing is implemented using

Cauchy randomvariables that are created from𝐶(0, 1), owing
to their ability to provide a large jump in the Ab-Ag affinity
landscape to increase the probability of escaping from the
local Ab-Ag affinity landscape. Cauchy receptor editing can
be defined by

xtrial = xcurrent + 𝑈6(0, 1)
2 × 𝜎, (14)

where 𝜎 = [𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑁
]𝑇, vector of Cauchy random

variables, and 𝑈
6
(0, 1) = uniform random number in the

interval [0, 1].
This operation is used in local fine-tuning and large

perturbation.

2.3.5. Bone Marrow Operation. The paratope of anAb can be
created by recombining gene segments VHDHJH and VLJL
[25]. Therefore, based on this metaphor, diverse Abs are
synthesized using a bone marrow operation. This operation
randomly selects two Abs from the intermediate Ab reper-
toire and a recombination point from the gene segments of
the paratope of the selected Abs. The selected gene segments
(e.g., gene𝑥

1
ofAb
1
and gene𝑥

1
of theAb

2
) are reproduced to

create a library of gene segments.The selected gene segments
in the paratope are then deleted. The new Ab

1
is formed by

inserting the gene segment, which is gene 𝑥
1
of theAb

2
in the

library plus a random variable created from standard normal
distribution 𝑁(0, 1), at the recombination point. The details
of the implementation of the bone marrow operation can be
found [24].

3. Methods

This work develops the RGA-PSO and AIA-PSO approaches
for solving UGO problems.The implementation of the RGA-
PSO and AIA-PSO methods is described as follows.

3.1. RGA-PSO Algorithm. Figure 1 shows the pseudocode
of the proposed RGA-PSO algorithm. The best parameter
setting of the internal PSO algorithm is obtained by using the
external RGAmethod. BenchmarkUGOproblems are solved
by using the internal PSO algorithm.

External RGA
Step 1 (initialize the parameter settings). Parameter settings
such as psRGA, crossover probability of the RGA method
𝑝
𝑐,RGA, mutation probability of the RGA approach 𝑝

𝑚,RGA,
psPSO aswell as lower andupper boundaries of the parameters
(𝑐
1
, 𝑐
2
, and 𝜒) for a PSO algorithm are given. The candi-

date solution (individual) of a RGA method represents the
optimized parameters of internal PSO algorithm. Figure 2
illustrates the candidate solution of the RGA method.
Step 2 (calculate the fitness function value). The fitness
function value fitness

𝑗
of the external RGA method is the



Mathematical Problems in Engineering 5

candidate
solution

Procedure internal PSO Algorithm
begin

(1) Generate an initial particle swarm
(a) parameter settings obtained from external RGA
(b) generate an initial particle swarm
while do
(2) Compute the objective function value
(3) Update the particle velocity and position
(4) Perform an elitist strategy

endWhile
end

end

Procedure external RGA method
begin

Step 1: Initialize the parameter settings
(a) parameter settings
(b) generate an initial population

while do

Step 3: Perform a selection operation
For each candidate solution do

if rand then
Step 4: Implement a crossover operation

endIf
endFor
For each candidate solution do

if rand then
Step 5: Conduct a mutation operation

endIf
endFor

Step 6: Perform an elitist strategy

endIf

break
endIf

endWhile
end

end

Step 2: Calculate the fitness function value

if fitness(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔 RGA + 1) − fitness(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔 RGA ) ≤ 1 × 10−9 then

𝑔RGA ← 𝑔RGA + 1

𝑔RGA ←0

𝑔PSO ←0

𝑔PSO ← 𝑔PSO + 1

← + 1

← 0

if ≤ 5 then

𝑔RGA ≤ 𝑔max,RGA 𝑔PSO ≤ 𝑔max,PSO

𝑗, 𝑗 = 1,2, . . . ,psRGA/2

𝑗, 𝑗 = 1,2, . . . ,psRGA

𝑗, 𝑗 = 1,2, . . . ,psRGA

() ≤ 𝑃𝑐,RGA

() ≤ 𝑃m,RGA

count

count

count count

χ c1 c2

PSO𝑗 = 𝑓(𝒙∗ PSO𝒙∗)fitness

Figure 1: The pseudocode of the proposed RGA-PSO algorithm.

Table 1: The parameter settings for the proposed RGA-PSO and AIA-PSO approaches.

Methods Parameter settings Search space

External RGA
𝑝
𝑐,RGA = 1

𝑝
𝑚,RGA = 0.15
psRGA = 20
𝑔max,RGA = 20

[𝜒𝑙, 𝜒𝑢] = [0.1, 1]
[𝑐𝑙
1
, 𝑐𝑢
1
] = [0.1, 5]

[𝑐𝑙
2
, 𝑐𝑢
2
] = [0.1, 5]

External AIA
𝑝rt,AIA = 0.9
rsAIA = 20
𝑔max,AIA = 20

Internal PSO
psPSO = 20

𝑔max,PSO = 1000 for𝑁 ≤ 3
𝑔max,PSO = 3000 for 5 ≤ 𝑁 ≤ 30

[𝑥𝑙
𝑛
, 𝑥𝑢
𝑛
] for a UGO problem

Candidate solution j

χ c1 c2 Fitnessj

Figure 2: Candidate solution of the RGA method.

best objective function value 𝑓(x∗PSO) obtained from the best
solution x∗PSO of each internal PSO algorithm execution as
follows:

fitness
𝑗
= 𝑓 (x∗PSO) , 𝑗 = 1, 2, . . . , psRGA. (15)

The candidate solution 𝑗 of the external RGA method is
incorporated into the internal PSO algorithm and, then, the
internal PSO algorithm is used to solve anUGOproblem.The
internal PSO algorithm is executed as follows.

Internal PSO Algorithm

(1) Generate an initial particle swarm. An initial particle
swarm is created based on psPSO from [𝑥𝑙

𝑛
, 𝑥𝑢
𝑛
] of

an UGO problem. A particle represents a candidate
solution of an UGO problem.
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Procedure internal PSO algorithm
begin

(1) Generate an initial particle swarm
(a) parameter settings obtained from external AIA
(b) generate an initial particle swarm

(3) Update the particle velocity and position
(4) Perform an elitist strategy

endWhile
end

end

Procedure external AIA method
begin

Step 1: Initialize the parameter settings
while AIA max,AIA do

Step 2: Evaluate the Ab-Ag affinity
← max

Step 3: Perform a clonal selection operation
for each Ab , do

if then
promote (clone)

else
suppress

endIf
endFor

Step 4: Implement an Ab-Ag affinity maturation operation
for each promoted Abj do

if rand() ≤ 0.5 do
somatic hypermutation

else
receptor editing

endIf
endFor

Step 5: Introduce diverse Abs
Step 6: Update an Ab repertoire

endIf

break
endIf

endWhile
end

end

while do𝑔PSO ≤ 𝑔max,PSO

𝑔PSO ←0

(2) Compute the fitness value

χ c1 c2

−1 × 𝒙∗PSO

𝑔 𝑔

if ≤ 5 then

𝑔AIA← 𝑔AIA+ 1

𝑗 = 1,2, . . . ,r𝑠AIA

𝑗 = 1,2, . . . ,r𝑠(affnity𝑗

𝑗

),

𝑔PSO ← 𝑔PSO + 1

<

if  affinity(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔AIA+ 1) − affinity(𝑥𝑛,𝜒,𝑐1,𝑐2,𝑔AIA) ≤ 1 × 10−9 then
← + 1

𝑔AIA ←0
← 0

∗Ab

𝑝𝑗 ,rec ≥ 𝑝rt,AIA

count

count count

count

Figure 3: The pseudocode of the proposed AIA-PSO algorithm.

(2) Compute the objective function value. The objective
function value of the internal PSO algorithm of
particle 𝑗𝑓(x

𝑗,PSO) 𝑗 = 1, 2, . . . , psPSO is the objective
function value of an UGO problem.

(3) Update the particle velocity and position. Equations (7)
and (11) can be used to update the particle position
and velocity.

(4) Perform an elitist strategy. A new particle swarm is
generated from internal step (3). Notably, 𝑓(x

𝑗,PSO)
of a candidate solution 𝑗 (particle 𝑗) in the particle
swarm is evaluated.This work makes a pairwise com-
parison between the 𝑓(x

𝑗,PSO) of candidate solutions
in the new particle swarm and that in the current
particle swarm. A situation in which the candidate
solution 𝑗 (𝑗 = 1, 2, . . . , psPSO) in the new particle
swarm is better than candidate solution 𝑗 in the cur-
rent particle swarm implies that the strong candidate
solution 𝑗 in the new particle swarm replaces the
candidate solution 𝑗 in the current particle swarm.
The elitist strategy guarantees that the best candidate
solution is always preserved in the next generation.
The current particle swarm is updated to the particle
swarm of the next generation.

Internal steps from (2) to (4) are repeated until the
maximum generation number of the PSO method 𝑔max,PSO
of the internal PSO algorithm is satisfied.

End

Step 3 (perform a selection operation). Equation (3) is used
to select the parents into a crossover pool.
Step 4 (implement a crossover operation). The crossover
operation performs a global search. The candidate solutions
are created by using (4).
Step 5 (conduct a mutation operation). The mutation opera-
tion implements a local search. A solution space is exploited
using (5).
Step 6 (perform an elitist strategy). This work presents an
elitist strategy to update the population. A situation in which
the fittness

𝑗
of candidate solution 𝑗 in the new population is

larger than the fittness
𝑗
of candidate solution 𝑗 in the current

population suggests that a replacement of the weak candidate
solution 𝑗 takes place. Additionally, a situation in which the
fittness

𝑗
of candidate solution 𝑗 in the new population is equal

to or worse than that in the current population implies that
the candidate solution 𝑗 in the current population survives. In
addition to maintaining the strong candidate solutions, this
strategy effectively eliminates weak candidate solutions.
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χ c1 c2

Epitope (antigenic determinants)

Ag

The known coefficient parameters

for an UGO problem

Max(affinityj) = −1×f(x∗PSO)

Stimulate
Suppress

Candidate solution

x1 x2 x3

Ab

Ab

Ab

Ab

Paratope (recognizer)

AIA-PSO approach

Figure 4: Ab and Ag representation.

External steps 2 to 6 are repeated until the 𝑔max,RGA of the
external RGA method is met.

3.2. AIA-PSO Algorithm. Figure 3 shows the pseudocode of
the proposed AIA-PSO algorithm.The external AIA method
is used to optimize the parameter settings of the internal
PSO method, which is employed to solve benchmark UGO
problems.

External AIA
Step 1 (initialize the parameter settings). Several parameters
must be predetermined. These include repertoire (popula-
tion) size rsAIA and 𝑝rt,AIA. An availableAb repertoire (popu-
lation) is randomly generated using rsAIA from the lower and
upper boundaries of parameters 𝜒 [𝜒𝑙, 𝜒𝑢], 𝑐

1
[𝑐𝑙
1
, 𝑐𝑢
1
], and 𝑐

2

[𝑐𝑙
2
, 𝑐𝑢
2
]. Figure 4 shows the Ab and Ag representation.

Step 2 (evaluate the Ab-Ag affinity).

Internal PSO Algorithm. The external AIA approach offers
parameter settings 𝑐

1
, 𝑐
2
, and 𝜒 for the internal PSO algo-

rithm. Subsequently, internal steps (1)–(4) of the PSO algo-
rithm are implemented.The internal PSOmethod returns the
best fitness value of PSO𝑓(x∗PSO) to the external AIAmethod.

(1) Generate an initial particle swarm. An initial particle
swarm is created based on psPSO from [𝑥𝑙

𝑛
, 𝑥𝑢
𝑛
] of

an UGO problem. A particle represents a candidate
solution of an UGO problem.

(2) Compute the fitness value. The fitness value of the
internal PSO algorithm 𝑓(xPSO,𝑗) 𝑗 = 1, 2, . . . , psPSO
is the objective function value of an UGO problem.

(3) Update the particle velocity and position. Equations (7)
and (11) can be used to update the particle position
and velocity.

(4) Perform an elitist strategy. A new particle swarm
(population) is generated from internal step (3).
Notably, 𝑓(x

𝑗,PSO) of a candidate solution 𝑗 (particle
𝑗) in the particle swarm is evaluated. This work
makes a pairwise comparison between the 𝑓(x

𝑗,PSO)
of candidate solutions in the new particle swarm and
that in the current particle swarm.The elitist strategy
guarantees that the best candidate solution is always
preserved in the next generation.The current particle
swarm is updated to the particle swarm of the next
generation.

Internal steps from (2) to (4) are repeated until the
𝑔max,PSO of the internal PSO algorithm is satisfied.

End

Consistent with the Ab-Ag affinity metaphor, an Ab-Ag
affinity is determined using (16) as follows:

max (affinity
𝑗
) = −1 × 𝑓 (x∗PSO) 𝑗 = 1, 2, . . . , rsAIA. (16)

Following the evaluation of the Ab-Ag affinities of Abs
in the current Ab repertoire, the Ab with the highest Ab-
Ag affinity (Ab∗) is chosen to undergo clonal selection in
external Step 3.
Step 3 (perform a clonal selection operation). To control the
number of antigen-specific Abs, (12) is employed.
Step 4 (implement an Ab-Ag affinity maturation operation).
The intermediate Ab repertoire that is created in external
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Step 3 is divided into two subsets.TheseAbs undergo somatic
hypermutation operation by using (13) when the random
number is 0.5 or less. Notably, these Abs suffer receptor-
editing operation using (14) when the random number
exceeds 0.5.
Step 5 (introduce diverse Abs). Based on the bone marrow
operation, diverse Abs are created to recruit the Abs sup-
pressed in external Step 3.
Step 6 (Update an Ab repertoire). A new Ab repertoire is
generated from external Steps 3–5. The Ab-Ag affinities of
the Abs in the generated Ab repertoire are evaluated. This
work presents a strategy for updating the Ab repertoire. A
situation in which the Ab-Ag affinity of Ab

𝑗
in the new Ab

repertoire exceeds that in the current Ab repertoire implies
that a strong Ab in the new Ab repertoire replaces the weak
Ab in the current Ab repertoire. Additionally, a situation in
which the Ab-Ag affinity of Ab

𝑗
in the new Ab repertoire

equals to or is worse than that in the current Ab repertoire
implies that the Ab

𝑗
in the current Ab repertoire survives.

In addition to maintaining the strong Abs, this strategy
eliminates nonfunctional Abs

Repeat external Steps 2–6 until the termination criterion
𝑔max,AIA is satisfied.

4. Results

The proposed RGA-PSO and AIA-PSO algorithms were
applied to a set of benchmark UGO problems taken from
other studies [9, 10, 17, 26], as detailed in the Appendix. The
proposed RGA-PSO and AIA-PSO approaches were coded
in MATLAB software and run on a Pentium D 3.0 (GHz)
personal computer. One-hundred independent runs were
conducted for each test problem (TP). To have comparable
numerical results, the accuracy was chosen based on the
numerical results reported in [9, 10, 17, 26]. Numerical results
were summarized, including rate of successful minimizations
(success rate %), best mean worst, mean computational CPU
time (MCCT), and mean error ME (average value of the
gap between the objective function values calculated using
the AIA-PSO and RGA-PSO solutions and the known global
minimum value). Table 1 lists the parameter settings for the
proposed RGA-PSO and AIA-PSO approaches. The table
shows 20,000 (20 × 1000) objective function evaluations of
the internal PSO approach for an UGO problem with𝑁 ≤ 3
decision variables and 60,000 (20 × 3000) objective function
evaluations of the internal PSO for an UGO problem with
5 ≤ 𝑁 ≤ 30 decision variables. Moreover, the external AIA
and RGAmethods stop when 𝑔max,RGA= 20 and 𝑔max,AIA= 20
are met or the best fitness value of the RGA approach (or the
bestAb-Ag affinity of the AIAmethod) does not significantly
change for the past five generations.

4.1. Numerical Results Obtained Using the RGA-PSO and AIA-
PSO Algorithms for Low-Dimensional UGO Problems (2 ≤
𝑁 ≤ 10). Table 2 lists the numerical results obtained using
the proposed RGA-PSO algorithm. The numerical results
indicate that the RGA-PSO algorithm can obtain the global
minimum for each test UGO problem since these MEs equal

or closely approximate “0,” and the RGA-PSO algorithm has
an acceptable MCCT for each TP. Table 3 lists the optimal
parameter settings obtained using the proposed RGA-PSO
algorithm to solve 14 UGO problems.

Table 4 lists the numerical results obtained using the
proposed AIA-PSO algorithm. Numerical results indicate
that the AIA-PSO algorithm can obtain the global minimum
for each test UGO problem since these MEs equal or closely
approximate “0,” and that the AIA-PSO algorithm has an
acceptable MCCT for each TP. Table 5 lists the optimal
parameter settings obtained using the proposed AIA-PSO
algorithm for solving 14 UGO problems.

4.2. Numerical Results ObtainedUsing the RGA-PSO andAIA-
PSO Algorithms for a Standard-Dimensional UGO Problem
(𝑁=30). To investigate the effectiveness of the RGA-PSO
and AIA-PSO methods for solving a standard-dimensional
UGO problem, the Zakharov problem with 30 decision
variables (ZA

30
), as described in the Appendix, has been

solved using the RGA-PSO and AIA-PSO approaches. Fifty
independent runs were performed to solve the UGO prob-
lem. To increase the diversity of candidate solutions for use in
the external RGAmethod, the parameter𝑝

𝑚,RGA was set from
0.15 to “1.” Table 6 lists the numerical results obtained using
the RGA-PSO and AIA-PSO approaches. This table indicates
that the two approaches converge to the global optimum
value, since the MEs closely approximate “0,” and the MCCT
of the RGA-PSO method is larger than that of the AIA-PSO
method. Moreover, the success rates of the proposed RGA-
PSO and AIA-PSO approaches are 100%. The Wilcoxon test
is performed to the difference of median values of the MEs
obtained using the RGA-PSO and AIA-PSO methods. The 𝑃
value of the Wilcoxon test is 0.028, which is smaller than the
significance level of 0.05, indicating that the performance of
the RGA-PSO method is statistically different to that of the
AIA-PSOmethod. Table 7 summarizes the optimal parameter
settings obtained using the proposed RGA-PSO and AIA-
PSO algorithms for the UGO problem ZA

30.

The UGO problem ZA
50

was solved using the RGA-
PSO and AIA-PSO methods. The RGA-PSO and AIA-PSO
methods fail to solve the UGO problem, since the diversity
of the particle swarm in the internal PSO method cannot
be maintained. Hence, future work will focus on improving
the diversity of the particle swarm by applying mutation
operations.

4.3. Comparison. Table 8 lists the results of the Wilcoxon
test for theMEs obtained using the proposed RGA-PSO and
AIA-PSO methods for 14 UGO problems. In this table, the
“∗∗” represents the 𝑃 value of Wilcoxon test which cannot
be obtained, since the MEs obtained using the RGA-PSO
and AIA-PSO methods for a TP are identical. Moreover, the
median values of theMEs obtained using the RGA-PSO and
AIA-PSO methods for TP 10 are not statistically different,
since their 𝑃 value is larger than the significance level of 0.05.
Overall, the performances obtained using the RGA-PSO and
AIA-PSO methods are statistically identical.
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Table 3: The optimal parameter settings obtained using the proposed RGA-PSO algorithm for solving 14 UGO problems.

TP number Function name 𝜒 𝑐
1

𝑐
2

1 SHCB 0.36497798 1.79972890 2.36717639
2 GP 0.86138264 3.74964714 0.10000000
3 ES 0.36038653 0.42043804 4.78367612
4 B2 0.75486133 0.17875492 0.95144705
5 DJ 0.39357143 3.17898242 4.72512283
6 Booth 0.56703400 4.84740898 2.58109482
7 RC 0.44153938 2.71748076 3.81076900
8 RA 0.93533829 0.76530619 3.53402840
9 RS2 0.87003776 1.28577955 2.77423057
10 RS5 0.62553666 0.10000000 5.00000000
11 SH 0.45903159 1.07452631 4.15038556
12 ZA2 0.75044069 0.50883133 1.93860581
13 ZA5 0.52013863 1.05471011 4.61197390
14 ZA10 0.56126516 0.39456605 4.95735921

Table 9 compares the numerical results obtained using
the RGA-PSO and AIA-PSO methods with those obtained
using the hybrid algorithms for 11 TPs. Specifically, the table
lists the numerical results obtained using the Nelder-Mead
simplex search and PSO (NM-PSO) and GA-PSO taken
from [9], those obtained using particle swarm ant colony
optimization (PSACO), continuous hybrid algorithm (CHA)
and continuous tabu simplex search (CTSS) taken from [10],
and those obtained using DE-PSO, AMPSO1, and AMPSO2
taken from [12]. Table 9 indicates that the RGA-PSO and
AIA-PSO methods yield superior accuracy of MEs obtained
using the NM-PSO, GA-PSO, DE-PSO, AM-PSO1, AM-
PSO2, CHA and CTSS approaches for TPs 2, 3, 4, 5, 7, 9, 11,
and 12 and that RGA-PSO and AIA-PSO approaches yield
superior accuracy ofMEs obtained using the PSACOmethod
for TPs 4, 5, 7, 9, 10, 11, 12, 13 and 14. Table 10 compares the
percentage success rates of the proposed RGA-PSO and AIA-
PSOapproaches and those of the hybrid algorithms for 11 TPs,
indicating that all algorithms except for the CHA and CTSS
methods achieved identical performance (100% success rate)
for all TPs.

4.4. Summary of Results. The proposed RGA-PSO and AIA-
PSO algorithms have the following benefits.

(1) Parameter manipulation of the internal PSO algo-
rithm is based on the solved UGO problems. Owing
to their ability to efficiently solve UGO problems, the
external RGA and AIA approaches are substituted for
trial and error to manipulate the parameters (𝜒, 𝑐

1
,

and 𝑐
2
).

(2) Besides obtaining the optimum parameter settings of
the internal PSO algorithm, the RGA-PSO and AIA-
PSO algorithms can yield a global minimum for an
UGO problem.

(3) Beside, outperforming some published hybrid SGO
methods, the proposed RGA-PSO and AIA-PSO

approaches reduce the parametrization for the inter-
nal PSO algorithm, despite being more complex than
individual SGO approaches.

The proposed RGA-PSO and AIA-PSO algorithms are
limited in that they cannot solve high-dimensional UGO
problems (such as 𝑁 = 50). Future work will focus on
increasing the diversity of the particle swarm of the internal
PSOmethod by applyingmutation to solve high-dimensional
UGO problems.

5. Conclusions

This work developed RGA-PSO and AIA-PSO algorithms.
Performances of the proposed RGA-PSO and AIA-PSO
approaches were evaluated using a set of benchmark UGO
problems. Numerical results indicate that the proposed RGA-
PSOandAIA-PSOmethods can converge to globalminimum
for each test UGO problem and obtain the best parameter
settings of the internal PSO algorithm.Moreover, the numer-
ical results obtained using the RGA-PSO and AIA-PSO algo-
rithms are superior to those obtained using many alternative
hybrid SGOmethods.The RGA-PSO and AIA-PSOmethods
can thus be considered efficient SGO approaches for solving
standard-dimensional UGO problems.

Appendix

(1) Six-hump camel back (SHCB) (two variables) [17]:

𝑓 (x) = (4 − 2.1𝑥2
1
+
𝑥4
1

3
)𝑥2
1
+ 𝑥
1
𝑥
2
+ (−4 + 4𝑥2

2
) 𝑥2
2
(A.1)

search domain: −3 ≤ 𝑥
1
≤ 3; −2 ≤ 𝑥

2
≤ 2

one global minimum at two different points: x∗ =
(−0.0898, 0.7126) and x∗ = (0.0898, −0.7126),
𝑓(x∗) = −1.0316.
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Table 5: The optimal parameter settings obtained using the proposed AIA-PSO algorithm for solving 14 UGO problems.

TP number Function name 𝜒 𝑐
1

𝑐
2

1 SHCB 0.59403239 1.75960560 4.12826475
2 GP 0.29584147 2.62468918 4.41787729
3 ES 0.39500323 0.84589484 2.64979988
4 B2 0.64806710 1.78727677 1.83995777
5 DJ 0.45630341 1.11829588 4.10382418
6 Booth 0.60889449 2.53158038 1.32827344
7 RC 1.00000000 1.48772085 0.43921335
8 RA 0.38157302 4.93248942 4.08732827
9 RS2 0.39872504 4.65992304 4.84228028
10 RS5 0.55519288 0.10000000 4.52483714
11 SH 0.54293231 2.10545153 4.52889414
12 ZA2 0.44530811 1.05474921 3.20092987
13 ZA5 0.51683760 1.17129205 4.94965004
14 ZA10 0.53688659 0.53752883 4.99881022

Table 6: Numerical results obtained from the proposed RGA-PSO and AIA-PSO algorithms for solving a standard-dimensional UGO
problem.

Function
name

Global
minimum

Required
accuracy Methods Success rate (%) 𝑓(x∗RGA-PSO) 𝑓(xmean

RGA-PSO) 𝑓(xworstRGA-PSO) ME MCCT (sec)

ZA30 0 1𝐸 − 3
RGA-PSO 100 4.186𝐸 − 13 4.537𝐸 − 06 5.331𝐸 − 05 4.537𝐸 − 06 1753.86
AIA-PSO 100 6.520𝐸 − 12 8.099𝐸 − 06 9.175𝐸 − 05 8.099𝐸 − 06 1453.98

(2) Goldstein-price (GP) (two variables) [9, 10]:

𝑓 (x) = [1 + (𝑥
1
+ 𝑥
2
+ 1)
2

× (19 − 14𝑥
1
+ 3𝑥2
1
− 14𝑥

2
+ 6𝑥
1
𝑥
2
+ 3𝑥2
2
)]

× [30 + (2𝑥
1
− 3𝑥
2
)
2

× (18 − 32𝑥
1
+ 12𝑥 2

1
+48𝑥
2
− 36𝑥

1
𝑥
2
+ 27𝑥2

2
)]

(A.2)

search domain: −2 ≤ 𝑥
𝑛
≤ 2, 𝑛 = 1, 2

four localminima; one globalminimum: x∗ = (0, −1),
𝑓(x∗) = 3.

(3) Easom (ES) (two variables) [9]:

𝑓 (x) = − cos (𝑥
1
) cos (𝑥

2
) 𝑒−(𝑥1−𝜋)

2
−(𝑥2−𝜋)

2 (A.3)

search domain: −100 ≤ 𝑥
𝑛
≤ 100, 𝑛 = 1, 2

several local minima (exact number unspecified in
usual literature);
one global minimum: x∗ = (𝜋, 𝜋), 𝑓(x∗) = −1.

(4) B2 (two variables) [9, 10, 17]:

𝑓 (x) = 𝑥2
1
+ 2𝑥2
1
− 0.3 cos (3𝜋𝑥

1
) − 0.4 cos (4𝜋𝑥

2
) + 0.7

(A.4)

search domain: −100 ≤ 𝑥
𝑛
≤ 100, 𝑛 = 1, 2

several local minima (exact number unspecified in
usual literature);
one global minimum x∗ = (0, 0), 𝑓(x∗) = 0.

(5) De Jong (DJ) (three variables) [9, 10]:

𝑓 (x) =
3

∑
𝑛=1

𝑥2
𝑛

(A.5)

search domain: −5.12 ≤ 𝑥
𝑛
≤ 5.12, 𝑛 = 1, 2, 3

one global minimum: x∗ = (0, 0, 0), 𝑓(x∗) = 0.

(6) Booth (BO) (two variables) [26]:

𝑓 (x) = (𝑥
1
+ 2𝑥
2
− 7)
2

+ (2𝑥
1
+ 𝑥
2
− 5)
2 (A.6)

search domain: −10 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2

one global minimum: x∗ = (1, 3), 𝑓(x∗) = 0.

(7) Branin RCOC (RC) (two variables) [9, 10]:

𝑓 (x) = (𝑥
2
−
5.1

4𝜋2
+
5

𝜋
𝑥
1
− 6)
2

+ 10 (1 −
1

8𝜋
) cos (𝑥

1
) + 10

(A.7)
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Table 7:The optimal parameter settings obtained using the proposed RGA-PSO andAIA-PSO algorithms for solving a standard-dimensional
UGO problem.

Function name Methods 𝜒 𝑐
1

𝑐
2

ZA30
RGA-PSO 0.58721675 0.56183025 4.91401312
AIA-PSO 0.61082112 0.38556559 5.00000000

Table 8: Results of Wilcoxon test for the MEs obtained using the proposed RGA-PSO and AIA-PSO methods for 14 UGO problems.

TP number Function name RGA-PSO versus AIA-PSO
P value

1 SHCB ∗∗

2 GP ∗∗

3 ES ∗∗

4 B2 ∗∗

5 DJ ∗∗

6 Booth ∗∗

7 RC ∗∗

8 RA ∗∗

9 RS2 ∗∗

10 RS5 0.833
11 SH ∗∗

12 ZA2 ∗∗

13 ZA5 ∗∗

14 ZA10 ∗∗

search domain: −5 ≤ 𝑥
1
≤ 10, 0 ≤ 𝑥

1
≤ 15

no local minimum;
three global minima: x∗ = (−𝜋, 12.275), x∗ =
(𝜋, 2.275), x∗ = (3𝜋, 2.475), 𝑓(x∗) = 5/4𝜋.

(8) Rastrigin (RA) (two variables) [10]:

𝑓 (x) = 𝑥2
1
+ 𝑥2
2
− cos (18𝑥

1
) − cos (18𝑥

2
) (A.8)

search domain: −1 ≤ 𝑥
𝑛
≤ 1,𝑛 = 1, 2

50 local minima;
One global minimum: 𝑓(x∗) = −2, x∗ = (0, 0).

(9) Rosenbrock (RSn) (N variables) [9, 10]:

𝑓 (x) =
𝑁−1

∑
𝑛=1

[100(𝑥2
𝑛
− 𝑥
𝑛+1
)
2

+ (𝑥
𝑛
− 1)
2

] (A.9)

Two functions were considered: RS
2
, RS
5

search domain: −5 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2, . . . , 𝑁

several local minima (exact number unspecified in
usual literature);
global minimum: x∗ = (1, 1), 𝑓(x∗) = 0.

(10) Shubert (SH) (two variables) [9, 10]:

𝑓 (x) =
𝑁−1

∑
𝑛=1

[100(𝑥2
𝑛
− 𝑥
𝑛+1
)
2

+ (𝑥
𝑛
− 1)
2

] (A.10)

search domain: −10 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2

760 local minima;
18 global minima;
𝑓(x∗) = −186.7309.

(11) Zakharov (ZAn) (N variables) [9, 10]:

𝑓 (x) =
𝑁

∑
𝑛=1

𝑥2
𝑛
+ (
𝑁

∑
𝑛=1

0.5𝑛𝑥
𝑛
)

2

+ (
𝑁

∑
𝑛=1

0.5𝑛𝑥
𝑛
)

4

. (A.11)

Three functions were considered: ZA
2
, ZA
5
, ZA
10
,

ZA
30

search domain: −5 ≤ 𝑥
𝑛
≤ 10, 𝑛 = 1, 2, . . . , 𝑁

several local minima (exact number unspecified in
usual literature);
global minimum: x∗ = (0, . . . , 0), 𝑓(x∗) = 0.
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