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Stochastic global optimization (SGO) algorithms such as the particle swarm optimization (PSO) approach have become popular for
solving unconstrained global optimization (UGO) problems. The PSO approach, which belongs to the swarm intelligence domain,
does not require gradient information, enabling it to overcome this limitation of traditional nonlinear programming methods.
Unfortunately, PSO algorithm implementation and performance depend on several parameters, such as cognitive parameter, social
parameter, and constriction coeflicient. These parameters are tuned by using trial and error. To reduce the parametrization of a PSO
method, this work presents two efficient hybrid SGO approaches, namely, a real-coded genetic algorithm-based PSO (RGA-PSO)
method and an artificial immune algorithm-based PSO (AIA-PSO) method. The specific parameters of the internal PSO algorithm
are optimized using the external RGA and AIA approaches, and then the internal PSO algorithm is applied to solve UGO problems.
The performances of the proposed RGA-PSO and ATA-PSO algorithms are then evaluated using a set of benchmark UGO problems.
Numerical results indicate that, besides their ability to converge to a global minimum for each test UGO problem, the proposed
RGA-PSO and AIA-PSO algorithms outperform many hybrid SGO algorithms. Thus, the RGA-PSO and AIA-PSO approaches can

be considered alternative SGO approaches for solving standard-dimensional UGO problems.

1. Introduction

An unconstrained global optimization (UGO) problem can
generally be formulated as follows:
o T N

Minimize f(x), x=[x,%5...,x5] € R, (1)
where f(x) is an objective function and x represents a
decision variable vector. Additionally, x € S, S ¢ R" denotes
search space (S), which is N dimensional and bounded by
parametric constraints as follows:

X <x, <x% n=12,..,N, (2)
where xln and x;, are the lower and upper boundaries of the
decision variables x,,, respectively.

Many conventional nonlinear programming (NLP) tech-
niques, such as the golden search, quadratic approximation,

Nelder-Mead, steepest descent, Newton, and conjugate gra-
dient methods, have been used to solve UGO problems [1].
Unfortunately, such NLP methods have difficulty in solving
UGO problems when an objective function of an UGO prob-
lem is nondifferential. Many stochastic global optimization
(SGO) approaches developed to overcome this limitation
of the traditional NLP methods include genetic algorithms
(GAs), particle swarm optimization (PSO), ant colony opti-
mization (ACO), and artificial immune algorithms (AIAs).
For instance, Hamzagebi [2] developed an enhanced GA
incorporating a local random search algorithm for eight
continuous functions. Furthermore, Chen [3] presented a
two-layer PSO method to solve nine UGO problems. Zhao [4]
presented a perturbed PSO approach for 12 UGO problems.
Meanwhile, Toksari [5] developed an ACO algorithm for
solving UGO problems. Finally, Kelsey and Timmis [6]
presented an AIA method based on the clonal selection
principle for solving 12 UGO problems.



This work focuses on a PSO algorithm, based on it is
being effective, robust and easy to use in the SGO meth-
ods. Research on the PSO method has considered many
critical issues such as parameter selection, integration of
the PSO algorithm with the approaches of self-adaptation,
and integration with other intelligent optimizing methods
[7]. This work surveys two issues: first is a PSO approach
that integrates with other intelligent optimizing methods and
second is parameter selection for use in a PSO approach.

Regarding the first issue, the conventional PSO algorithm
lacks evolution operators of GAs, such as crossover and
mutation operations. Therefore, PSO has premature conver-
gence, that is, a rapid loss of diversity during optimization
[4]. To overcome this limitation, many hybrid SGO methods
have been developed to create diverse candidate solutions
to enhance the performance of a PSO approach. Hybrid
algorithms have some advantages; for instance, hybrid algo-
rithms outperform individual algorithms in solving certain
problems and thus can solve general problems more effi-
ciently [8]. Kao and Zahara [9] presented a hybrid GA
and PSO algorithm to solve 17 multimodal test functions.
Their study used the operations of GA and PSO methods to
generate candidate solutions to improve solution quality and
convergence rates. Furthermore, Shelokar et al. [10] presented
a hybrid PSO and ACO algorithm to solve multimodal
continuous optimization problems. Their study used an ACO
algorithm to update the particle positions to enhance a
PSO algorithm performance. Chen et al. [11] presented a
hybrid PSO and external optimization based on the Bak-
Sneppen model to solve unimodal and multimodal bench-
mark problems. Furthermore, Thangaraj et al. [12] surveyed
many algorithms that combine the PSO algorithm with other
search techniques and compared the performances obtained
using hybrid differential evolution PSO (DE-PSO), adaptive
mutation PSO (AMPSO), and hybrid GA and PSO (GA-PSO)
approaches to solve nine conventional benchmark problems.

Regarding the second issue, a PSO algorithm has numer-
ous parameters that must be set, such as cognitive parameter,
social parameter, inertia weight, and constriction coefficient.
Traditionally, the optimal parameter settings of a PSO algo-
rithm are tuned based on trial and error. The abilities of
a PSO algorithm to explore and exploit are constrained to
optimum parameter settings [13, 14]. Therefore, Jiang et al.
[15] used a stochastic process theory to analyze the parameter
settings (e.g., cognitive parameter, social parameter, and
inertia weight) of a standard PSO algorithm.

This work focuses on the second issue related to the
application of a PSO method. Fortunately, the optimization
of parameter settings for a PSO algorithm can be viewed as an
UGO problem. Moreover, real-coded GA (RGA) and AIA are
efficient SGO approaches for solving UGO problems. Based
on the advantage of a hybrid algorithm [8], this work develops
two hybrid SGO approaches. The first approach is a hybrid
RGA and PSO (RGA-PSO) algorithm, while the second one
is ahybrid AIA and PSO (AIA-PSO) algorithm. The proposed
RGA-PSO and AIA-PSO algorithms are considered as a
means of solving the two optimization problems simulta-
neously. The first UGO problem (optimization of cognitive
parameter, social parameter, and constriction coefficient) is
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optimized using external RGA and AIA approaches, respec-
tively. The second UGO problem is then solved using the
internal PSO algorithm. The performances of the proposed
RGA-PSO and AIA-PSO algorithms are evaluated using a set
of benchmark UGO problems and compared with those of
many hybrid algorithms [9, 10, 12].

The rest of this paper is organized as follows. Section 2
describes RGA, PSO, and AIA approaches. Section 3 then
presents the proposed RGA-PSO and AIA-PSO methods.
Next, Section 4 compares the experimental results of the
proposed RGA-PSO and AIA-PSO approaches with those
of many hybrid methods. Conclusions are finally drawn in
Section 5.

2. Related Works

The SGO approaches such as RGA, PSO, and AIA [16] are
described as follows.

2.1. Real-Coded Genetic Algorithm. GAs are based on the
concepts of natural selection and use three genetic operations,
that is, selection, crossover, and mutation, to explore and
exploit the solution space. In solving continuous function
optimization problems, RGA method outperforms binary-
coded GA approach [17]. Therefore, this work describes
operators of a RGA method [18].

2.1.1. Selection Operation. A selection operation picks up
strong individuals from a current population based on their
fitness function values and then reproduces these individuals
into a crossover pool. Many selection operations developed
include the roulette wheel, the ranking, and the tournament
methods [17, 18]. This work employs the normalized geomet-
ric ranking method as follows:

rank —1
q)"

p]:q,(l— 5 j: ]"2""’pSRGA’ (3)

where pj= probability of selecting individual j, g = probabil-
ity of choosing the best individual (here g = 0.35),4" = q/(1-
(1 — g)P*ré4), and rank = individual ranking based on fitness
value, where 1 represents the best, rank = 1,2,..., psg;,, and
Psrga = population size of the RGA method.

2.1.2. Crossover Operation. While exploring the solution
space by creating new offspring, the crossover operation
randomly chooses two parents from the crossover pool and
then uses these two parents to create two new offspring. This
operation is repeated until the psp,/2 is satisfied. The whole
arithmetic crossover is easily performed as follows:

vi:ﬁxv1+(1—/3)><v2,

v'2=(1—,8)><v1+ﬁ><v2,
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where v; and v, = parents (decision variable vectors), v; and
v, = offspring (decision variable vectors), and 3 = uniform
random number in the interval [0, 1.5].

2.1.3. Mutation Operation. Mutation operation can improve
the diversity of individuals (candidate solutions). Multi-non-
uniform mutation is described as follows:

xcurrent,n + (xz - xcurrent,n) pert (gRGA)

if U, (0,1) < 0.5,
if Uy (0,1) )

Xtrialn = 1
xcurrent,n - ('xcurrent,n - 'xn) pert (gRGA)

if U, (0,1) > 0.5,

where pert(grga) = [Un(0, D(1 = grga/Gmaxran)]’s per-
turbed factor, U,(0,1) and U, (0, 1) = uniform random vari-
able in the interval [0,1], gy, rga = Maximum generation
of the RGA method, gy, = current generation of the RGA
method, X rent, = current decision variable x,,, and X, ,,
= trial decision variable (candidate solution) x,,.

2.2. Particle Swarm Optimization. Kennedy and Eberhart
[19] first presented a standard PSO algorithm, which is
inspired by the social behavior of bird flocks or fish schools.
Like GAs, a PSO method is a population-based algorithm. A
population of candidate solutions is called a particle swarm.
The particle velocities can be updated by (6) as follows:

Vin (gpso +1) = v;, (gpso) + a7 (geso)
x [P;I,)n (gpso) — Xin (gpso)]

b
tGrn (grso) [P}g',n (gpso) — Xin (gpso)]

j=12,...,pSpgo> n=1,2,...,N

(6)

where v;,(gpso +1) = particle velocity of decision variable x,,
of particle j at generation gpso+1, v;,(gpso) = particle veloc-
ity of decision variable x,, of particle j at generation gpgn, ¢, =
cognitive parameter, ¢, = social parameter, x; ,(gpso) = parti-
cle position of decision variable x,, of particle j at generation
9pso> 7j,1(gpso) Tj2(gpso) = independent uniform random

numbers in the interval [0, 1] at generation gpgq, p?fn(gpso)

= best local solution at generation gpgq, pit:l(gpso) = best
global solution at generation gpgg, and pspsg = population
size of the PSO algorithm.

The particle positions can be obtained using (7) as follows:

Xin (gpso +1) = Xin (gpso) + Uin (gpso + 1), )

j=12,...,pSpso> n=1,2,...,N.

Shi and Eberhart [20] introduced a modified PSO algo-
rithm by incorporating an inertia weight (w;,) into (8) to

control the exploration and exploitation capabilities of a PSO
algorithm as follows:

Vi (Gpso + 1) = 0,05, (grso) + a7j1 (grso)
x [P?,)n (gpso) — Xin (gPSO)]

b
+Grn (gps0) [P?,n (gpso) — Xin (gPSO)]
j=12,..., pspso> n=1,2,...,N.
8)
A constriction coefficient () in (9) is used to balance the
exploration and exploitation tradeoff [21-23] as follows:
Uin (gpso +1) = x {Uj,n (grso) + 71 (geso)
Ib
X [Pj,n (gps0) — Xin (gpso)]

+7, (gpso) [P?,E, (gpso) — Xin (gPSO)]}

j=12,...,pSpgy> n=1,2,...,N,

©))
where
~ 2U, (0,1)
X_'Z—T—m', (10)
U,(0, 1)=uniform random variable in the interval [0, 1], 7 =
T+ T T = T = GF ).

This work considers parameters w;, and y to modify the
particle velocities as follows:

Ujn (gpso +1) = x {winvj,n (gpso) + aria (9ps0)
X [P;'l,)n (gpso) — Xin (gpso)]

T QT (grso) (1)

b
X [Pj?,n (gpso) — Xin (gPSO)]}
j=12,...,pSpgo>» n=1,2,...,N,

where Wi, = ((gmaxpso = 9ps0)/Imax,pso)s increased gpso
value reduces the w;,, and g, pso = maximum generation

of the PSO algorithm.

According to (11), the optimal values of parameters ¢, ¢,,
and y are difficult to obtain through trial and error. This work
thus optimizes these parameter settings by using RGA and
AIA approaches.

2.3. Artificial Immune Algorithm. Wu [24] presented an AIA
approach based on clonal selection and immune network
theories to solve constrained global optimization problems.
The AIA method consists of selection, hypermutation, recep-
tor editing, and bone marrow operations. The selection
operation is performed to reproduce strong antibodies (Abs).
Also, diverse Abs are created using hypermutation, receptor
editing, and bone marrow operations, as described in the
following subsections.



2.3.1. Ab and Ag Representation. In the human system, an
antigen (Ag) has multiple epitopes (antigenic determinants),
which can be recognized by many Abs with paratopes
(recognizers), on its surface. In the AIA approach, an Ag
represents known parameters of a solved problem. The Abs
are the candidate solutions (i.e., decision variables x,, n =
1,2,...,N) of the solved problem. The quality of a candidate
solution is evaluated using an Ab-Ag affinity that is derived
from the value of an objective function of the solved problem.

2.3.2. Selection Operation. The selection operation controls
the number of antigen-specific Abs. This operation is defined
according to Ab-Ag and Ab-Ab recognition information as
follows:

,  J=L2, .18, n=12,...,N,

(12)

where p; .. = probability that Ab; recognizes Ab” (the best
solution), x; = the best Ab™ with the highest Ab-Ag affinity,
xj, = decision variables x, of Abj, and rs,;, = repertoire
(population) size of the AIA approach.

The Ab” is recognized by other Ab; in a current Ab reper-
toire. Large p; ... implies that Ab; can effectively recognize
Ab”. The Ab; with Pjrec that is equivalent to or larger than
the threshold degree of AIA approach p, 414 is reproduced
to generate an intermediate Ab repertoire.

2.3.3. Hypermutation Operation. The somatic hypermutation
operation can be expressed as follows:

xcurrent,n + (xZ - xcurrent,n) pert (gAIA) >

if U, (0,1) < 0.5,

1
xcurrent,n - ('xcurrent,n - xn) pert (gAIA) >

if U, (0,1) > 0.5,

(13)

Xirialn =

where pert(gara) = {Us(0, 1)(1 = gaia/Gmax,a14)}° = pertur-
bation factor, g,;, = current generation of the AIA method,
Imax A4 = Maximum generation number of the AIA method,
and U,(0, 1) and U(0, 1) = uniform random number in the
interval [0, 1].

This operation has two tasks, that is, a uniform search and
local fine tuning.

2.3.4. Receptor-Editing Operation. A receptor-editing opera-
tion is developed based on the standard Cauchy distribution
C(0, 1), in which the local parameter is zero and the scale
parameter is one. Receptor editing is implemented using
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Cauchy random variables that are created from C(0, 1), owing
to their ability to provide a large jump in the Ab-Ag affinity
landscape to increase the probability of escaping from the
local Ab-Ag affinity landscape. Cauchy receptor editing can
be defined by

Xirial = Xcurrent T UG(O’ 1)2 X0, (14)

where 6 = [0},0,,...,05]", vector of Cauchy random
variables, and Ug(0,1) = uniform random number in the
interval [0, 1].

This operation is used in local fine-tuning and large
perturbation.

2.3.5. Bone Marrow Operation. The paratope of an Ab can be
created by recombining gene segments VyDyJy and ViJy
[25]. Therefore, based on this metaphor, diverse Abs are
synthesized using a bone marrow operation. This operation
randomly selects two Abs from the intermediate Ab reper-
toire and a recombination point from the gene segments of
the paratope of the selected Abs. The selected gene segments
(e.g., gene x, of Ab, and gene x, of the Ab,) are reproduced to
create a library of gene segments. The selected gene segments
in the paratope are then deleted. The new Ab, is formed by
inserting the gene segment, which is gene x; of the Ab, in the
library plus a random variable created from standard normal
distribution N(0, 1), at the recombination point. The details
of the implementation of the bone marrow operation can be
found [24].

3. Methods

This work develops the RGA-PSO and AIA-PSO approaches
for solving UGO problems. The implementation of the RGA-
PSO and ATA-PSO methods is described as follows.

3.1. RGA-PSO Algorithm. Figure 1 shows the pseudocode
of the proposed RGA-PSO algorithm. The best parameter
setting of the internal PSO algorithm is obtained by using the
external RGA method. Benchmark UGO problems are solved
by using the internal PSO algorithm.

External RGA

Step I (initialize the parameter settings). Parameter settings
such as psgpga, crossover probability of the RGA method
PerGa> Mutation probability of the RGA approach p,, pga»
Pspso as well as lower and upper boundaries of the parameters
(¢> 6, and y) for a PSO algorithm are given. The candi-
date solution (individual) of a RGA method represents the
optimized parameters of internal PSO algorithm. Figure 2
illustrates the candidate solution of the RGA method.

Step 2 (calculate the fitness function value). The fitness
function value fitness; of the external RGA method is the
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Procedure external RGA method
begin

Irga <0

count « 0

Step 1: Initialize the parameter settings
(a) parameter settings
(b) generate an initial population

while grca < Gmaxrca do

Step 2: Calculate the fitness function value

candidate

JJj = L2,...,pSpga
solution | X |

C1| C
*

fitness; = F(xpso)

Step 3: Perform a selection operation
For each candidate solution j, j = 1,2,...
if rand() < P.pga then
Step 4: Implement a crossover operation
endIf
endFor
For each candidate solution j, j = 1,2,...
if rand() < P, gga then
Step 5: Conduct a mutation operation
endIf
endFor
Step 6: Perform an elitist strategy

B
=
,PSpga/2 do

»PSpga do

Procedure internal PSO Algorithm
begin
gpso <0
(1) Generate an initial particle swarm
(a) parameter settings obtained from external RGA
(b) generate an initial particle swarm
while gpso < gmax,pso do
(2) Compute the objective function value
(3) Update the particle velocity and position
(4) Perform an elitist strategy
grso < gpso t1
endWhile
end
end

if fitness(x,,,X,¢1,¢ 2,9 rGa + 1) — fitness(x,,,X:¢1,¢ 2,9 rga) < 1 % 107 then

count « count + 1

endIf
ifcount < 5 then
break
endIf
9RGA < grGa T 1
endWhile
end
end
FIGURE 1: The pseudocode of the proposed RGA-PSO algorithm.
TABLE 1: The parameter settings for the proposed RGA-PSO and AIA-PSO approaches.
Methods Parameter settings Search space
Peraa =1
External RGA Prmrea =015 [XZ,X”] =[0.1,1]
PSpga =20 1wy _
— [C1>C1] - [01,5]
ImaxrGa = 20 [cé &1 =[0.1,5]
Priaa = 0.9 o .’
External ATA ISa = 20
Imax,AIA = 20
PSpso =20
Internal PSO Imax.pso = 1000 for N < 3 [xil, x4] for a UGO problem

Gimax.pso = 3000 for 5 < N < 3

0

Candidate solution j

X (=] (&) Fitness;

F1GURE 2: Candidate solution of the RGA method.

best objective function value f(xpg.,) obtained from the best
solution x,¢, of each internal PSO algorithm execution as
follows:

1,2,...,PSrGa- 15)

fitness; = f(Xpso)> =

The candidate solution j of the external RGA method is
incorporated into the internal PSO algorithm and, then, the
internal PSO algorithm is used to solve an UGO problem. The
internal PSO algorithm is executed as follows.

Internal PSO Algorithm

(1) Generate an initial particle swarm. An initial particle
swarm is created based on pspgq from [xil, xi] of
an UGO problem. A particle represents a candidate

solution of an UGO problem.



Procedure external AIA method
begin
gaa <0
count < 0
Step 1: Initialize the parameter settings

while g,;, < gpaaa 40
Step 2: Evaluate the Ab-Ag affinity I:(>

Step 3: Perform a clonal selection operation
for each Abj,j =1,2,...,r5515do
if Pj srec 2 Prt,AIA then
promote (clone)
else
suppress
endIf
endFor

Step 4: Implement an Ab-Ag affinity maturation operation | end

for each promoted Ab; do
if rand() < 0.5 do
somatic hypermutation
else
receptor editing
endIf
endFor
Step 5: Introduce diverse Abs
Step 6: Update an Ab repertoire

Ab” — max(affnity)), j = 1,2,....1s C:
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Procedure internal PSO algorithm

begin
grso <0
(1) Generate an initial particle swarm
(a) parameter settings obtained from external AIA
(b) generate an initial particle swarm
while gpso < Gmax,pso do
(2) Compute the fitness value
(3) Update the particle velocity and position
(4) Perform an elitist strategy
grso < gpso t1
endWhile

end

if [affinity(x,,x,¢15¢ 235G ata + 1) — affinity(x,,,x:¢1,6 2,ga1a)| < 1 X 107° then

count « count + 1

endIf
ifcount < 5 then
break
endIf
gaia — gaa+1
endWhile
end
end

FIGURE 3: The pseudocode of the proposed AIA-PSO algorithm.

(2) Compute the objective function value. The objective
function value of the internal PSO algorithm of
particle jf(X;ps0) j = 1,2,..., pSpgo is the objective
function value of an UGO problem.

(3) Update the particle velocity and position. Equations (7)
and (11) can be used to update the particle position
and velocity.

(4) Perform an elitist strategy. A new particle swarm is
generated from internal step (3). Notably, f(x;ps0)
of a candidate solution j (particle j) in the particle
swarm is evaluated. This work makes a pairwise com-
parison between the f(x;pso) of candidate solutions
in the new particle swarm and that in the current
particle swarm. A situation in which the candidate
solution j (j = 1,2,...,pspso) in the new particle
swarm is better than candidate solution j in the cur-
rent particle swarm implies that the strong candidate
solution j in the new particle swarm replaces the
candidate solution j in the current particle swarm.
The elitist strategy guarantees that the best candidate
solution is always preserved in the next generation.
The current particle swarm is updated to the particle
swarm of the next generation.

Internal steps from (2) to (4) are repeated until the
maximum generation number of the PSO method g,,,, pso
of the internal PSO algorithm is satisfied.

End

Step 3 (perform a selection operation). Equation (3) is used
to select the parents into a crossover pool.

Step 4 (implement a crossover operation). The crossover
operation performs a global search. The candidate solutions
are created by using (4).

Step 5 (conduct a mutation operation). The mutation opera-
tion implements a local search. A solution space is exploited
using (5).

Step 6 (perform an elitist strategy). This work presents an
elitist strategy to update the population. A situation in which
the fittness; of candidate solution j in the new population is

j
larger than the fittness; of candidate solution j in the current

population suggests thélt areplacement of the weak candidate
solution j takes place. Additionally, a situation in which the
fittness; of candidate solution j in the new population is equal
to or worse than that in the current population implies that
the candidate solution j in the current population survives. In
addition to maintaining the strong candidate solutions, this
strategy effectively eliminates weak candidate solutions.
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Epitope (antigenic determinants)

Ag

<] The known coefficient parameters

for an UGO problem

Stimulate /7\
,/ Suppress
Candidate solution /
X c1 C2 Max(affinityj) =-1xf(Xps0)

Paratope (recognizer)

FIGURE 4: Ab and Ag representation.

External steps 2 to 6 are repeated until the g, ., rga Of the
external RGA method is met.

3.2. AIA-PSO Algorithm. Figure 3 shows the pseudocode of
the proposed AIA-PSO algorithm. The external AIA method
is used to optimize the parameter settings of the internal
PSO method, which is employed to solve benchmark UGO
problems.

External AIA

Step 1 (initialize the parameter settings). Several parameters
must be predetermined. These include repertoire (popula-
tion) sizers,;, and p,, z14. An available Ab repertoire (popu-
lation) is randomly generated using rs,, from the lower and
upper boundaries of parameters x [ Xl, X1 g [ci, ¢'l, and ¢,
[cé, ¢, ]. Figure 4 shows the Ab and Ag representation.

Step 2 (evaluate the Ab-Ag affinity).

Internal PSO Algorithm. The external AIA approach offers
parameter settings ¢;, ¢,, and y for the internal PSO algo-
rithm. Subsequently, internal steps (1)-(4) of the PSO algo-
rithm are implemented. The internal PSO method returns the
best fitness value of PSO f (x4,) to the external AIA method.

(1) Generate an initial particle swarm. An initial particle
swarm is created based on pspgo from [x, x*] of
an UGO problem. A particle represents a candidate
solution of an UGO problem.

(2) Compute the fitness value. The fitness value of the
internal PSO algorithm f(xpso ;) j = 1,2,...,PSpso
is the objective function value of an UGO problem.

(3) Update the particle velocity and position. Equations (7)
and (11) can be used to update the particle position
and velocity.

(4) Perform an elitist strategy. A new particle swarm
(population) is generated from internal step (3).
Notably, f(x;pso) of a candidate solution j (particle
j) in the particle swarm is evaluated. This work
makes a pairwise comparison between the f(x;ps0)
of candidate solutions in the new particle swarm and
that in the current particle swarm. The elitist strategy
guarantees that the best candidate solution is always
preserved in the next generation. The current particle
swarm is updated to the particle swarm of the next
generation.

Internal steps from (2) to (4) are repeated until the
maxpso Of the internal PSO algorithm is satisfied.

End

Consistent with the Ab-Ag affinity metaphor, an Ab-Ag
affinity is determined using (16) as follows:

max (aﬂﬁnityj) =-1xX f(Xpso) J=12,...,18514. (16)

Following the evaluation of the Ab-Ag aflinities of Abs
in the current Ab repertoire, the Ab with the highest Ab-
Ag affinity (Ab") is chosen to undergo clonal selection in
external Step 3.

Step 3 (perform a clonal selection operation). To control the
number of antigen-specific Abs, (12) is employed.

Step 4 (implement an Ab-Ag affinity maturation operation).
The intermediate Ab repertoire that is created in external
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Step 3 is divided into two subsets. These Abs undergo somatic
hypermutation operation by using (13) when the random
number is 0.5 or less. Notably, these Abs suffer receptor-
editing operation using (14) when the random number
exceeds 0.5.
Step 5 (introduce diverse Abs). Based on the bone marrow
operation, diverse Abs are created to recruit the Abs sup-
pressed in external Step 3.
Step 6 (Update an Ab repertoire). A new Ab repertoire is
generated from external Steps 3-5. The Ab-Ag affinities of
the Abs in the generated Ab repertoire are evaluated. This
work presents a strategy for updating the Ab repertoire. A
situation in which the Ab-Ag affinity of Ab; in the new Ab
repertoire exceeds that in the current Ab repertoire implies
that a strong Ab in the new Ab repertoire replaces the weak
Ab in the current Ab repertoire. Additionally, a situation in
which the Ab-Ag affinity of Ab; in the new Ab repertoire
equals to or is worse than that in the current Ab repertoire
implies that the Ab; in the current Ab repertoire survives.
In addition to maintaining the strong Abs, this strategy
eliminates nonfunctional Abs

Repeat external Steps 2-6 until the termination criterion
Imax Al 18 satisfied.

4. Results

The proposed RGA-PSO and AIA-PSO algorithms were
applied to a set of benchmark UGO problems taken from
other studies [9, 10, 17, 26], as detailed in the Appendix. The
proposed RGA-PSO and AIA-PSO approaches were coded
in MATLAB software and run on a Pentium D 3.0 (GHz)
personal computer. One-hundred independent runs were
conducted for each test problem (TP). To have comparable
numerical results, the accuracy was chosen based on the
numerical results reported in [9, 10, 17, 26]. Numerical results
were summarized, including rate of successful minimizations
(success rate %), best mean worst, mean computational CPU
time (MCCT), and mean error ME (average value of the
gap between the objective function values calculated using
the AIA-PSO and RGA-PSO solutions and the known global
minimum value). Table 1 lists the parameter settings for the
proposed RGA-PSO and AIA-PSO approaches. The table
shows 20,000 (20 x 1000) objective function evaluations of
the internal PSO approach for an UGO problem with N < 3
decision variables and 60,000 (20 x 3000) objective function
evaluations of the internal PSO for an UGO problem with
5 < N < 30 decision variables. Moreover, the external ATA
and RGA methods stop when g,,,, rga= 20 and g, a14= 20
are met or the best fitness value of the RGA approach (or the
best Ab-Ag affinity of the ATA method) does not significantly
change for the past five generations.

4.1. Numerical Results Obtained Using the RGA-PSO and AIA-
PSO Algorithms for Low-Dimensional UGO Problems (2 <
N < 10). Table 2 lists the numerical results obtained using
the proposed RGA-PSO algorithm. The numerical results
indicate that the RGA-PSO algorithm can obtain the global
minimum for each test UGO problem since these MEs equal

or closely approximate “0,” and the RGA-PSO algorithm has
an acceptable MCCT for each TP. Table 3 lists the optimal
parameter settings obtained using the proposed RGA-PSO
algorithm to solve 14 UGO problems.

Table 4 lists the numerical results obtained using the
proposed AIA-PSO algorithm. Numerical results indicate
that the AIA-PSO algorithm can obtain the global minimum
for each test UGO problem since these MEs equal or closely
approximate “0,” and that the AIA-PSO algorithm has an
acceptable MCCT for each TP. Table 5 lists the optimal
parameter settings obtained using the proposed AIA-PSO
algorithm for solving 14 UGO problems.

4.2. Numerical Results Obtained Using the RGA-PSO and AIA-
PSO Algorithms for a Standard-Dimensional UGO Problem
(N =30). To investigate the effectiveness of the RGA-PSO
and AIA-PSO methods for solving a standard-dimensional
UGO problem, the Zakharov problem with 30 decision
variables (ZA;,), as described in the Appendix, has been
solved using the RGA-PSO and AIA-PSO approaches. Fifty
independent runs were performed to solve the UGO prob-
lem. To increase the diversity of candidate solutions for use in
the external RGA method, the parameter p,, y g Was set from
0.15 to “1” Table 6 lists the numerical results obtained using
the RGA-PSO and AIA-PSO approaches. This table indicates
that the two approaches converge to the global optimum
value, since the MEs closely approximate “0,” and the MCCT
of the RGA-PSO method is larger than that of the AIA-PSO
method. Moreover, the success rates of the proposed RGA-
PSO and AIA-PSO approaches are 100%. The Wilcoxon test
is performed to the difference of median values of the MEs
obtained using the RGA-PSO and AIA-PSO methods. The P
value of the Wilcoxon test is 0.028, which is smaller than the
significance level of 0.05, indicating that the performance of
the RGA-PSO method is statistically different to that of the
AJA-PSO method. Table 7 summarizes the optimal parameter
settings obtained using the proposed RGA-PSO and AIA-
PSO algorithms for the UGO problem ZA;,

The UGO problem ZA;, was solved using the RGA-
PSO and AIA-PSO methods. The RGA-PSO and AIA-PSO
methods fail to solve the UGO problem, since the diversity
of the particle swarm in the internal PSO method cannot
be maintained. Hence, future work will focus on improving
the diversity of the particle swarm by applying mutation
operations.

4.3. Comparison. Table 8 lists the results of the Wilcoxon
test for the MEs obtained using the proposed RGA-PSO and
ATA-PSO methods for 14 UGO problems. In this table, the
“s3” represents the P value of Wilcoxon test which cannot
be obtained, since the MEs obtained using the RGA-PSO
and ATA-PSO methods for a TP are identical. Moreover, the
median values of the MEs obtained using the RGA-PSO and
ATA-PSO methods for TP 10 are not statistically different,
since their P value is larger than the significance level of 0.05.
Overall, the performances obtained using the RGA-PSO and
ATA-PSO methods are statistically identical.
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TABLE 3: The optimal parameter settings obtained using the proposed RGA-PSO algorithm for solving 14 UGO problems.

TP number Function name q c

1 SHCB 0.36497798 1.79972890 2.36717639
2 GP 0.86138264 3.74964714 0.10000000
3 ES 0.36038653 0.42043804 4.78367612
4 B2 0.75486133 0.17875492 0.95144705
5 DJ 0.39357143 3.17898242 4.72512283
6 Booth 0.56703400 4.84740898 2.58109482
7 RC 0.44153938 2.71748076 3.81076900
8 RA 0.93533829 0.76530619 3.53402840
9 RS, 0.87003776 1.28577955 2.77423057
10 RS, 0.62553666 0.10000000 5.00000000
11 SH 0.45903159 1.07452631 4.15038556
12 ZA, 0.75044069 0.50883133 1.93860581
13 ZA, 0.52013863 1.05471011 4.61197390
14 ZA,, 0.56126516 0.39456605 4.95735921

Table 9 compares the numerical results obtained using
the RGA-PSO and AIA-PSO methods with those obtained
using the hybrid algorithms for 11 TPs. Specifically, the table
lists the numerical results obtained using the Nelder-Mead
simplex search and PSO (NM-PSO) and GA-PSO taken
from [9], those obtained using particle swarm ant colony
optimization (PSACO), continuous hybrid algorithm (CHA)
and continuous tabu simplex search (CTSS) taken from [10],
and those obtained using DE-PSO, AMPSO1, and AMPSO2
taken from [12]. Table 9 indicates that the RGA-PSO and
AIA-PSO methods yield superior accuracy of MEs obtained
using the NM-PSO, GA-PSO, DE-PSO, AM-PSO1, AM-
PSO2, CHA and CTSS approaches for TPs 2, 3, 4, 5,7, 9, 11,
and 12 and that RGA-PSO and AIA-PSO approaches yield
superior accuracy of MEs obtained using the PSACO method
for TPs 4, 5,7, 9, 10, 11, 12, 13 and 14. Table 10 compares the
percentage success rates of the proposed RGA-PSO and AIA-
PSO approaches and those of the hybrid algorithms for 11 TPs,
indicating that all algorithms except for the CHA and CTSS
methods achieved identical performance (100% success rate)
for all TPs.

4.4. Summary of Results. The proposed RGA-PSO and AIA-
PSO algorithms have the following benefits.

(1) Parameter manipulation of the internal PSO algo-
rithm is based on the solved UGO problems. Owing
to their ability to efficiently solve UGO problems, the
external RGA and AIA approaches are substituted for
trial and error to manipulate the parameters (¥, ¢,
and ¢,).

(2) Besides obtaining the optimum parameter settings of
the internal PSO algorithm, the RGA-PSO and AIA-
PSO algorithms can yield a global minimum for an
UGO problem.

(3) Beside, outperforming some published hybrid SGO
methods, the proposed RGA-PSO and AIA-PSO

approaches reduce the parametrization for the inter-
nal PSO algorithm, despite being more complex than
individual SGO approaches.

The proposed RGA-PSO and AIA-PSO algorithms are
limited in that they cannot solve high-dimensional UGO
problems (such as N = 50). Future work will focus on
increasing the diversity of the particle swarm of the internal
PSO method by applying mutation to solve high-dimensional
UGO problems.

5. Conclusions

This work developed RGA-PSO and AIA-PSO algorithms.
Performances of the proposed RGA-PSO and AIA-PSO
approaches were evaluated using a set of benchmark UGO
problems. Numerical results indicate that the proposed RGA-
PSO and ATA-PSO methods can converge to global minimum
for each test UGO problem and obtain the best parameter
settings of the internal PSO algorithm. Moreover, the numer-
ical results obtained using the RGA-PSO and AIA-PSO algo-
rithms are superior to those obtained using many alternative
hybrid SGO methods. The RGA-PSO and AIA-PSO methods
can thus be considered efficient SGO approaches for solving
standard-dimensional UGO problems.

Appendix

(1) Six-hump camel back (SHCB) (two variables) [17]:

4
X
fx) = (4 - 2.1xf + ?) xf + X%, + (—4 + 4x§)x§ (A])

search domain: -3 < x; < 3;-2<x, <2

one global minimum at two different points: x* =
(—0.0898,0.7126) and x* = (0.0898,-0.7126),
f(x*) = —1.0316.
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TaBLE 5: The optimal parameter settings obtained using the proposed AIA-PSO algorithm for solving 14 UGO problems.

TP number Function name o c,

1 SHCB 0.59403239 1.75960560 4.12826475
2 GP 0.29584147 2.62468918 4.41787729
3 ES 0.39500323 0.84589484 2.64979988
4 B2 0.64806710 1.78727677 1.83995777
5 DJ 0.45630341 1.11829588 410382418
6 Booth 0.60889449 2.53158038 1.32827344
7 RC 1.00000000 1.48772085 0.43921335
8 RA 0.38157302 4.93248942 4.08732827
9 RS, 0.39872504 4.65992304 4.84228028
10 RS, 0.55519288 0.10000000 4.52483714
11 SH 0.54293231 2.10545153 4.52889414
12 ZA, 0.44530811 1.05474921 3.20092987
13 ZA, 0.51683760 1.17129205 4.94965004
14 ZA,, 0.53688659 0.53752883 4.99881022

TABLE 6: Numerical results obtained from the proposed RGA-PSO and AIA-PSO algorithms for solving a standard-dimensional UGO

problem.
Function Global  Required * mean wor
hame minimum acguracy Methods ~ Success rate (%) f(Xrcapso) fKnoarpso) S (Khanpso ME MCCT (sec)
ZA 0 1E—3 RGA-PSO 100 4.186E -13 4.537E-06 5.331E-05 4.537E-06 1753.86
30 AIA-PSO 100 6.520E - 12 8.099E-06 9.175E-05 8.099E - 06 1453.98

(2) Goldstein-price (GP) (two variables) [9, 10]:

f(x) = [1+(x1+x2+1)2

% (19 - 14x, +3x] — 14x, + 6x,x, + 33 )|
x [30 + (2x, - 3x,)°

x (18 = 32x, +12x] +48x, — 36x,x, + 27, )|
(A2)

search domain: -2 < x,, < 2,n=1,2

four local minima; one global minimum: x* = (0, -1),

fx) =3.

(3) Easom (ES) (two variables) [9]:

f(x) = —cos (x;) cos (x,) P (A3)

search domain: —100 < x,, < 100,n = 1,2

several local minima (exact number unspecified in
usual literature);

one global minimum: x* = (7, ), f(x*) = -1.

(4) B2 (two variables) [9, 10, 17]:

f(x) = x> +2x7 —0.3cos (37x, ) — 0.4 cos (47x,) + 0.7

(A4)

search domain: —100 < x,, < 100, n = 1,2

several local minima (exact number unspecified in

usual literature);

one global minimum x* = (0,0), f(x*) = 0.

(5) De Jong (DJ) (three variables) [9, 10]:
3
f®=)x,
n=1

search domain: -5.12 < x,, < 5.12,n=1,2,3
one global minimum: x* = (0,0, 0), f(x*) = 0.

(6) Booth (BO) (two variables) [26]:

f(x) = (x; +2x, - 7)2 +(2x, +x, - 5)2

search domain: -10 < x,, < 10,n = 1,2
one global minimum: x* = (1,3), f(x*) = 0.

(7) Branin RCOC (RC) (two variables) [9, 10]:
51 5 2
f(x)z(x2—4—7_l:2+;xl—6>

+10<1—i)cos(x )+ 10
8 !

(A.5)

(A.6)

(A7)
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TaBLE 7: The optimal parameter settings obtained using the proposed RGA-PSO and AIA-PSO algorithms for solving a standard-dimensional

UGO problem.

Function name Methods q c,

ZA RGA-PSO 0.58721675 0.56183025 4.91401312
% AJA-PSO 0.61082112 0.38556559 5.00000000

TABLE 8: Results of Wilcoxon test for the MEs obtained using the proposed RGA-PSO and AIA-PSO methods for 14 UGO problems.

RGA-PSO versus AIA-PSO

TP number Function name
P value

1 SHCB * %
2 GP * %
3 ES *%
4 B2 * %
5 DJ ®
6 Booth * %
7 RC ® %
8 RA ® %k
9 RS, * ok
10 RS, 0.833
1 SH * %
12 ZA, * %
13 ZA; * %
14 ZA,, ® %

search domain: -5 < x; < 10,0 < x; < 15

no local minimum;

three global minima: x* = (-m,12.275), x*
(7,2.275), x* = (37,2.475), f(x") = 5/4m.

(8) Rastrigin (RA) (two variables) [10]:

f(x) = x> + x5 — cos (18x,) — cos (18x,) (A.8)

search domain: -1 < x, < L,n = 1,2

50 local minima;

One global minimum: f(x*) = -2, x* = (0,0).

(9) Rosenbrock (RSn) (N variables) [9, 10]:

N-1

F@ =Y [100(x2 - 1) + (6, ~ 1)°] (A.9)
n=1

Two functions were considered: RS,, RS;
search domain: -5< x,, <10,n=1,2,...,N

several local minima (exact number unspecified in
usual literature);

global minimum: x* = (1,1), f(x*) = 0.
(10) Shubert (SH) (two variables) [9, 10]:

N-1

F@ =Y [100(x] = %,)" + (5, = 1)7]

n=1

(A.10)

search domain: -10 < x,, <10,n=1,2
760 local minima;

18 global minima;

F(x*) = —186.7309.

(11) Zakharov (ZAn) (N variables) [9, 10]:
N N 2 N 4
fx = fol + (ZO.Snxn> + <ZO.5nxn> . (A
n=1 n=1 n=1

Three functions were considered: ZA,, ZA;, ZA,,,
ZA5,

search domain: -5 < x,, <10,n=1,2,...,N

several local minima (exact number unspecified in
usual literature);

global minimum: x* = (0,...,0), f(x*) = 0.

Conflict of Interests

The author confirm that he does not has a conflict of interest
with the MATLAB software.

Acknowledgment

The author would like to thank the National Science Council
of the Republic of China, Taiwan for financially supporting
this research under Contract no. NSC 100-2622-E-262-006-
CC3.



Mathematical Problems in Engineering

14

‘(uoneULIOJUT J[CR[IRARUN S9)OUP  — )
001 001 — 001 001 001 001 001 001 001 vz ¥l
001 001 — — 001 001 001 001 001 001 VZ €1
001 001 001 001 001 001 001 001 001 001 vz au
001 001 001 001 001 001 001 001 001 001 HS Il
001 001 — — 001 001 001 001 001 001 S ot
001 001 001 001 001 001 001 001 001 001 Sy 6
001 001 001 001 001 001 001 001 001 001 o) L
001 001 001 001 001 001 001 001 001 001 (a S
001 001 001 001 001 001 001 001 001 001 wd i
001 001 001 001 001 001 001 001 001 001 SH €
001 001 001 001 001 001 001 001 001 001 do 4

(rrom styd) (rrom styd) i i i § i
0Sd-VOu OSd-VIV for] sSLD [0l VHO  [2I]2OSd-WV  [2I] TOSd-IWV  [21] OSd-dd  [6] OSd-VD  [01] OOVSd  [6] OSd-NN swreu Toquinu
04 9B $5909NG uonoung dL

SALTI uo.w maﬂthomﬁd @_.HATAQ oﬂu mo owoﬁt @Ed wuﬁuwo,ﬁmmm OSd-VIV ﬁcﬁ OSd-VHY ﬂ.uwomo.ﬁm oﬂu .wo 0p 9JeI $§3001NS vﬂu mo COwCNQEOU Q[ 41dV],

‘(uonewLIOJUT J[R[IRARUN $9JOUP  — )
9T —H9SLEY T - HL8TE — 9-41 S—H1T'6 S—dI¥L S- 4169 000000 80 — ¢ — "z ¥l
LIT-H099T #81-H6STL — — S—HdL0°S S—dbbe S-d6v¢ 000000 L1~ HTSE9°E 920000 VZ €1
000000000 000000000 £ —4€ 9-4d¢ 9-HZ19¢ S—d¥ST S—-dTI'l S0000°0 LT—H190L'S €0000°0 vz 4!
00000000°0  00000000°0 1000 05000 L—H¥%ST S—deLl 9-4g¢0°€ £0000°0 60 — 46£T60°T 2000070 HS I
90 - HTSH'6 90— HI6TL — — S - 4566 S-d€L6 S—dvLL €1000°0 ¥0 — 8¢S8'1 9500°0 S ot
87 -460L8  LT-HIPET 0000 0%00°0 S —dgge S—-d91T S—-d9%T $9000°0 0T — HTSILT €0000°0 Sy 6
000000000  00000000°0 S00°0 1000°0 S—d6¥'1 S —-dTS'1 9-467C 600000 €1 - 4S819°C €0000°0 x| L
9TT-HIEES'S  SIT-APPST 20000 2000°0 S - H¥EE S—deTy S—d.91 $0000°0 6T —H0069°L €0000°0 (a S
000000000 00000000°0  S00000°0 20000000 S—H%9C 9-HLI'T S—dITT 10000°0 LT —HTISS'S €0000°0 4 i
000000000  00000000°0 $00°0 0100°0 S-diLe o ()7 S—-dL9'1 £0000°0 000000000 $0000°0 S €
000000000 00000000°0 100°0 0100°0 9 - 7686 S-HdI8°€ S-dL9¢ 21000°0 000000000 £0000°0 do 4

(rrom styd) (rrom s1yd)
01 01 1] TOSd- 1] 108d- (4! - 6 - 01 6 -
0Sd-VOU OSd-VIV forlssLD>  [01l VHO  [21l cOSd-INV  [21] 1OSd-INV  [21] OSd-3d  [6] OSd-vD  [01] 0OOVSd  [6] OSd-AN e
STV uono/ung aL

'sd.1, TT o suryjrrod[e priqAy oy jo asoyy pue saypeordde OSJ-yIV pue OSJ-vOY pasodoid ot jo synsax oy jo uostreduro)) 16 414v],



Mathematical Problems in Engineering

References

[1] W.Y. Yang, W. Cao, T.-S. Chung, and J. Morris, Applied Numer-
ical Methods Using MATLAB, John Wiley & Sons, Hoboken, NJ,
USA, 2005.

[2] C. Hamzagebi, “Improving genetic algorithms’ performance
by local search for continuous function optimization,” Applied
Mathematics and Computation, vol. 196, no. 1, pp. 309-317, 2008.

[3] C.C. Chen, “Two-layer particle swarm optimization for uncon-
strained optimization problems,” Applied Soft Computing Jour-
nal, vol. 11, no. 1, pp. 295-304, 2011.

[4] X. Zhao, “A perturbed particle swarm algorithm for numerical
optimization,” Applied Soft Computing Journal, vol. 10, no. 1, pp.
119-124, 2010.

[5] M. D. Toksari, “Minimizing the multimodal functions with Ant
Colony Optimization approach,” Expert Systems with Applica-
tions, vol. 36, no. 3, pp- 6030-6035, 2009.

[6] J. Kelsey and J. Timmis, “Immune inspired somatic contiguous
hypermutation for function optimisation,” in Proceedings of the
Genetic and Evolutionary Computation (GECCO ’03), pp. 207-
208, Chicago, Ill, USA, 2003.

[7] M. Gang, Z. Wei, and C. Xiaolin, “A novel particle swarm
optimization algorithm based on particle migration,” Applied
Mathematics and Computation, vol. 218, no. 11, pp. 6620-6626,
2012.

H. Poorzahedy and O. M. Rouhani, “Hybrid meta-heuristic
algorithms for solving network design problem,” European
Journal of Operational Research, vol. 182, no. 2, pp. 578-596,
2007.

[9] Y. T. Kao and E. Zahara, “A hybrid genetic algorithm and
particle swarm optimization for multimodal functions,” Applied
Soft Computing Journal, vol. 8, no. 2, pp. 849-857, 2008.

[10] P. S. Shelokar, P. Siarry, V. K. Jayaraman, and B. D. Kulkarni,
“Particle swarm and ant colony algorithms hybridized for
improved continuous optimization,” Applied Mathematics and
Computation, vol. 188, no. 1, pp- 129-142, 2007.

[11] M. R. Chen, X. Li, X. Zhang, and Y. Z. Lu, “A novel parti-
cle swarm optimizer hybridized with extremal optimization,’
Applied Soft Computing Journal, vol. 10, no. 2, pp. 367-373, 2010.

[12] R. Thangaraj, M. Pant, A. Abraham, and P. Bouvry, “Particle
swarm optimization: hybridization perspectives and experi-
mental illustrations,” Applied Mathematics and Computation,
vol. 217, no. 12, pp- 5208-5226, 2011.

(13] Z. H. Zhan, J. Zhang, Y. Li, and H. S. H. Chung, “Adaptive
particle swarm optimization,” IEEE Transactions on Systems,
Man, and Cybernetics, Part B, vol. 39, no. 6, pp. 1362-1381, 2009.

[14] A. Ratnaweera, S. K. Halgamuge, and H. C. Watson, “Self-
organizing hierarchical particle swarm optimizer with time-
varying acceleration coeflicients,” IEEE Transactions on Evolu-
tionary Computation, vol. 8, no. 3, pp. 240-255, 2004.

[8

[15] M. Jiang, Y. P. Luo, and S. Y. Yang, “Stochastic convergence
analysis and parameter selection of the standard particle swarm
optimization algorithm,” Information Processing Letters, vol. 102,
no. 1, pp. 8-16, 2007.

[16] J. Y. Wu, “Solving constrained global optimization problems
by using hybrid evolutionary computing and artificial life
approaches,” Mathematical Problems in Engineering, vol. 2012,
Article ID 841410, 36 pages, 2012.

[17] Z. Michalewicz, Genetic Algorithms + Data Structures = Evolu-
tion Programs, Springer, New York, NY, USA, 1999.

15

[18] C.R.Houck,]. A.Joines, M. G. Kay, and in:, “A genetic algorithm
for function optimization: a MATLAB implementation,” in
NSCU-IE TR 95-09, North Carolina State University, Raleigh,

NC, USA, 1995.

[19] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of the IEEE International Conference on Neural
Networks, pp. 1942-1948, Perth, WA, Australia, December 1995.

[20] Y. Shi and R. Eberhart, “Modified particle swarm optimizer;,’
in Proceedings of the IEEE International Conference on Evolu-
tionary Computation (ICEC *98), pp. 69-73, Anchorage, Alaska,
USA, May 1998.

[21] M. Clerc, “The swarm and the queen: towards a deterministic
and adaptive particle swarm optimization,” in Proceedings of
the IEEE Congress on Evolutionary Computation, pp. 1951-1957,
Washington, DC, USA, 1999.

[22] M. Clerc and J. Kennedy, “The particle swarm-explosion, sta-
bility, and convergence in a multidimensional complex space,”
IEEE Transactions on Evolutionary Computation, vol. 6, no. 1,
pp. 58-73, 2002.

[23] A. P. Engelbrecht, Fundamentals of Computational Swarm
Intelligence, John Wiley & Sons, 2005.

[24] J. Y. Wu, “Solving constrained global optimization via artificial
immune system,” International Journal on Artificial Intelligence
Tools, vol. 20, no. 1, pp. 1-27, 2011.

[25] L. N. de Castro and F J. Von Zuben, “Artificial Immune
Systems—Part ~ I—Basic  Theory and  Applications,
FEEC/Universidade Estadual de Campinas, Campinas, Brazil,
1999, ftp://ftp.dca.fee.unicamp.br/pub/docs/vonzuben/tr_dca
/trdca0199.pdf.

[26] S.K.S.Fanand E. Zahara, “A hybrid simplex search and particle
swarm optimization for unconstrained optimization,” European
Journal of Operational Research, vol. 181, no. 2, pp. 527-548, 2007.



Advances in Advances in Journal of Journal of
Operations Research lied Mathematics ability and Statistics

il
PR
S Rt
£ 2 §

\ ‘

The Scientific
\{\(orld Journal

International Journal of
Differential Equations

Hindawi

Submit your manuscripts at
http://www.hindawi.com

International Journal of

Combinatorics

Advances in

Mathematical Physics

%

Journal of : Mathematical Problems Abstract and Discrete Dynamics in
Mathematics in Engineering Applied Analysis Nature and Society

Journal of

Complex Analysis

International
Journal of
Mathematics and
Mathematical
Sciences

Journal of
'

al of Journal of

Function Spaces Stochastic Analysis Optimization

Journal of International Jo




