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The influence of failure propagation is ignored in failure sample selection based on traditional testability demonstration experiment
method. Traditional failure sample selection generally causes the omission of some failures during the selection and this
phenomenon could lead to some fearful risks of usage because these failures will lead to serious propagation failures. This paper
proposes a new failure sample selection method to solve the problem. First, the method uses a directed graph and ant colony
optimization (ACO) to obtain a subsequent failure propagation set (SFPS) based on failure propagationmodel and then we propose
a new failure sample selection method on the basis of the number of SFPS. Compared with traditional sampling plan, this method
is able to improve the coverage of testing failure samples, increase the capacity of diagnosis, and decrease the risk of using.

1. Introduction

In the process of industrial manufacturing for electrical
systems and equipment, testability plays a crucial role in the
reliability improvement for large scale electrical equipment
[1]. As we know, having good testability of systems and
equipment can detect and isolate failures quickly, reduce
maintenance time, and increase the availability of the sys-
tem. Thereby, testability is paid more attentions by many
researchers.

Testability refers to testing the abilities of failure diagno-
sis, fault prognosis, and fault isolation. Numerousmodels and
methodologies have been developed to diagnose, prognose,
and prevent failures or faults. In 1983, Huang et al. introduced
a new diagnostic concept of K-node fault diagnosis [2]. They
pointed out that testability is only relying on the structure
of circuits with nothing to do with the value of elements.
In [3], Maeda et al. discussed factors of testability and
distinguishability for nonlinear systems according to analysis
and graph theory. Yang et al. [4] proposed the slope fault
mode on the complex field; the method is available for the
diagnosis of linear or nonlinear analog circuits. In [5], a
new fault diagnostic method under tolerance condition is

proposed by using fuzzymathmeans to detect faults. In order
to detect and isolate faulty components and to predict the
remaining useful performance of analog circuits, Vasan et al.
[6] proposed using a kernel method and a particle filtering
method for diagnosis and prognosis, respectively.

One significant stage of design for testability is the
testability demonstration experiment. It is to test the ability of
failure detection and isolation through injecting some failures
[1]. As injected testing failure samples, these failures samples
are randomly selected or the selection depends on the biggest
probability of failure in traditional methods. However, in
accordance with the traditional testability demonstration
experimentmethod failure propagationmodes in systems are
ignored, which commonly leads to serious fault omission in
failure sample selection. In other words, if propagation fail-
ures are caused by some failures which have very low failure
rate, it means that these failures could not be selected in the
traditional testability demonstration experiment because of
their lower failure rate. When their failures occur in a system
they will spread to other components and cause huge faults.
The phenomenon could be a serious problem. That is, if we
do not consider propagation failures, these low failure rate
faults which cause propagation faults could be missed. This
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Figure 1: Block diagram of the procedure of optimization.

means that established test failure set is not complete and is
not able to detect and isolate failures correctly. To solve the
problem, numerous related researches have been developed
[7–9]. Reference [7] proposed an approach to analyze failure
propagation of aircraft engine systems with small world net
theory. Li et al. utilized fuzzy probability Petri net model to
describe fault propagation and then the method of sample
selection based on propagation intensity was introduced [8].
This method can afford better fault coverage rate.

Our work is to employ failure propagation probability to
deduce the intensity of failure propagation and then optimize
maximum probability failure propagation path using ant
colony optimization (ACO) according to the intensity of the
failure propagation. Finally, subsequent failure propagation
sets (SFPS) are built and a new failure sample selection plan
is proposed. The proposed method can effectively reduce the
risk of omission of propagation failures, and it increases the
accuracy of failure diagnosis.

The materials in this work are arranged as follows. In
Section 2, a brief introduction to the principle of failure
propagation modeling and ant colony optimization is intro-
duced.Moreover, a new failure sample selection optimization
method is presented. In Section 3, a case study is used to
verify the failure diagnostic effect of our method through
comparing the traditional failure sample selection. Finally,
brief conclusions are presented in Section 4.

2. Methodology

The proposed method involves three major stages: (1) failure
sample selection plan design and analysis on the basis of fail-
ure propagationmodel; (2) path optimization with ACO; and
(3) failure sample selection optimization based on subsequent
propagation failure set. The block diagram of the procedure
of optimization for electrical systems is shown in Figure 1.
Once a sampling plan is confirmed, failure samples will be
assigned to different modules. In order to detect and identify
failures correctly and avoid the omission of propagation
failures, failure propagation should be taken into account.
Through adopting ant colony optimization algorithm, the
maximum probability propagation path is searched. Then a
new failure sample selection is proposed according to the
intensity of edge in this path. In the section, fundamentals
of the procedure of testability demonstration experiment and
ACO are provided as below at first.

Extract samples/testing

Accepted RefusedNoYes F ≤ K

Sampling plan (n, K)

Figure 2: The failure sample selection plan.

2.1. The Modeling and Analysis of Failure Propagation

2.1.1. Stage 1: The Building of Failure Sample Selection Plan.
Before testability demonstration experiment, we need to
extract enough failure samples by using random sampling.
Suppose, in a testability demonstration experiment, 𝑛 sam-
ples are selected for independence test and 𝐹 tests result in
failure. A positive integer𝐾 is regulated as a threshold value;
if 𝐹 ≤ 𝐾, the experiment is considered up to standard.
Otherwise, it is considered unqualified. Figure 2 shows the
process of traditional failure sample selection plan. Thereby,
the primary aim of the scheme is to determine the value of 𝑛
and𝐾.

For testability demonstration experiment, we assume
that it meets the requirements of a binomial distribution.
Assume that the probability of success of each test is 𝑞, after𝑛 independent tests. The probability of 𝐹 failures can be
expressed as

𝑝 (𝑞; 𝑛, 𝐹) = 𝐶𝐹𝑛 (1 − 𝑞)𝐹 𝑞𝑛−𝐹, (1)

where 𝐶𝐹𝑛 is the combinatorial number. It represents the
number of all combinations where each combination is an
unordered collection of 𝐹 distinct elements. And these 𝐹
distinct elements are taken from a giving set consisting𝑛 elements. To our knowledge, for a successful testabil-
ity demonstration experiment, the number of failure tests
should be less than or equal to the threshold value 𝐾.
Therefore, the probability of failure for a successful testa-
bility demonstration experiment is equal to the sum of
probabilities of its failure tests. The following expression is
given by

𝐿 (𝑞) = 𝐾∑
𝐹=0

𝑝 (𝑞; 𝑛, 𝐹) . (2)

Through consultation between suppliers and customers,
the design value 𝑞0 of fault detection rate (FDR) is deter-
mined. The design value is the probability of success for one
test. FDR’s minimum acceptable value is 𝑞1. When 𝑞0 ≥ 𝑞1,
we consider the test has reached the design standard. The
suppliers’ risk is 𝛼, which denotes the minimum accepted
probability of success for an experiment by suppliers.The risk
of using is 𝛽 which is the maximum probability of failure for
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the experiment. Under these conditions, we can use formula
(3) to determine the values of 𝑛 and𝐾.

𝐿 (𝑞1) = 𝐾∑
𝐹=0

𝐶𝐹𝑛 (1 − 𝑞1)𝐹 𝑞𝑛−𝐹1 ≤ 𝛽,

1 − 𝐿 (𝑞0) = 1 − 𝐾∑
𝐹=0

𝐶𝐹𝑛 (1 − 𝑞0)𝐹 𝑞𝑛−𝐹0 ≥ 𝛼.
(3)

When the plan (𝑛, 𝐾) is confirmed, 𝑛 samples will be assigned
to differentmodules in the system according to layered design
pattern and proportions. Then, an injected failure set is built
through extracting failure modes in each module. As we
all know, we should acquire only 𝑛 failure modes, and the
number of these failure modes is less than the total number
of failure modes in the systems. In order to guarantee that the
injected failure set has bigger failure coverage, a hierarchical
distribution of failure sample size is used. Its formula is shown
in

𝑛𝑖 = 𝑛 ∗𝑊𝑖,
𝑊𝑖 = 𝑄𝑖𝜆𝑖𝑇𝑖∑𝑖 𝑄𝑖𝜆𝑖𝑇𝑖 ,
𝜆𝑖 = 1(MTBF)𝑖 ,

(4)

where 𝑛𝑖 denotes the number of assigned samples for module𝑖, 𝑊𝑖 is the assignment weight of the 𝑖th module, 𝑄𝑖 is the
number of failuremodes of the 𝑖thmodule and it indicates the
complexity of equipment, 𝑇𝑖 is the operation time coefficient
of the 𝑖th module and it is equal to the ratio of the operation
time and work life, and (MTBF)𝑖 represents mean time
between failures in module 𝑖. Thus, 𝜆𝑖 is the failure rate
in the 𝑖th module which is expressed in failures per unit
of time.
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Figure 3: An example of DG.

2.1.2. Stage 2: Failure Propagation Modeling. In this section, a
failure propagation model will be built based on propagation
probability with the use of directed graph (DG) of failure
propagation and adjacency matrix. In graph theory, DG is
a graph, which is a set of nodes connected by directed
edges. It can be used to describe the relationship of failure
propagation among components of electrical system with
nodes and directed edges. In formal terms, directed graph
is represented with a function DG = {𝑀, 𝐹, 𝐸} as shown in
Figure 3. In the diagram, 𝑀 indicates nodes (components)
set; 𝐹 expresses a failure set which includes 5 failure modes
such as 𝑓1, 𝑓2, . . . , 𝑓5; 𝐸 is a set of directed edges which can
clearly describe the link and the relationship between any two
circuit components or modules with the capacity or intensity
of the failure propagation.

These intensities of the failure propagation and relation-
ship between nodes (components) may be heterogeneous.
Assuming the system has 𝑁 nodes, we introduce 𝑁 × 𝑁
adjacency matrix 𝐴 = [𝑎𝑖𝑗] to describe the link relationship
between components with all zeros on the main diagonal and
off-diagonal elements. It is given as follows:

𝑎𝑖𝑗 = {{{
𝑤𝑖𝑗 there is a directed edge between node 𝑖 and node 𝑗 with probability 𝑝𝑖𝑗
0 there is no directed edge between node 𝑖 and node 𝑗 with probability 1 − 𝑝𝑖𝑗, (5)

where 𝑤𝑖𝑗 is the directed weight between node 𝑖 and node 𝑗
with probability 𝑝𝑖𝑗 ∈ [0, 1], 𝑤𝑖𝑗 ̸= 0 for 𝑖 ̸= 𝑗, 𝑤𝑖𝑗 = 0 for𝑖 = 𝑗, and 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁}.

The existence of an edge from node 𝑖 to node 𝑗 is
determined by the probability 𝑃𝑖𝑗 which is independent of
other edges. The probability is

𝑃𝑖𝑗 = 𝑛∑
𝑘=1

𝑢𝑘 (𝑥) 𝑃𝑘, 𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁} , (6)

where 𝑢𝑘(𝑥) is the membership degree of ambiguity set
of failure states, 𝑥 indicates various failure’s symptom sig-
nals, and 𝑃𝑘 represents the probability of the 𝑘th 𝑥. The

probabilities 𝑝𝑖𝑗 are collected in the probability matrix𝑃 = [𝑝𝑖𝑗].
2.1.3. Stage 3: Analysis of Failure Propagation. When a failure
occurs in a certain node of circuit system, the failure spreads
to its connected neighbor nodes and could lead to these
neighbor node failures. As the directed link weight between
nodes, intensity of failure spread indicates the fact that the
greater the intensity an edge has, the bigger the possibility
that failure propagation happens in the edge. Itmeans that the
failure propagationmay lead to bigger possibility of cascading
failures to its connected neighbor nodes with bigger intensity
of edge.
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Table 1: The failure propagation intensity of each edge.

Directed edge
(𝑀1,𝑀3) (𝑀2,𝑀3) (𝑀2,𝑀4) (𝑀4,𝑀5)

Intensity of edge 0.2 0.1 0.4 0.2𝑍-score value −0.1987 −0.9934 1.3908 −0.1987

In order to describe the intensity of failure spread, the
formula of the intensity is given as follows:

𝐼𝐾𝑖𝑗 = 𝑐𝑠 [𝑤𝑝𝑝𝐾𝑖𝑗 + 𝑤𝑑𝑑𝐾𝑗∑𝑗∈𝐹𝐾 𝑑𝐾𝑗 ] ; 𝑖 ∈ 𝐹𝐾−1, (7)

where 𝑐𝑠 is crossing-clustering coefficient. 𝑤𝑝 is the weight
of failure propagation probability, 𝑤𝑑 is the weight of node
degree, 𝑝𝐾𝑖𝑗 is the propagation probability from node 𝑖 to
node 𝑗 in the 𝑘th propagation step, 𝐹𝐾 represents subsequent
node set after𝐾 propagation steps, and 𝑑𝐾𝑗 indicates the node
degree of node 𝑗 in 𝐹𝐾. Node degree is the number of edges
associated with a node.

In order to easily compare intensities between each other
and also to simplify calculations, the𝑍-score of 𝐼𝐾𝑖𝑗 is themost
suitable method to compare these intensities in our work,
because 𝑍-score indicates a datum above or below the mean
with signed number. It is defined as

𝑍 = 𝐼𝐾𝑖𝑗 − 𝐸 [𝐼𝐾𝑖𝑗 ]𝜎 , (8)

𝜎 = √Var (𝐼𝐾𝑖𝑗 ), (9)

where 𝐸[𝐼𝐾𝑖𝑗 ] is the expected value of 𝐼𝐾𝑖𝑗 and 𝜎 is the standard
deviation of the population of 𝐼𝐾𝑖𝑗 .

For instance, we have known intensities of edges of
Figure 3. Their 𝑍-scores are calculated by making use of (8)
and (9) as shown in Table 1. We take 𝑀2 as an example;
according to the structure of the DG, we can see that there
are two propagation edges from𝑀2—namely, edge (𝑀2,𝑀4)
and edge (𝑀2,𝑀3). It is clear that the intensity (1.3908) of the
edge (𝑀2,𝑀4) is greater than the intensity (−0.9934) of the
edge (𝑀2,𝑀3). As a result, it is easy to determine that failure𝑓2 leads to a failure propagation on the edge (𝑀2,𝑀4) with
greater possibility than on the edge (𝑀2,𝑀3).

According to the above analysis, failure propagation
happens on the path with the greatest intensity the failure
propagation has. As shown in Figure 3, the bold line is 𝑓2’s
propagation path with the maximum intensity.

2.2. Path Optimization with ACO. In general, the structure
of Very Large Scale Integration (VLSI) is very complex and
hard to analyze failure propagation through manual work.
Hence, intelligent algorithms are used. In order to obtain the
maximum probability failure propagation path, the ACO is
adopted in the paper.

The algorithmwas proposed byM. Dorigo in his doctoral
thesis in 1991 and it was aimed at solving the travelling

salesman problem based on the action of ants, in which the
goal was to find the shortest round-trip to link a series of cities
[10]. More details about this technique can be found in [10].
The ACO has strong robustness and it is suitable for parallel
implementations [11]. Therefore, we use the ACO to search
the maximum probability failure propagation path.

The mathematical model of the maximum probability
failure propagation path in circuits can be represented as
follows:

max ∑
𝐾

𝑑𝐾; 𝐾 = 1, 2, . . . , 𝑛
s.t. ∏

𝐾

𝑝𝐾𝑖𝑗 ≤ 10−8; 𝑖 ∈ 𝐹𝐾−1; 𝑗 ∈ 𝐹𝐾. (10)

At a given time 𝑡, ants make use of pheromone which is
deposited between nodes to search subsequent path from
node 𝑖. For ant𝐾, the probability of selected next path is

𝑃𝐾𝑖𝑗 =
{{{{{{{

[𝜏𝑖𝑗]𝛼 [𝜂𝑖𝑗]𝛽
∑𝑗∈𝑁𝐾

𝑖

[𝜏𝑖𝑗]𝛼 [𝜂𝑖𝑗]𝛽 ; 𝑗 ∈ 𝑁𝐾𝑖
0; otherwise,

(11)

where 𝜂𝑖𝑗 is equal to the intensity of failure propagation 𝐼𝐾𝑖𝑗
from node 𝑖 to node 𝑗, 𝜏𝑖𝑗 is the amount of pheromone
deposited for transition from node 𝑖 to node 𝑗, 𝛼 ≥ 0 and 𝛽 ≥1 are parameters to control the influence of 𝜏𝑖𝑗 and 𝜂𝑖𝑗,
respectively, and 𝑁1𝑖 is the set of nodes which connect with
node 𝑖.

The pheromones are updated by

𝜏𝑖𝑗 (𝑡 + 1) = (1 − 𝜌) 𝜏𝑖𝑗 (𝑡) +
𝑁𝑎∑
𝐾=1

Δ𝜏𝐾𝑖𝑗 , (12)

where 𝜌 represents the pheromone evaporation coefficient;𝜏𝑖𝑗(0) is the initialization of pheromone; ∑𝑁𝑎𝐾=1 Δ𝜏𝐾𝑖𝑗 is the
amount of pheromone; 𝑁𝑎 is the number of ants; and Δ𝜏𝐾𝑖𝑗
is the pheromone of ant 𝐾.
2.3. Failure Sample Selection Optimization Based on Subse-
quent Propagation Failure Set. In testability demonstration
experiment, for Unit Under Test (UUT), there is a replaceable
unit 𝑈𝑖 (1 ≤ 𝑖 ≤ 𝐾, 𝐾 being the amount of replaceable
units), which consists of 𝑁𝑖 failure modes. Adopting the
rule of allocation in stratified sampling, 𝑚𝑖 failure modes
are assigned to the replaceable unit 𝑈𝑖. Thus, we need to
consider selecting 𝑚𝑖 suitable failure modes from total 𝑁𝑖
failure modes to establish a failure sample set. As our
discussion above, we also need to take the influence of the
failure propagation into account. Here, subsequent failure
propagation sets (SFPS) are made use of to optimize the
failure sample set. SFPS is defined as a set of failure modes
which occur in a failure propagation path and it indicates the
range of failure spread.

We assume that failure mode set of the replaceable
unit 𝑈𝑖 is 𝐹𝑖 = {𝑓1, 𝑓2, 𝑓3, . . . , 𝑓𝑁𝑖}, and steps of failure
sample selection optimization based on SFPS are described
as follows.
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Table 2: Failure modes of the refrigeration module.

Components Fault Failure mode
𝑀1 𝑓1 Seal A failure𝑀2 𝑓2 Check valve failure𝑀3 𝑓3 Pipeline failure𝑀4 𝑓4 Exhaust port failure𝑀5 𝑓5 Seal B failure𝑀6 𝑓6 Adapter defect𝑀7 𝑓7 Electromagnetic switch failure𝑀8 𝑓8 Charging valve leakage𝑀9 𝑓9 Refrigeration pipe deformation𝑀10 𝑓10 Gauges failure𝑀11 𝑓11 Electromagnetic switch leakage𝑀12 𝑓12 Refrigeration elements failure

Step 1. Count the SFPS number of every element (failure
mode) of the failure mode set 𝐹𝑖 to construct a set 𝐼𝑖 ={𝐼1, 𝐼2, 𝐼3, . . . , 𝐼𝑁𝑖}. Then count the number of elements which
are greater than 1 in the set 𝐼𝑖, marked as𝐾𝑖. After that, select𝐾𝑖 failure modes from 𝐹𝑖 to construct a new failure mode set𝐹𝐼𝑖 = {𝐹𝐼1, 𝐹𝐼2, 𝐹𝐼3, . . . , 𝐹𝐼𝐾𝑖}. These selected failure modes
have more than one SFPS. Next, make 𝐹𝑗 = 𝐹𝑖 −𝐹𝐼𝑖, where 𝐹𝑗
is the set of the remaining failure modes.

Step 2. If 𝐾𝑖 ≤ 𝑚𝑖, generate a (𝑚𝑖 − 𝐾𝑖) × 1 random
number set in which these numbers are discrete uniform
distribution between 1 and 𝑁𝑖 − 𝐾𝑖. It is denoted by𝑆𝑁𝑖 = {𝑆1, 𝑆2, 𝑆3, . . . , 𝑆𝑚𝑖−𝐾𝑖}. And then, according to 𝑆𝑁𝑖,
extract 𝑆1, 𝑆2, . . . , 𝑆𝑚𝑖−𝑘𝑖 failure modes, respectively, from
the set 𝐹𝑗 by natural order to make up a set 𝐹𝑆𝑖 ={𝐹S1, 𝐹𝑆2, 𝐹𝑆3, . . . , 𝐹𝑆𝑚𝑖−𝐾𝑖}. A last failure sample set for test
ability demonstration experiment is confirmed by𝐹𝐹𝑖 = 𝐹𝐼𝑖∪𝐹𝑆𝑖.
Step 3. If 𝐾𝑖 > 𝑚𝑖, create 𝑚𝑖 random numbers with
discrete uniform distribution between 1 and 𝑚𝑖. It is marked𝑆𝑀𝑖 = {𝑀1,𝑀2,𝑀3, . . . ,𝑀𝑚𝑖}. Next, select𝑀1,𝑀2, . . . ,𝑀𝑚𝑖
elements from the set 𝐹𝐼𝑖 to compose a set 𝐹𝑆𝑖; 𝐹𝑆𝑖 ={𝐹𝑆1, 𝐹𝑆2, 𝐹𝑆3, . . . , 𝐹𝑆𝑚𝑖} = {𝐹𝐼1, 𝐹𝐼2, 𝐹𝐼3, . . . , 𝐹𝐼𝑚𝑖}. It is also
the last failure sample set 𝐹𝐹𝑖.
Step 4. Achieve the amount of failure sample set through
adding up the failure sample sets from Steps 2 and 3.

3. Case Study

A certain type of air-to-air missile system consists of six
modules, namely, refrigeration module, vibration control
device, rectifier, shear stents, lock system, and the box of
circuit. Here, we only take the refrigeration module as an
example. Table 2 shows failure modes of the refrigeration
module.

Suppose that we have known these values of 𝑞1, 𝑞0, 𝛼,
and 𝛽 according to the agreed contract between suppliers and
customers. By making use of formula (3) the failure sampling
plan (50, 6) is confirmed. It means that 50 failure samples
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Figure 4: Directional graph of failure probability propagation for
refrigeration module.

Table 3: The failure propagation intensity of each edge in refrigera-
tion module.

Directed edge Propagation intensity 𝑍-score value
(𝑀1,𝑀8) 𝐼1,8 = 0.710 0.8528
(𝑀2,𝑀8) 𝐼2,8 = 0.290 −0.3254
(𝑀3,𝑀9) 𝐼3,9 = 1.000 1.6663
(𝑀4,𝑀10) 𝐼4,10 = 0.500 0.2637
(𝑀5,𝑀10) 𝐼5,10 = 0.250 −0.4376
(𝑀10,𝑀12) 𝐼10,12 = 0.000 −1.1389
(𝑀6,𝑀10) 𝐼6,10 = 0.167 −0.6704
(𝑀7,𝑀11) 𝐼7,11 = 0.000 −1.1389
(𝑀8,𝑀12) 𝐼8,12 = 1.000 1.6663
(𝑀9,𝑀12) 𝐼9,12 = 0.226 −0.5049
(𝑀11,𝑀12) 𝐼11,12 = 0.323 −0.2328

will be assigned to 6 modules with proportional stratified
sampling method. We have known the assignment weight𝑊1 of the refrigeration module in the system is 0.121; thus
the number of failure samples assigned to it is 6 based on
expression (4).Therefore, we should pick up 6 suitable failure
samples from a total of 12 failure samples to establish failure
sample set for refrigeration module.

In accordance with the circuit connection of the system,
directional graph of failure propagation for refrigeration
module is gained as shown in Figure 4. From the graph,
we can see that the component set of refrigeration module
is 𝑀 = {𝑀1,𝑀2,𝑀3, . . . ,𝑀12} and its failure mode set is𝐹 = {𝑓1, 𝑓2, 𝑓3, . . . , 𝑓12}. To take advantage of formulas (6),
(7), and (8), the propagation intensity of each directed edge
in the system is obtained as shown in Table 3. In the table, the
range of 𝑍-score value is from −1.1389 to 1.6663.

Analyzing the failure propagation with the data from
Table 3, it is clear that the greater the𝑍-score value of an edge
is, the more possible it is that the failure propagation happens
on the edge. For instance, the 𝑍-score value of intensity of
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Table 4: Comparison of traditional sampling plan and the proposed
method.

Name Failure modes SFPS
number Traditional Proposed

𝑀1 Seal A failure 2 √ √
𝑀2 Check valve failure 2 √
𝑀3 Pipeline failure 2 √ √
𝑀4 Exhaust port failure 1𝑀5 Seal B failure 0 √
𝑀6 Adapter defect 2 √ √
𝑀7 Electromagnetic switch

failure 0

𝑀8 Charging valve leakage 1 √ √
𝑀9 Refrigeration pipe

deformation 0 √
𝑀10 Gauges failure 1

𝑀11 Electromagnetic switch
leakage 1 √

𝑀12 Refrigeration elements
failure 1

edge (𝑀7,𝑀11) is −1.1389. It is the smallest value in all 𝑍-
score values. This means that when a failure occurs in 𝑀7,
the failure could not spread to 𝑀11 or spread to 𝑀11 with
tiny possibility. However, edge (𝑀3,𝑀9) has the greatest 𝑍-
score value of 1.663. It shows propagation failure is inevitable
on the edge. Thus, through searching the maximum 𝑍-
score for each failure with ACO, we can find the maximum
probability propagation path of failure easily. Take𝑀1 as an
example; failure 𝑓1 spreads along with edge (𝑀1,𝑀8) and
edge (𝑀8,𝑀12) which have the biggest intensities (0.8528
and 1.6663, resp.). As a result, the maximum probability
propagation path (𝑀1 → 𝑀8 → 𝑀12) of failure 𝑓1 is
obtainedwithACO.At the next step, we use themethodmen-
tioned in Section 2.3 to obtain the related subsequent failure
propagation set 𝐹PossibilitySet (𝑓1) of 𝑓1; 𝐹PossibilitySet (𝑓1) ={𝑓8, 𝑓12}. It means the failure spread number from 𝑀1 is 2.
Utilizing the samemethod, othermodules’ subsequent failure
propagation sets and failure spread numbers can be solved as
well. Finally, the optimization samples set is established based
on the failure spread path.

Table 4 shows the advantages of the proposed method
compared with traditional failure sampling plan. The symbol√ in the table expresses the selection of failure samples. By
the traditional sample plan, 6 samples are assigned randomly
to 12 modules, not taking into account the influence of failure
propagation. Conversely, the proposed method can reason-
ably choose 6 samples under the consideration for failure
propagation.Through experiment, the proposed method has
better failure coverage than traditional one.

4. Conclusion

This paper proposes a new failure sample selection method
to cover the shortage of the traditional sample selection.

First of all, we use the DG and ACO to obtain a max-
imum probability failure propagation path based on the
intensity of edge. Then we proposed the new failure sample
selection method on the basis of the subsequent failure
propagation set. Compared with traditional sampling plan,
this method is able to increase the coverage of failure
due to establishing a relatively complete fault sample set
through focusing on the propagation failure and a case study
is given to demonstrate that it can decrease the risk of
using.
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