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The reconfigurable data-stream hardware software architecture (Redsharc) is a programming model and network-on-a-chip
solution designed to scale to meet the performance needs of multi-core Systems on a programmable chip (MCSoPC). Redsharc uses
an abstract API that allows programmers to develop systems of simultaneously executing kernels, in software and/or hardware, that
communicate over a seamless interface. Redsharc incorporates two on-chip networks that directly implement the API to support
high-performance systems with numerous hardware kernels. This paper documents the API, describes the common infrastructure,
and quantifies the performance of a complete implementation. Furthermore, the overhead, in terms of resource utilization, is
reported along with the ability to integrate hard and soft processor cores with purely hardware kernels being demonstrated.

1. Introduction

Since the resources found on FPGA devices continue to
track Moore’s Law, modern, high-end chips provide hun-
dreds of millions of equivalent transistors in the form of
reconfigurable logic, memory, multipliers, processors, and
a litany of increasingly sophisticated hard IP cores. As a
result, engineers are turning to multi-core systems on a
programmable chip (MCSoPC) solutions to leverage these
FPGA resources. MCSoPC allow system designers to mix
hard processors, soft processors, third party IP, or custom
hardware cores all within a single FPGA. In this work, we are
only considering multi-core systems with a single processor
core, multiple third party IP cores, and multiple custom
hardware cores.

A major challenge of MCSoPC is how to achieve intercore
communication without sacrificing performance. This prob-
lem is compounded by the realization that cores may use dif-
ferent computational and communication models; threads
running on a processor communicate much differently
than cores running within the FPGA fabric. Furthermore,

standard on-chip interconnects for FPGAs do not scale well
and cannot be optimized for specific programming models;
contention on a bus can quickly limit performance.

To address these issues, this paper investigates
Redsharc—an API and common infrastructure for realizing
MCSoPC designs. Redsharc’s contribution has two parts.

First, introduction of an abstract programming model
and API that specifically targets MCSoPC is presented. An
abstract API, as described by Jerraya and Wolf in [1], allows
cores to exchange data without knowing how the opposite
core is implemented. In a Redsharc system, computational
units, known as kernels, are implemented as either software
threads running on a processor, or hardware cores running
in the FPGA fabric. Regardless of location, kernels com-
municate and synchronize using Redsharc’s abstract API.
Redsharc’s API is based both on a streaming model to pass
data using unidirectional queues and a block model that
allows kernels to exchange index-based bidirectional data.
Section 3 explains the Redsharc API in detail.

Redsharc’s second contribution is the development of fast
and scalable on-chip networks to implement the Redsharc
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API, with special consideration to the hardware/software
nature of MCSoPC. The stream switch network (SSN),
discussed in Section 4.1, is a run-time reconfigurable cross-
bar on-chip network designed to carry streams of data
between heterogeneous cores. The block switch network
(BSN), discussed in Section 4.2, is a routable crossbar on-
chip network designed to exchange index data elements
between cores and blocks of memory.

To evaluate the proposed approach, the API and infras-
tructure have been implemented as a software library and
a collection of VHDL components with generics. A series
of benchmarks were run on a Xilinx ML510 development
board to demonstrate Redsharc’s performance. A BLAST
bioinformatics kernel was also ported to a Redsharc core to
demonstrate the full use of the Redsharc API and to show
scalability. Results are listed in Section 6.

2. Related Work

The idea of creating an API to abstract communication
between heterogeneous computational units has its roots in
both the DARPA adaptive computing systems (ACSs) project
[2] and PipeRench project [3]. These projects focused on
processor to off-chip FPGA accelerator communication and
control, they existed prior to the realization of MCSoPC.

More recently, ReconOS [4] and hthreads [5] imple-
mented a programming model based on Pthreads to
abstract the hardware/software boundary. They successfully
demonstrate the feasibility of abstract programming mod-
els in heterogeneous systems. However, their middleware
layer requires an impractical amount of FPGA resources.
Furthermore, their communication bandwidth is limited
due to a reliance on proprietary buses. Redsharc addresses
these problems by developing an abstract API better suited
for MCSoPC and developing custom on-chip networks,
respectively, supporting the API.

Using a message passing interface (MPI) for parallel
communication has also been explored on FPGAs. MPI
is commonly used in scientific applications running on
large clusters with traditional microprocessor-based nodes.
Several works, including TMD-MPI [6] and SoC-MPI [7],
have implemented some of the standard MPI function calls
in an FPGA library. While supporting MPI may be useful
when trying to port an existing scientific application to an
FPGA cluster, it adds several layers of abstraction that are not
necessary for streaming models. Some logic must be present
to decode received message, strip out the real data from the
message, and deliver that data to the appropriate input of the
computational unit. The streaming model allows for direct
connection of a stream to computational units, as the stream
contains only data. We depend on the streams being properly
set up before data is delivered. The goal of Redsharc is to
implement as light-weight as possible, so a streaming system
was chosen over an MPI or Pthreads-based system.

The stream model is common within FPGA program-
ming. Projects such as [8, 9] use high level stream APIs or
stream languages with compilation tools to automatically
generate MCSoPC. Unlike Redsharc, these efforts focus on
a purely streaming programming model and do not include

support for random access memory. Furthermore, these
models do not permit the mixing of heterogeneous hard
processors, soft processors, or custom FPGA cores as may be
needed to meet stringent application demands.

Researchers have also customized streaming networks to
communicate between heterogeneous on-chip cores using
abstract interfaces. For example, aSOC [10] is notable
for communication between heterogeneous computational
units, but it targets ASICs instead of FPGAs. Finally, SIMPPL
[11] developed an FPGA-based streaming network but do
not consider heterogeneous computational units. Moreover,
existing on-chip networks only support pure streaming
applications and do not include support for random access
memory.

3. Redsharc API

Developing an abstract API for MCSoPC is not a trivial
task. The API must support parallel operations, be realizable
in all computational domains, be resource friendly, and be
flexible enough to incorporate a large number of application
domains. However, these goals can be in conflict at times.

To find the middle ground in these conflicting require-
ments, Redsharc is based on the stream virtual machine
(SVM) API [12]. SVM was originally designed as an
intermediate language between high level stream languages
and low level instruction sets of various architectures being
developed by the DARPA polymorphous computing systems
(PCSs) program. The main idea was that multiple high-
level languages would map to a common stable architectural
abstraction layer that included SVM. That layer would then
map to specific polymorphous computing systems such as
TRIPS, MONARC, RAW, and others as illustrated in Figure 1
[13–15]. SVM has no preference to the computational
model for individual kernels and only specifies how kernels
communicate with each other. SVM is primarily based
on the relatively simple stream model, but it includes the
concept of indexed block data to support random access.
These features make it an ideal candidate for porting to
MCSoPC. The REDSHARC system implements the same
SVM API that would be used on a TRIPS, MONARCH, or
RAW architectures while targeting FGPAs instead of ASIC
processors. Future work could allow the high level languages
shown in Figure 1 to target FPGA-, TRIPS-, MONARCH-,
and RAW-based processors.

The Redsharc API recognizes two types of kernels, worker
and control. There is only one control kernel in the system
and it is responsible for creating and managing streams,
blocks, and worker kernels. There may be multiple worker
kernels that perform functions on data elements presented
in streams or blocks. A stream is a unidirectional flow of data
elements between two kernels. A block is an indexed set of
data elements shared between two or more kernels. In the
current Redsharc implementation, a data element can be of
any size 2n bits where n is an integer and greater than 5.

Applications are divided into kernels. Because both
hardware and software kernels utilize the same block and
stream API, the initial stages of application development
do not need to be concerned with a particular kernel
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Table 1: Redsharc control kernel’s API calls.

Control’s API call Description

kernelInitNull (kernel ∗k) Initializes k to a default state

kernelInit (kernel ∗k, streams ∗s, blocks ∗b) Configures streams/blocks in array s/b for communication with k

kernel Add Dependence (kernel ∗k1, kernel ∗k2) Makes k2 dependent on the completion of k1

kernelRun(kernel ∗k) Adds k to the list of schedulable kernels

kernelPause(kernel ∗k) Removes k from the list of schedulable kernels

streamInitFifo(stream ∗s) Initializes s

blockInit(block ∗b) Initializes b

Table 2: Redsharc worker kernel’s API calls.

Worker’s API Call Description

void kernelEnd() Indicates kernel has completed its work

void streamPush(element ∗e, stream ∗s) Pushes e onto a stream s

void streamPushMulticast(element ∗e, stream ∗s) Pushes e to multiple streams

void streamPop(element ∗e, stream ∗s) Pops top element from s and stores value in e

void streamPeek(element ∗e, stream ∗s) Reads top element from s storing value in e

void blockWrite(element ∗e, int index, block ∗b) Writes e to b at index

void blockRead(element ∗e, int index, block ∗b) Reads index b and stores in e

being implemented in software or hardware. The system
can be viewed as kernels with logical connections as shown
in Figure 2. After each kernel is defined, the kernels are
implemented using either hardware or software, depending
on the suitability of the kernel’s task to a software or
hardware environment. At that point in time, the system will
resemble Figure 3.

3.1. Software Kernel Interface. There are two types of software
kernels in Redsharc, worker kernels which perform work
for the application, and a single control kernel which
sets up the blocks, streams, and which manages the other
kernels. Control kernels are always implemented in software.
The software kernel interface (SWKI) is implemented as a
traditional software library. User kernels link against the
library when generating executable files. Different processors
(hard or soft) may implement the SWKI in different ways,
however, a common approach has been to use a threading
model to manage multiple software kernels executing on a
single processor.

The control kernel API, in C syntax, is presented
in Table 1. The symbols, kernel, stream, block, and
element, are variable types in Redsharc. The control kernel
creates variables of these types and initializes them for use
during run-time. In Redsharc, the streams and blocks a
kernel communicates with are set at run-time with the
kernelInit command. A dependency is used in conjunc-
tion with a block to allow one kernel to write elements to
a block and prohibit any reading kernel from starting until
the write is complete. Only the control kernel is aware of
each worker kernel’s location, either hardware or software.
Due to the added complexity control, kernels may only be
implemented in software.

The worker kernel API is listed in Table 2. While
kernelEnd is used to communicate with the control kernel

when work is completed, the remainder of the API is
dedicated to stream or block communication. In much the
same way that a function in an object-oriented language may
be overloaded for different variable types, the Redsharc API
is independent of data element width, block location, or the
transmitting or receiving kernel’s implementation.

3.2. Hardware Kernel Interface. The hardware API layer,
known as the hardware kernel interface (HWKI), is imple-
mented as a VHDL entity that is included during synthesis.
There is one HWKI for each hardware kernel. The HWKI is
a thin wrapper that connects hardware kernels to the SSN
and BSN. Described in more detail in Section 4, the HWKI
implements the Redsharc stream API as a series of interfaces
similar to FIFO ports, and the Redsharc block API as a series
of interfaces similar to BRAM ports. The use of SVM has
simplified the development of hardware kernels. Figure 4
illustrates the HWKI as implemented in VHDL. A kernel
developer only needs to know how to pop and push data
from an FIFO to use the Redsharc stream switch network.
Similarly, all accesses to memory, on-chip, or off-chip, are
only a simple BRAM access with additional latency.

4. Redsharc’s Networks on a Chip

The stream switch network (SSN) and block switch network
(BSN) were necessitated by performance and scalability. Pro-
gramming models that are built on top of existing general-
purpose on-chip networks such as IBM’s CoreConnect [16]
must translate higher level API calls to lower level network
procedures often with a large overhead. For example, even a
simple streamPeek() operation may require two bus read
transactions, the first to check if the stream is not empty, the
second to retrieve the value of the top element. In previous
work, Liang et al., [10] showed custom on-chip networks
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can outperform general-purpose networks. Therefore, the
SSN and BSN were designed and implemented specifically to
support the Redsharc API and thereby improving scalability
and performance.
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4.1. Stream Switch Network. The Redsharc stream switch
network is a dedicated on-chip network designed to trans-
port streams of data between communicating kernels. The
SSN connects to all hardware kernels via the HWKI and
the processor using DMA controllers. Software kernels
communicate with the SSN through the SWKI which uses
DMA descriptors to send and receive data. The SSN is
composed of a full crossbar switch, configuration registers,
FIFO buffers, and flow control logic.

The SSN’s crossbar switch is implemented using a
parametrized VHDL model which sets the number of inputs
and outputs to the switch at synthesis time. Each output
port of the crossbar is implemented as large multiplexers
in the FPGA fabric. The inputs and outputs of the switch
are buffered with FIFOs allowing each hardware kernel
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to run within its own clock domain. Data is transferred
from a kernel’s output FIFO to another kernel’s input FIFO
whenever data is available in the output FIFO and room
exists in the input FIFO. The flow control signals used
in the SSN are based on the LocalLink specification [17].
The SSN’s internal data width is set at synthesis time and
defaults to 32 bits. To fulfill the Redsharc API requirement
that each stream has a variable width, the FIFOs on the edges
of the SSN translate the stream’s data from 32 bits to the
kernel’s data width requirement. The SSN runs by default
at 200 MHz, however, this system clock can be reduced to
improve the timing score for very dense designs.

Figure 5 shows the streams and kernels in an SSN system.
The input streams are shown on the left side of the figure
flowing into hardware kernels, with the output streams on
the right. Hardware kernels may have any number of input
and output streams. Also shown are the streams connecting
the processor’s DMA controllers ports which connect directly
to the switch, along with the switch configuration registers
which are accessible from the system bus.

Hardware kernels are presented with standard FIFO
interfaces as their Redsharc stream API implementation.
While abstracted from hardware developers the FIFOs are
directly part of the SSN.

Software kernels communicate with the SWKI library.
The SWKI in turn communicates with hardware kernels by
interacting with the DMA controllers. The DMA controllers
can read or write data from off-chip memory into a
LocalLink port. The SWKI’s stream API is written to send
a pointer and length to the DMA engine for the amount
of data to send or receive and the location of that data. An
interrupt occurs when the DMA transaction has finished.
Using the DMA controllers, the processor is more efficient
when there is a large amount of data to push from software to
hardware or vice versa, which is often the case with streaming
applications. The SWKI is also responsible for configuring
the SSN’s switch to connect the processor with the receiving
or transmitting hardware kernel.

An advantage of the crossbar switch is that multicast
stream pushes are possible by simply having several output
ports reading data from the same input port. The control
kernel can change the switch configuration at run-time
to modify application functionality or for load balancing
optimizations.

4.2. Block Switch Network. The purpose of the block switch
network is to implement the low level communication
needed by the Redsharc block API. Redsharc blocks are
created at synthesis time but allocated at run time by the
control kernel. Blocks may be specified to be on-chip as
part of an HWKI or a section of off-chip volatile memory.
The BSN is implemented as a routable crossbar switch and
permits access from any kernel to any block.

Figure 6 shows the BSN’s router. The router consists of a
full crossbar switch, switch controller, and routing modules.
When a kernel requests data, the routing module decodes
the address request and notifies the switch controller. The
switch controller checks the availability of the output port
and, if not in use, configures the switch. This configuration
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can take as few as 2 clock cycles. The configuration will stall
if the desired output port is currently in use by another input
until the first port finishes the transmission. The input ports
are shown on the left side of the figure which are connected
to the output of the hardware kernels. The output ports on
the right connect to the input port of the hardware kernels.
Hardware kernels can consist of any number of local, remote
and off-chip memory ports, giving the kernel a higher degree
of parallelism with memory access.

“Local” blocks, commonly implemented as BRAM, are
accessible to a hardware kernels with low latency (≈2
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clock cycles). They are instantiated as part of a hardware
kernel’s HWKI. A “remote” block is on-chip memory that is
located in a different hardware kernel’s HWKI, but accessible
through the BSN. This is made possible through dual-ported
BRAMs. One port is dedicated to the local hardware kernel,
the second port is dedicated to the BSN. “Off-chip” blocks
are allocated in volatile off-chip RAM (e.g., DDR2 SDRAM).
The BSN communicates directly with the memory controller.
While hardware kernels still share this connection for block
communication, requests are serialized at the last possible
point helping to improve overall performance.

The BSN abstracts away the different block types to
provide hardware developers with a common interface via
the HWKI. The HWKI block interface is an extension of the
common BRAM interface with the addition of “ready for
data,” “valid,” “request size,” and “done.” The added signals
offer the ability to burst larger amounts of data in and out
of memory. The use of the ready for data and valid signals is
necessary since requests to remote and off-chip memory may
take an undetermined amount of time.

The BSN also abstracts away data (element) sizes from
the kernel developer. In conventional bus-based systems, the
developer may need to access 32-bit data from one location
and 128-bit data from a second location. As a result, the
developer must be aware of the amount of data needed for
each request type. In the Redsharc system, the BSN, gives the
developer the exact data size needed and handles the internal
transfers accordingly. With the BSN a developer can still
transfer 128-bit data, but instead of actively transmitting the
four 32-bit words, only a single transaction is required. The
BSN still transfers all 128-bits; however, it does so internally
as a burst of four 32-bit words.

Another advantage is the block location can be moved
(e.g., from a local block to a off-chip block) at synthesis time
based on available resources without requiring the kernel
developer to redesign their code. For example, if the design
requires a significant amount of BRAMs to be used elsewhere
in the system, the data can be placed in off-chip memory. To
the kernel developer the interface remains fixed and only the
connection within the HWKI changes.

Software kernels access blocks through the SWKI. If
the block is located off-chip, the SWKI routes the request
through the PPC’s memory port (avoiding bus arbitration).
If the block is located within the BSN, the request is
translated to memory mapped commands to the BSN on the
PLB.

While blocks are conceptualized as either being stored in
on-chip block RAMs or in off-chip RAM, many designs also
need access to a set of small control or “one off” registers to
interface with peripheral or kernels. We group these together
as special purpose registers. For example, a design may need
access to one or more of these registers in order to set some
initial parameters, such as sequence length or number of
transfers. Rather than dedicating an entire block, a designer
may want to have the more familiar register access within the
kernel. The BSN enables access to these registers by both the
control kernel and other hard and soft kernels in the system.
A designer can specify at synthesis the number of registers
which are to be allocated for the kernel. To the hardware

kernel interface, the registers are additional elements with a
specific address range. However, to the kernel, the registers
are directly accessible without performing block transfers.

5. Implementation

The Redsharc infrastructure spans several IP cores and
incorporates multiple interfaces. Nonetheless, by utilizing
VHDL generics and by careful organization, Redsharc can
be synthesized for multiple FPGA families. Specifically, this
is possible because of four key principles. First, it simplifies
hardware and software kernel development through an
abstract programming model that has been implemented
in a conventional software and hardware kernel interface
(SWKI and HWKI, resp.). Second, Redsharc can use both
hard and soft processing cores to control kernel execution.
Third, by design, Redsharc enables low-latency and high-
bandwidth access to streams of data between hardware and
software kernels through the stream switch network (SSN).
Last, having a separate network for data transfers to random
access block memory (through the block switch network,
BSN) reduces resource contention.

5.1. Kernel Integration. Among its many contributions,
Redsharc enables rapid kernel integration into new and
existing systems. Through the use of the hardware kernel
interface (HWKI), a kernel developer can exclusively focus
on the design of the kernel rather than how to access
streams and blocks of data. Complexities associated with bus
transactions and memory controllers need not be considered
by the kernel developer. Instead, the Redsharc infrastructure
simplifies these accesses to mere FIFO and BRAM interfaces.
The HWKI is then responsible for translating these requests
into the more complex stream and block transfers. This is
especially important as systems migrate from on FPGA to the
next because modifying low-level kernels to access memory
should be the last concern for a system designer.

5.2. System Integration. Separate from kernel development
is system integration. Redsharc emphasizes the difference in
order to enable designers to more efficiently construct large
systems comprising of several kernels that are executing in
both hardware and software. The goal is to allow the rapid
assembly of such systems without significant involvement
from individual kernel developers. In fact, so long as the
kernel developer adheres to FIFO- and BRAM-like interfaces,
the system designer is free to assemble and modify the
system.

Ultimately, a Redsharc system is comprised of one or
more processors, memory controllers, and kernels. The
processors can be hard or soft IP, such as the PowerPC,
MicroBlaze, or Nios processor. While performance and/or
available resources may dictate which processor to use, the
Redsharc system has been designed to be completely pro-
cessor and FPGA vendor agnostic. The LocalLink interface
standard used in the SSN and BSN can be replaced with a
similar point to point streaming protocol with flow control.
The internal LocalLink channels in the SSN and BSN would
not need to be modified to accept a new streaming protocol,
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only the specific interfaces that connect between the SSN
and BSN switches with the processors or system bus of the
system.

The only requirement of the processor is that it needs
to have software-addressable registers to configure the SSN
and BSN networks. This is easily accomplished over a system
bus interface. The BSN needs direct access to the external
memory controller for high efficiency. Both Xilinx and Altera
FPGAs provide such an interface for user logic. In this
paper, we have implemented Redsharc using two processor
systems, a PowerPC 440 hard processor and MicroBlaze
soft processor. Both systems were implemented on a Xilinx
ML510 development board which is based on a Virtex 5 FX
130T FPGA. Figures 7 and 8 show these two systems.

5.3. Memory Interface. While a variety of interfaces to mem-
ory exist, Redsharc is best suited to be directly connected
to on-chip and off-chip memory controllers. Specifically,
both the SSN and BSN have separate interfaces to the
memory controller to enable independent access, reducing
contention, and simplifying arbitration for the individual
resource.

The SSN is connected to the processor core via two FIFOs
for stream communication and a set of registers to configure
the SSN. In this implementation, we have used DMA to
transfer a buffer from software, in DDR2 main memory, to
or from the SSN FIFOs. The PowerPC 440 system uses the
DMA controllers embedded in the processor IP block. The
MicroBlaze system uses a custom DMA controller since no
embedded DMA controller exists in the current MicroBlaze
implementation.
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The BSN requires a connection to external memory to
access blocks stored off-chip. In this Redsharc implemen-
tation, we use the Xilinx Multi-Port Memory Controller
(MPMC) to connect the BSN directly to external memory.
While the current HDL will only interface with the MPMC,
adapting the BSN to use a different memory controller would
only require changes to one component of the BSN.

6. Results

A Redsharc system with between-one and eight BLAST
kernels has been implemented to measure the performance,
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scalability, and resource utilization of the Redsharc abstract
API and infrastructure. The characteristics, measured on a
Virtex 5 FX 130T FPGA, are presented in this section. Xilinx
ISE Design Suite version 11.4 was used for all experiments
for FPGA implementation.

6.1. Network Performance. The SSN’s performance is mea-
sured by the bandwidth between two kernels. While the
HWKI abstracts these issues from the hardware developer,
these metrics are dependent on (1) width of the stream,
(2) width of the SSN, (3) clock frequency of the SSN
and kernels. Between two hardware kernels, running at
200 MHz and a 32 bit data width, the SSN’s bandwidth
is 800 MB/s. When the receiving or transmitting kernel is
software, the bandwidth is limited by the throughput of the
DMA controller and the message size. Figure 9 shows the
measured bandwidth for different stream lengths between
hardware kernels and software kernels. The SSN performs
best with large message sizes.

The BSN’s performance is measured by the latency and
bandwidth of a read operation. Similar to the SSN, the
Redsharc API abstracts synthesis-time configurations that
may affect the bandwidth of a specific system. The settings
that affect BSN’s bandwidth are (1) location and width of
the data, (2) operating frequency of the hardware kernel and
BSN (clock domain crossing adds overhead), and (3) possible
contention at the remote block. Table 3 provides an overview
of the BSN performance for the three types of data locality,
given both the BSN and hardware kernels on the same
100 MHz clock. The BSN performs very favorable compared
to the PLB which, in previous work, has a measured peek
performance of 25 MB/s [18] for a 32 bit read transaction
and a 200 MB/s for 1024 bit transaction.

6.2. Kernel Performance. In order to demonstrate Redsharc’s
scalability, a BLAST bioinformatics kernel was implemented.
BLAST is a bioinformatics application that performs DNA
comparisons. BLAST compares one short DNA sequence,
called the query, against a long database of DNA sequences,
and produces a stream of indexes where the two sequences
match. The database of DNA sequences is 35 KBytes. The
BLAST query is encoded into the 8 KByte local block.
Researchers have implemented BLAST on FPGAs to demon-
strate impressive speedups [19]; however, previous work
[20, 21] has shown that bandwidth requirements for BLAST
limit the scalability such that a common bus interconnect is
insufficient for transferring databases to each BLAST core as
well as being used for off-chip memory lookups. Specifically,
each BLAST core can sustain database input rates of 3.2 GB/s.
Common bus implementation, such as the processor local
bus (PLB), offers sufficient bandwidth (12.8 GB/s) although
there are limitations on the burst size and the number
of concurrent transfers. For these reasons and due to the
aforementioned previous research investigating conventional
bus-based implementations, this work focuses on analyzing
the scalability of BLAST cores within the Redsharc system.

The BLAST hardware kernel used in these experiments is
a reimplementation of the BLAST algorithm with two input

Table 3: BSN latency and bandwidth for each block type with
100 Mhz BSN clock.

Block type 32 b data width 1024 b data width

Local 2 cc (200 MB/s) 2 cc (6400 MB/s)

Remote 16 cc (25 MB/s) 47 cc (272 MB/s)

Off-chip 25 cc (16 MB/s) 56 cc (228 MB/s)

streams: one for the input database and one for the length
of each sequence in the database. One output stream is used
for the matching results. Three blocks (one local and two
off-chip) store query information. Each BLAST kernel added
to the system can run one query in parallel. Furthermore,
it is possible to use the multicast capabilities of the SSN to
broadcast the same database to all of the running BLAST
kernels.

For comparison, a constant work size of eight queries
and one database is used to test the system. The system
with a single BLAST kernel must sequentially evaluate the
queries, while the system with eight kernels can evaluate
them in parallel. This test will show if the Redsharc system
can scale with increasing hardware kernels. Table 4 shows
the execution time results of the system when executing
with a PowerPC processor. The performances of the BLAST
application when implemented on a microblaze based system
are shown in Table 5.

Both systems show no speedup in the time to load the
queries into the blocks or read the result data back from the
kernels. These operations are entirely sequential and offer no
possible speedup. The 100 MHz Microblaze processor takes
significantly longer than the 400 MHz PowerPC processor in
these sequential steps. A nearly linear speedup is observed
in both systems in the time spent comparing the database to
the query. Note that with eight queries running in parallel,
the BSN must handle the increasing load for the query
information stored in off-chip memory blocks while the SSN
is also reading the database from off-chip memory. This
contention for the single off-chip memory resource prevents
totally linear scaling.

6.3. Resource Utilization. This subsection presents the sizes
of the BSN, SSN, and HWKI, the three critical hardware
components that comprise a Redsharc system. Table 6 shows
the resource utilization of a single BLAST kernel and its
associated HWKI. The most used resources are the lookup
tables. The remote block interface components of the HWKI
appears to use an extraordinary amount of resources. This
is due to one of the remote blocks having a data width of
448 bits, the natural data width of a single lookup of the
query information stored in the off-chip memory block.
The HWKI handles expanding the data from the 32 bit
memory interface into the 448 bit data width, a job that
would normally have to be done by the application internally.

Figure 11 and Table 8 show the number of lookup tables
used in the one, two, four, and eight kernel systems used
in these tests. The figure shows that even at eight kernels,
the Redsharc infrastructure, the BSN and SSN, uses fewer
resources than the kernels. It also shows that the SSN is
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Table 4: Performance of one to eight BLAST cores running in a PowerPC 440 Redsharc system. 100 MHz SSN, BSN, and BLAST Kernel
Clocks.

Cores Load queries Speedup BLAST exec. Speedup Read results Speedup Total time Total speedup

1 1643.94 µs 1x 9013.1 µs 1x 49.49 µs 1x 10706.53 µs 1x

2 1641.16 µs 1x 4512.16 µs 2x 41.74 µs 1.19x 6195.06 µs 1.73x

4 1639.78 µs 1x 2265.38 µs 3.98x 38.73 µs 1.28x 3943.90 µs 2.71x

8 1638.65 µs 1x 1134.11 µs 7.95x 36.4 µs 1.36x 2809.16 µs 3.81x

Table 5: Performance of one to eight BLAST cores running in a Microblaze Redsharc system. 100 MHz SSN, BSN, and BLAST Kernel Clocks.

Cores Load queries Speedup BLAST Exec. Speedup Read results Speedup Total time Total speedup

1 4309.3 µs 1x 6767.1 µs 1x 83.2 µs 1x 11159.6 µs 1x

2 3959.2 µs 1.1x 3512.1 µs 1.9x 77.4 µs 1.1x 7548.7 µs 1.5x

4 3783.3 µs 1.1x 1820.5 µs 3.7x 75.1 µs 1.1x 5678.9 µs 2.0x

8 3695.3 µs 1.2x 947.6 µs 7.1x 74.4 µs 1.1x 4717.3 µs 2.4x
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Figure 10: Block switch and stream switch network resource uti-
lization in terms of lookup tables (LUTs) and flip-flops (FFs).

Table 6: Resource utilization of a single BLAST Kernel on a Virtex
5 FPGA.

Kernel component LUT FF
Carry
Chain

BRAM

Local block IF 262 239 118 2

Remote block IF 1708 1077 198 0

Stream IF 1 1 0 3

BLAST application 756 471 105 0

Total 2727 1788 421 5

scaling lineally with the number of kernels, while the BSN
has some exponential growth. Figure 10 and Table 7 illustrate
the BSN and SSN’s usage of lookup tables and flip-flops
for any system. The term radix in this figure refers to the
number of ports on each switch. For example, each BLAST
kernel has three port connections to the BSN and two to
the SSN. Note that the SSN is purely combinatorial and as
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Figure 11: Redsharc system LUT utilization.

Table 7: BSN and SSN LUT and FF resource utilization.

Radix BSN LUTs BSN FFs SSN LUTs SSN FFs

4 456 240 140 0

8 1432 522 576 0

16 5169 1267 2272 0

32 20536 3104 11198 0

a result has no flip-flops. The BSN number includes the
routing module logic and switch controller, which increases
the resource count. Overall, the resources used consume a
small portion of available resources for medium-to-large-
scale FPGA devices. While a bus presents a smaller resource
footprint, as a trade-off the dual switches provide significant
bandwidth that is necessary to satisfy the type of high-
performance applications targeted by this research.
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Table 8: Redsharc system LUT utilization.

Kernels SSN BSN Kernel logic

1 100 534 2727

2 172 1193 6476

4 615 3672 12942

8 1770 12470 25886

The HWKI supports access to variable number of streams
and blocks with variable data element sizes. As such, we
present the resources required for each additional stream or
block and assume 32-bit data widths for all ports. For the
SSN, only an LUT is required for each input and output
port to drive the Xilinx LocalLink signals and the input and
output stream FIFOs. The FIFO depth is configurable by the
hardware developer so the number of BRAMs is variable. For
the BSN, more logic is needed to support local and remote
block requests. Each local block requires 176 flip-flops and
300 LUTs whereas each remote block only requires 161 flip-
flops and 163 LUTs. These represent a minimal amount of
resources needed to support the high-bandwidth memory
transactions while maintaining a common memory interface
to the hardware kernel.

7. Conclusion

Programming MCSoPC that span hardware and software
is not a trivial task. While abstract programming models
have been shown to ease the programmer burden of crossing
the hardware/software boundary, their abstraction layer
incurs a heavy burden on performance. Redsharc solves this
problem by merging an abstract programming model with
on-chip networks that directly implement the programming
model.

The Redsharc API is based on a streaming programming
model but it incorporates random access blocks of memory.
Two on-chip networks were implemented to facilitate the
stream and block API calls. Our results showed that the
SSN and BSN have comparable bandwidth to state-of-
the-art technology and scales nearly linearly with parallel
hardware kernels. Redsharc can be implemented across
multiple platforms, with no dependence on a particular
FPGA family or processor interface. Ergo, programmers,
and system architects may develop heterogeneous systems
that span the hardware/software domain, using a seamless
abstract API, without giving up performance of custom
interfaces.

Disclaimer

The views, opinions, and/or findings contained in this
article/presentation are those of the author/presenter and
should not be interpreted as representing the official views
or policies, either expressed or implied, of the Defense
Advanced Research Projects Agency or the Department of
Defense.
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