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This paper is concerned with the periodic solutions for a class of Nicholson-type delay systems
with nonlinear density-dependent mortality terms. By using coincidence degree theory, some
criteria are obtained to guarantee the existence of positive periodic solutions of the model.
Moreover, an example and a numerical simulation are given to illustrate our main results.

1. Introduction

In the last twenty years, the delay differential equations have been widely studied both in
a theoretical context and in that of related applications [1–4]. As a famous and common
delay dynamic system, Nicholson’s blowflies model and its modifications have made
remarkable progress that has been collected in [5] and the references cited there in. Recently,
to describe the dynamics for the models of marine protected areas and B-cell chronic
lymphocytic leukemia dynamics which belong to the Nicholson-type delay differential
systems, Berezansky et al. [6], Wang et al. [7], and Liu [8] studied the problems on
the permanence, stability, and periodic solution of the following Nicholson-type delay
systems:

N ′
1(t) = −α1(t)N1(t) + β1(t)N2(t) +

m∑

j=1

c1j(t)N1
(
t − τ1j(t)

)
e−γ1j (t)N1(t−τ1j (t)),
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N ′
2(t) = −α2(t)N2(t) + β2(t)N1(t) +

m∑

j=1

c2j(t)N2
(
t − τ2j(t)

)
e−γ2j (t)N2(t−τ2j (t)),

(1.1)

where αi, βi, cij , γij , τij ∈ C(R, (0 +∞)), and i = 1, 2, j = 1, 2, . . . , m.
In [5], Berezansky et al. also pointed out that a new study indicates that a linear

model of density-dependent mortality will be most accurate for populations at low densities
and marine ecologists are currently in the process of constructing new fishery models with
nonlinear density-dependent mortality rates. Consequently, Berezansky et al. [5] presented
an open problem: to reveal the dynamics of the following Nicholson’s blowflies model with
a nonlinear density-dependent mortality term:

N ′(t) = −D(N(t)) + PN(t − τ)e−aN(t−τ), (1.2)

where P is a positive constant and functionDmight have one of the following forms:D(N) =
aN/(N + b) or D(N) = a − be−N with positive constants a, b > 0.

Most recently, based upon the ideas in [5–8], Liu and Gong [9] established the results
on the permanence for the Nicholson-type delay system with nonlinear density-dependent
mortality terms. Consequently, the problem on periodic solutions of Nicholson-type system
with D(N) = a − be−N has been studied extensively in [10–13]. However, to the best of
our knowledge, there exist few results on the existence of the positive periodic solutions of
Nicholson-type delay system withD(N) = aN/(N+b). Motivated by this, the main purpose
of this paper is to give the conditions to guarantee the existence of positive periodic solutions
of the following Nicholson-type delay system with nonlinear density-dependent mortality
terms:

N ′
1(t) = −D11(t,N1(t)) +D12(t,N2(t)) +

l∑

j=1

c1j(t)N1
(
t − τ1j(t)

)
e−γ1j (t)N1(t−τ1j (t)),

N ′
2(t) = −D22(t,N2(t)) +D21(t,N1(t)) +

l∑

j=1

c2j(t)N2
(
t − τ2j(t)

)
e−γ2j (t)N2(t−τ2j (t)),

(1.3)

under the admissible initial conditions

xt0 = ϕ, ϕ ∈ C+ = C
(
[−r1, 0], R1

+

)
× C
(
[−r2, 0], R1

+

)
, ϕi(0) > 0, (1.4)

where Dij(t,N) = aij(t)N/(bij(t) + N), aij , bij , cik, γik : R → (0,+∞) and τik : R → [0,+∞)
are all bounded continuous functions, and ri = max1≤k≤l{supt∈R1τik(t)}, i, j = 1, 2, k = 1, . . . , l.

For convenience, we introduce some notations. Throughout this paper, given a
bounded continuous function g defined on R1, let g+ and g− be defined as

g− = inf
t∈R1

g(t), g+ = sup
t∈R1

g(t). (1.5)
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We also assume that aij , bij , cik, γik : R → (0,+∞) and τik : R → [0,+∞) are all ω-periodic
functions, ri = max1≤k≤l{τ+ik}, and i, j = 1, 2, k = 1, . . . , l.

Set

Ai = 2
∫ω

0

aii(t)
bii(t)

dt, Bi =
l∑

j=1

∫ω

0
cij(t)dt, γ+i = max

1≤j≤l

{
γ+ij

}
, γ−i = min

1≤j≤l

{
γ−ij
}
,

D1 =
∫ω

0
a12(t)dt, D2 =

∫ω

0
a21(t)dt, Ci =

∫ω

0
aii(t)dt, i = 1, 2.

(1.6)

Let Rn(Rn
+) be the set of all (nonnegative) real vectors; we will use x =

(x1, x2, . . . , xn)
T ∈ Rn to denote a column vector, in which the symbol (T ) denotes

the transpose of a vector. We let |x| denote the absolute-value vector given by |x| =
(|x1|, |x2|, . . . , |xn|)T and define ||x|| = max1≤i≤n|xi|. For matrix A = (aij)n×n, A

T denotes the
transpose of A. A matrix or vector A ≥ 0 means that all entries of A are greater than or equal
to zero. A > 0 can be defined similarly. For matrices or vectors A and B, A ≥ B (resp. A > B)
means that A − B ≥ 0 (resp. A − B > 0). We also define the derivative and integral of vector
function x(t) = (x1(t), x2(t))

T as x′ = (x′
1(t), x

′
2(t))

T and
∫ω
0 x(t)dt = (

∫ω
0 x1(t)dt,

∫ω
0 x2(t)dt)

T .
The organization of this paper is as follows. In the next section, some sufficient

conditions for the existence of the positive periodic solutions of model (1.3) are given by
using the method of coincidence degree. In Section 3, an example and numerical simulation
are given to illustrate our results obtained in the previous section.

2. Existence of Positive Periodic Solutions

In order to study the existence of positive periodic solutions, we first introduce the continua-
tion theorem as follows.

Lemma 2.1 (continuation theorem [14]). Let X and Z be two Banach spaces. Suppose that L :
D(L) ⊂ X → Z is a Fredholm operator with index zero and Ñ : X → Z is L -compact on Ω, where
Ω is an open subset of X. Moreover, assume that all the following conditions are satisfied:

(1) Lx/=λÑx, for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1);

(2) Ñx /∈ ImL, for all x ∈ ∂Ω ∩ KerL;

(3) the Brouwer degree

deg
{
QÑ,Ω ∩ KerL, 0

}
/= 0. (2.1)

Then equation Lx = Ñx has at least one solution in domL ∩Ω.

Our main result is given in the following theorem.
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Theorem 2.2. Suppose

Ci > 2Di, ln
2Bi

Ai
> Ai, i = 1, 2, (2.2)

l∑

j=1

c+1j

a−
11γ

−
1je

+
a+
12

a−
11

< 1,
l∑

j=1

c+2j

a−
22γ

−
2je

+
a+
21

a−
22

< 1. (2.3)

Then (1.3) has a positive ω-periodic solution.

Proof. Set N(t) = (N1(t),N2(t))
T andNi(t) = exi(t) (i = 1, 2). Then (1.3) can be rewritten as

x′
1(t) = − a11(t)

b11(t) + ex1(t)
+
a12(t)ex2(t)−x1(t)

b12(t) + ex2(t)

+
l∑

j=1

c1j(t)ex1(t−τ1j (t))−x1(t)−γ1j (t)ex1(t−τ1j (t)) := Δ1(x, t),

x′
2(t) = − a22(t)

b22(t) + ex2(t)
+
a21(t)ex1(t)−x2(t)

b21(t) + ex1(t)

+
l∑

j=1

c2j(t)ex2(t−τ2j (t))−x2(t)−γ2j (t)ex2(t−τ2j (t)) := Δ2(x, t).

(2.4)

As usual, let X = Z = {x = (x1(t), x2(t))
T ∈ C(R,R2) : x(t + ω) = x(t) for all t ∈ R} be Banach

spaces equipped with the supremum norm || · ||. For any x ∈ X, because of periodicity, it is
easy to see that Δ(x, ·) = (Δ1(x, ·),Δ2(x, ·))T ∈ C(R,R2) is ω-periodic. Let

L : D(L) =
{
x ∈ X : x ∈ C1

(
R,R2

)}

 x �−→ x′ =

(
x′
1, x

′
2
)T ∈ Z,

P : X 
 x �−→
(

1
ω

∫ω

0
x1(s)ds,

1
ω

∫ω

0
x2(s)ds

)T

∈ X,

Q : Z 
 z �−→
(

1
ω

∫ω

0
z1(s)ds,

1
ω

∫ω

0
z2(s)ds

)T

∈ Z,

Ñ : X 
 x �−→ Δ(x, ·) ∈ Z.

(2.5)

It is easy to see that

ImL =
{
x | x ∈ Z,

∫ω

0
x(s)ds = (0, 0)T

}
, KerL = R2,

ImP = KerL, KerQ = ImL.

(2.6)
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Thus, the operator L is a Fredholm operator with index zero. Furthermore, denoting
by L−1

P : ImL → D(L) ∩ KerP the inverse of L|D(L)∩KerP , we have

L−1
P y(t) = − 1

ω

∫ω

0

∫ t

0
y(s)dsdt +

∫ t

0
y(s)ds

=

(
− 1
ω

∫ω

0

∫ t

0
y1(s)dsdt +

∫ t

0
y1(s)ds,− 1

ω

∫ω

0

∫ t

0
y2(s)dsdt +

∫ t

0
y2(s)ds

)T

.

(2.7)

It follows that

QÑx =
1
ω

∫ω

0
Ñx(t)dt =

(
1
ω

∫ω

0
Δ1(x(t), t)dt,

1
ω

∫ω

0
Δ2(x(t), t)dt

)T

, (2.8)

L−1
P (I −Q)Ñx =

∫ t

0
Ñx(s)ds − t

ω

∫ω

0
Ñx(s)ds − 1

ω

∫ω

0

∫ t

0
Ñx(s)dsdt

+
1
ω

∫ω

0

∫ t

0
QÑx(s)dsdt.

(2.9)

Obviously,QÑ and L−1
P (I−Q)Ñ are continuous. It is not difficult to show that L−1

P (I−Q)Ñ(Ω)
is compact for any open bounded set Ω ⊂ X by using the Arzela-Ascoli theorem. Moreover,
QÑ(Ω) is clearly bounded. Thus Ñ is L-compact on Ωwith any open bounded set Ω ⊂ X.

Considering the operator equation Lx = λÑx, λ ∈ (0, 1), we have

x′(t) =
(
x′
1(t), x

′
2(t)
)T = λΔ(x, t) = (λΔ1(x, t), λΔ2(x, t))

T . (2.10)

Suppose that x = (x1(t), x2(t))
T ∈ X is a solution of (2.10) for some λ ∈ (0, 1).

Firstly, we claim that there exists a positive number H such that ||x|| < H. Integrating
the first equation of (2.10) and in view of x ∈ X, it results that

0 =
∫ω

0
x′
1(t)dt = λ

∫ω

0
Δ1(x, t)dt, (2.11)

which together with (2.4) implies that

∫ω

0

∣∣∣∣∣∣

l∑

j=1

c1j(t)ex1(t−τ1j (t))−x1(t)−γ1j (t)ex1(t−τ1j (t)) +
a12(t)ex2(t)−x1(t)

b12(t) + ex2(t)

∣∣∣∣∣∣
dt

=
∫ω

0

a11(t)
b11(t) + ex1(t)

dt

<

∫ω

0

a11(t)
b11(t)

dt.

(2.12)
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Similarly, we have

∫ω

0

∣∣∣∣∣∣

l∑

j=1

c2j(t)ex2(t−τ2j (t))−x2(t)−γ2j (t)ex2(t−τ2j (t)) +
a21(t)ex1(t)−x2(t)

b21(t) + ex1(t)

∣∣∣∣∣∣
dt

=
∫ω

0

a22(t)
b22(t) + ex2(t)

dt

<

∫ω

0

a22(t)
b22(t)

dt.

(2.13)

It follows from (2.12) and (2.13) that

∫ω

0

∣∣x′
1(t)
∣∣dt ≤ λ

∫ω

0

∣∣∣∣∣∣

l∑

j=1

c1j(t)ex1(t−τ1j (t))−x1(t)−γ1j (t)ex1(t−τ1j (t)) +
a12(t)ex2(t)−x1(t)

b12(t) + ex2(t)

∣∣∣∣∣∣
dt

+ λ

∫ω

0

∣∣∣∣
a11(t)

b11(t) + ex1(t)

∣∣∣∣dt

< 2
∫ω

0

a11(t)
b11(t)

dt = A1,

(2.14)

∫ω

0

∣∣x′
2(t)
∣∣dt ≤ λ

∫ω

0

∣∣∣∣∣∣

l∑

j=1

c2j(t)ex2(t−τ2j (t))−x2(t)−γ2j (t)ex2(t−τ2j (t)) +
a21(t)ex1(t)−x2(t)

b21(t) + ex1(t)

∣∣∣∣∣∣
dt

+ λ

∫ω

0

∣∣∣∣
a22(t)

b22(t) + ex2(t)

∣∣∣∣dt

< 2
∫ω

0

a22(t)
b22(t)

dt = A2.

(2.15)

Since x ∈ X, there exist ξ1, ξ2, η1, η2 ∈ [0, ω] such that

xi(ξi) = min
t∈[0,ω]

xi(t), xi

(
ηi
)
= max

t∈[0,ω]
xi(t), x′

i(ξi) = x′
i

(
ηi
)
= 0, i = 1, 2. (2.16)

It follows from (2.12) and (2.14) that

A1

2
=
∫ω

0

a11(t)
b11(t)

dt >

∫ω

0

a11(t)
b11(t) + ex1(t)

dt

=
∫ω

0

l∑

j=1

c1j(t)ex1(t−τ1j (t))−x1(t)−γ1j (t)ex1(t−τ1j (t))dt +
∫ω

0

a12(t)ex2(t)−x1(t)

b12(t) + ex2(t)
dt
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> ex1(ξ1)−x1(η1)−γ+1 ex1(η1)
l∑

j=1

∫ω

0
c1j(t)dt

= B1e
x1(ξ1)−x1(η1)−γ+1 ex1(η1) ,

(2.17)

which implies that

x1(ξ1) < ln
A1

2B1
+ x1
(
η1
)
+ γ+1 e

x1(η1). (2.18)

Using (2.14) yields

x1(t) ≤ x1(ξ1) +
∫ω

0

∣∣x′
1(t)
∣∣dt < ln

A1

2B1
+ x1
(
η1
)
+ γ+1 e

x1(η1) +A1, t ∈ [0, ω]. (2.19)

In particular,

x1
(
η1
)
< x1(ξ1) +

∫ω

0

∣∣x′
1(t)
∣∣dt < ln

A1

2B1
+ x1
(
η1
)
+ γ+1 e

x1(η1) +A1. (2.20)

It follows that

x1
(
η1
)
> ln

(
1
γ+1

(
ln

2B1

A1
−A1

))
. (2.21)

Again from (2.14), we have

x1(t) ≥ x1
(
η1
) −
∫ω

0

∣∣x′
1(t)
∣∣dt > ln

(
1
γ+1

(
ln

2B1

A1
−A1

))
−A1 := H11, t ∈ [0, ω]. (2.22)

Similarly, we can obtain

x2(t) ≥ x2
(
η2
) −
∫ω

0

∣∣x′
2(t)
∣∣dt > ln

(
1
γ+2

(
ln

2B2

A2
−A2

))
−A2 := H21, t ∈ [0, ω]. (2.23)

Since x′
1(ξ1) = 0, from (2.10), we have

a11(ξ1)
b11(ξ1) + ex1(ξ1)

=
l∑

j=1

c1j(ξ1)ex1(ξ1−τ1j (ξ1))−x1(ξ1)−γ1j (ξ1)ex1(ξ1−τ1j (ξ1))

+
a12(ξ1)ex2(ξ1)−x1(ξ1)

b12(ξ1) + ex2(ξ1)
.

(2.24)
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Hence, from (2.24) and the fact that supu≥0ue
−u = 1/e, we have

ex1(ξ1)

b+11 + ex1(ξ1)
≤ ex1(ξ1)

b11(ξ1) + ex1(ξ1)

=
l∑

j=1

c1j(ξ1)
a11(ξ1)γ1j(ξ1)

γ1j(ξ1)ex1(ξ1−τ1j (ξ1))e−γ1j (ξ1)e
x1(ξ1−τ1j (ξ1))

+
a12(ξ1)

a11(ξ1)
(
1 + b12(ξ1)e−x2(ξ1)

)

<
l∑

j=1

c+1j

a−
11γ

−
1je

+
a+
12

a−
11
.

(2.25)

Noting that u/(b+11 + u) is strictly monotone increasing on [0,+∞) and

sup
u≥0

u

b+11 + u
= 1 >

l∑

j=1

c+1j

a−
11γ

−
1je

+
a+
12

a−
11
, (2.26)

it is clear that there exists a constant k1 > 0 such that

u

b+11 + u
>

l∑

j=1

c+1j

a−
11γ

−
1je

+
a+
12

a−
11

∀u ∈ [k1,+∞). (2.27)

In view of (2.25) and (2.27), we get

ex1(ξ1) ≤ k1, x1(ξ1) ≤ ln k1. (2.28)

In the same way, there exists a constant k2 > 0 such that

x2(ξ2) ≤ ln k2. (2.29)

Again from (2.14), (2.15), (2.28), and (2.29), we get

x1(t) ≤ x1(ξ1) +
∫ω

0

∣∣x′
1(t)
∣∣dt < ln k1 +A1,

x2(t) ≤ x2(ξ1) +
∫ω

0

∣∣x′
2(t)
∣∣dt < ln k1 +A2.

(2.30)

Then, we can choose two sufficiently large positive constants H12 > ln k1 + A1 and H22 >
ln k2 +A2 such that

x1(t) < H12, x2(t) < H22, ln b+11 < H12, ln b+22 < H22. (2.31)
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Let H > max{|H11|, |H21|,H12,H22} be a fix constant such that

eH >
1
γ−1

(
H − ln

C1 − 2D1

2B1

)
, eH >

1
γ−2

(
H − ln

C2 − 2D2

2B2

)
. (2.32)

Then (2.22), (2.23), and (2.31) imply that ||x|| < H, if x ∈ X is solution of (2.10). So we can
define an open bounded set as Ω = {x ∈ X : ||x|| < H} such that there is no λ ∈ (0, 1) and
x ∈ ∂Ω such that Lx = λÑx. That is to say Lx /=λÑx for all x ∈ ∂Ω ∩D(L), λ ∈ (0, 1).

Secondly, we prove that Ñx /∈ ImL for all x ∈ ∂Ω ∩ KerL. That is ((QÑ(x))1,
(QÑ(x))2)

T
/= (0, 0)T for all x ∈ ∂Ω ∩ KerL.

If x(t) = (x1(t), x2(t))
T ∈ ∂Ω ∩ KerL, then x(t) is a constant vector in R2, and there

exists some i ∈ {1, 2} such that |xi| = H. Assume |x1| = H, so that x1 = ±H. Then, we claim

(
QÑ(x)

)

1
> 0 for x1 = −H,

(
QÑ(x)

)

1
< 0 for x1 = H. (2.33)

If (QÑ(x))1 ≤ 0 for x1 = −H, it follows from (2.2) and (2.8) that

∫ω

0
Δ1(x, t)dt ≤ 0, for x1 = −H. (2.34)

Hence,

A1

2
=
∫ω

0

a11(t)
b11(t)

dt

>

∫ω

0

a11(t)
b11(t) + e−H

dt

≥
∫ω

0

⎡

⎣
l∑

j=1

c1j(t)e−γ1j (t)e
−H

+
a12(t)ex2+H

b12(t) + ex2

⎤

⎦dt

>

∫ω

0

l∑

j=1

c1j(t)e
−γ+1j e−Hdt

≥ e−γ
+
1 e

−H
l∑

j=1

∫ω

0
c1j(t)dt

= B1e
−γ+1 e−H ,

(2.35)

which implies

−H > ln

(
1
γ+1

ln
2B1

A1

)
> ln

(
1
γ+1

(
ln

2B1

A1
−A1

))
−A1 = H11. (2.36)

This is a contradiction and implies that (QÑ(x))1 > 0 for x1 = −H.
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If (QÑ(x))1 ≥ 0 for x1 = H, it follows from (2.2) and (2.8) that

∫ω

0
Δ1(x, t)dt ≥ 0, for x1 = H,

C1

2
e−H =

∫ω

0

a11(t)
2eH

dt

<

∫ω

0

a11(t)
b11(t) + eH

dt

≤
∫ω

0

l∑

j=1

c1j(t)e−γ1j (t)e
H

dt +
∫ω

0

a12(t)ex2−H

b12(t) + ex2
dt

≤
∫ω

0

l∑

j=1

c1j(t)e−γ
−
1 e

H

dt +
∫ω

0

a12(t)
b12(t)eH−x2 + eH

dt

< e−γ
−
1 e

H
l∑

j=1

∫ω

0
c1j(t)dt +

∫ω

0

a12(t)
eH

dt

= B1e
−γ−1 eH +D1e

−H.

(2.37)

Consequently,

eH <
1
γ−1

(
H − ln

C1 − 2D1

2B1

)
, (2.38)

a contradiction to the choice of H. Thus, (QÑ(x))1 < 0 for x1 = H.
Similarly, if |x2| = H, we obtain

(
QÑ(x)

)

2
> 0 for x2 = −H,

(
QÑ(x)

)

2
< 0 for x2 = H. (2.39)

Consequently, (2.33) and (2.39) imply that Ñx /∈ ImL for all x ∈ ∂Ω ∩ KerL.
Furthermore, let 0 ≤ μ ≤ 1 and define continuous function H(x, μ) by setting

H
(
x, μ
)
= −(1 − μ

)
x + μQÑx. (2.40)

For all x(t) = (x1(t), x2(t))
T ∈ ∂Ω ∩ KerL, then there exists some i ∈ {1, 2} such that

|xi| = H. There are two cases: x1 = ±H or x2 = ±H. When x1 = H or x2 = H, from (2.33) and
(2.39), it is obvious that (H(x, μ))1 < 0 or (H(x, μ))2 < 0. Similarly, if x1 = −H or x2 = −H, it
results that (H(x, μ))1 > 0 or (H(x, μ))2 > 0. Hence H(x, μ)/= (0, 0)T for all x ∈ ∂Ω ∩ kerL.

Finally, using the homotopy invariance theorem, we obtain

deg
{
QÑ,Ω ∩ kerL, (0, 0)T

}
= deg

{
−x,Ω ∩ kerL, (0, 0)T

}
/= 0. (2.41)
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Figure 1: Numerical solutionN(t) = (N1(t),N2(t))
T of systems (3.1) for initial value ϕ(t) ≡ (1, 2)T .

It then follows from the continuation theorem that Lx = Ñx has a solution

x∗(t) =
(
x∗
1(t), x

∗
2(t)
)T ∈ DomL

⋂
Ω, (2.42)

which is an ω-periodic solution to (2.4). Therefore N∗(t) = (N∗
1(t),N

∗
2(t))

T = (ex
∗
1(t), ex

∗
2(t))T is

a positive ω-periodic solution of (1.3) and the proof is complete.

3. An Example

In this section, we give an example to demonstrate the results obtained in the previous
section.

Example 3.1. Consider the following Nicholson-type delay system with nonlinear density-
dependent mortality terms:

N ′
1(t) = − (5 + sin t)N1(t)

5 + sin t +N1(t)
+

(2 + cos t)N2(t)
2 + cos t +N2(t)

+ e4π
(
1 +

cos t
4

)
N1(t − |2 + cos t|)e−e4π+| sin t|N1(t−|2+cos t|)

+ e4π
(
1 +

sin t
4

)
N1(t − |2 + sin t|)e−e4π+| cos t|N1(t−|2+sin t|),

N ′
2(t) = − (5 + cos t)N2(t)

5 + cos t +N2(t)
+

(2 + sin t)N1(t)
2 + sin t +N1(t)
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+ e4π
(
1 +

sin t
4

)
N2(t − |2 + sin t|)e−e4π+| cos t|N2(t−|2+sin t|)

+ e4π
(
1 +

cos t
4

)
N2(t − |2 + cos t|)e−e4π+| sin t|N2(t−|2+cos t|).

(3.1)

Obviously, Ai = 4π , Bi = 4πe4π , Ci = 10π , Di = 4π (i = 1, 2), c+ij = (5/4)e4π , γ−ij = e4π (i, j =
1, 2), a+

12 = a+
21 = 3, a−

11 = a−
22 = 4, then

ln
2Bi

Ai
= ln 2 + 4π > 4π = Ai, Ci = 10π > 8π = 2Di, i = 1, 2,

l∑

j=1

c+1j

a−
11γ

−
1je

+
a+
12

a−
11

=
5
8e

+
3
4
≈ 0.9799 < 1,

l∑

j=1

c+2j

a−
22γ

−
2je

+
a+
21

a−
22

=
5
8e

+
3
4
≈ 0.9799 < 1,

(3.2)

which means the conditions in Theorem 2.2 hold. Hence, the model (3.1) has a positive 2π-
periodic solution inΩ, whereΩ = {x ∈ X : ||x|| < 10000}. The fact is verified by the numerical
simulation in Figure 1.

Remark 3.2. Equation (3.1) is a form of Nicholson’s blowflies delayed systems with nonlinear
density-dependent mortality terms, but as far as we know there are no that results can be
applicable to (3.1) to obtain the existence of positive 2π-periodic solutions. This implies the
results of this paper are essentially new.
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