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The problem of scheduling jobs with delivery times on parallel machines is studied, where each job can only be processed on a
specific subset of the machines called its processing set. Two distinct processing sets are either nested or disjoint; that is, they do
not partially overlap. All jobs are available for processing at time 0.The goal is to minimize the time by which all jobs are delivered,
which is equivalent to minimizing the maximum lateness from the optimization viewpoint. A list scheduling approach is analyzed
and its approximation ratio of 2 is established. In addition, a polynomial time approximation scheme is derived.

1. Introduction

The problems of scheduling with processing set restrictions
have been extensively studied in the past few decades [1,
2]. In this class of problems, we are given a set of 𝑛 jobs
J = {1, 2, . . . , 𝑛} and a set of 𝑚 parallel machines M =

{𝑀
1
,𝑀
2
, . . . ,𝑀

𝑚
}. Each job 𝑗 can only be processed on a cer-

tain subsetM
𝑗
of the machines, called its processing set, and,

on those machines, it takes 𝑝
𝑗
time units of uninterrupted

processing to complete. Each machine can process at most
one job at a time. The goal is to find an optimal schedule
where optimality is defined by some problem dependent
objective.

There are several important special cases of processing set
restrictions: inclusive, nested, interval, and tree-hierarchical
[2]. In the case of inclusive processing set, for any two
jobs 𝑗

1
and 𝑗

2
, either M

𝑗
1

⊆ M
𝑗
2

or M
𝑗
2

⊆ M
𝑗
1

. In
the nested processing set case, either M

𝑗
1

∩ M
𝑗
2

= 𝜙, or
M
𝑗
1

⊆ M
𝑗
2

, or M
𝑗
2

⊆ M
𝑗
1

. In the interval processing
set case, the machines are linearly ordered, and each job 𝑗
is associated with two machine indices 𝑎

𝑗
and 𝑏
𝑗
such that

M
𝑗
= {𝑀
𝑎
𝑗

,𝑀
𝑎
𝑗
+1
, . . . ,𝑀

𝑏
𝑗

}. It is easy to see that the inclusive
processing set and the nested processing set are two special
cases of the interval processing set. In the tree-hierarchical

processing set case, each machine is represented by a vertex
of a tree, and each job 𝑗 is associated with a machine index
𝑎
𝑗
such thatM

𝑗
consists of the machines on the unique path

from𝑀
𝑎
𝑗

to the root of the tree.
In this paper, we consider the problem of scheduling jobs

with nested processing set restrictions on parallel machines.
Besides its processing time 𝑝

𝑗
and processing setM

𝑗
, each job

𝑗 requires an additional delivery time 𝑞
𝑗
after completing its

processing. If 𝑆
𝑗
denotes the time job 𝑗 starts processing, it

has been delivered at time 𝐿
𝑗
= 𝑆
𝑗
+𝑝
𝑗
+𝑞
𝑗
, which is called its

delivery completion time. All jobs are available for processing
at time 0. The objective is to minimize the time by which all
jobs are delivered, that is, the maximum delivery completion
time, 𝐿max = max

𝑗
𝐿
𝑗
. Minimizing the maximum delivery

completion time is equivalent to minimizing the maximum
lateness from the optimization viewpoint [3]. Following the
classification scheme for scheduling problems by Graham et
al. [4], this problem is noted: 𝑃 | 𝑀

𝑗
(nested) | 𝐿max.

The motivation for this problem is the scenario in which
the jobs (with nested processing set restrictions) are first
processed on the machines and then delivered to their
respective customers. In order to be competitive, the jobs are
needed to be delivered as soon as possible to their customers.
Thus, the industry practitioners are required to coordinate
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job production and job delivery. In manufacturing and dis-
tribution systems, finished jobs are delivered by vehicles such
as trucks. Since there are sufficient vehicles for delivering jobs,
delivery is a nonbottleneck activity.Therefore, we assume that
all jobs may be simultaneously delivered. Considering job
production and job delivery as one system, we choose the cost
function to measure the customer service level. In particular,
we are interested in the objective of minimizing the time by
which all jobs are delivered.

The problem as stated is a natural generalization of
strongly NP-hard problem 𝑃 ‖ 𝐶max, which corresponds to
the special case where all M

𝑗
= M and all 𝑞

𝑗
= 0 [5].

For NP-hard problems, the research focuses on developing
polynomial time approximation algorithms. Given instance
I of a minimization problem and approximation algorithm
𝐴, let 𝐴(I) and OPT(I) denote the objective value of the
solution obtained by algorithm 𝐴 and the optimal solution
value, respectively, when applied toI. If𝐴(I)/OPT(I) ≤ 𝜌
for all I, then we say that algorithm 𝐴 has approximation
ratio 𝜌, and 𝐴 is called 𝜌-approximation algorithm for this
problem. Ideally, one hopes to obtain a family of polynomial
time algorithms such that, for any given 𝜀 > 0, the
corresponding algorithm is (1+ 𝜀)-approximation algorithm;
such a family is called a polynomial time approximation
scheme (PTAS) [6].

When allM
𝑗
= M, 𝑃 | 𝑀

𝑗
(nested) | 𝐿max reduces to the

classic scheduling problem𝑃 ‖ 𝐿max.Woeginger [7] provided
three fast heuristics for𝑃 ‖ 𝐿max with approximation ratios 2,
2−1/𝑚, and 2−2/(𝑚+1), respectively. For the singlemachine
case with release times 1 | 𝑟

𝑗
| 𝐿max, Potts [8] presented

a 1.5-approximation algorithm, and Hall and Shmoys [9, 10]
proposed two PTASs whose running times are 𝑂((𝑛/𝜀)𝑂(1/𝜀))
and 𝑂(𝑛 log 𝑛 + 𝑛(1/𝜀)𝑂(1/𝜀

2
)
). For the parallel machines case

with release times 𝑃 | 𝑟
𝑗

| 𝐿max, Hall and Shmoys
[10] obtained a PTAS with running time 𝑂(𝑛poly(1/𝜀)), and
Mastrolilli [11] developed a PTAS that runs in 𝑂(𝑛 + 𝑓(1/𝜀)),
where𝑓(1/𝜀) is a constant that depends exponentially on 1/𝜀.
Mastrolilli [11] also presented an improved PTAS for 1 | 𝑟

𝑗
|

𝐿max that runs in 𝑂(𝑛 + (1/𝜀)
𝑂(1/𝜀)

) time.
When all 𝑞

𝑗
= 0, 𝑃 | 𝑀

𝑗
(nested) | 𝐿max reduces to the

problem of minimizing makespan with nested processing set
restrictions, 𝑃 | 𝑀

𝑗
(nested) | 𝐶max. There are a number

of approximation algorithms for 𝑃 | 𝑀
𝑗
(nested) | 𝐶max:

(2 − 1/𝑚)-approximation algorithm [12], 7/4-approximation
algorithm [13], 5/3-approximation algorithm [14], and two
PTASs [15, 16].

As mentioned above, the classic scheduling problem
(without processing set restrictions) of minimizing the
maximum delivery completion time and the problem of
minimizingmakespan with nested processing set restrictions
have been studied in the literature. However, to the best of our
knowledge, the problem of minimizing the maximum deliv-
ery completion time with nested processing set restrictions,
𝑃 | 𝑀

𝑗
(nested) | 𝐿max, has not been studied to date. In

this paper, we first use Graham’s list scheduling [17] to get a
simple and fast 2-approximation algorithm. We then derive
a polynomial time approximation scheme, which is heavily
built on the ideas of [15]. The PTAS result generalizes the

approximation schemes of [15, 16], both of which deal with
only the special case where all 𝑞

𝑗
= 0.

The paper is organized into sections as follows. Sec-
tion 2 presents a 2-approximation algorithm which uses
list scheduling as a subroutine. The next three sections are
devoted to designing the polynomial time approximation
scheme. Section 3 shows how to simplify the input instance
to get a so-called rounded instance. Section 4 shows how to
solve the rounded instance optimally. Section 5 wraps things
up to derive the polynomial time approximation scheme.The
discussion in Section 6 completes the paper.

2. A 2-Approximation Algorithm

In this section, we will present a simple and fast 2-
approximation algorithm for 𝑃 | 𝑀

𝑗
(nested) | 𝐿max.

As observed in [12], nested processing sets have a partial
ordering defined by the inclusion relationship and, thus, offer
a natural topological sort on jobs, taking more constrained
jobs first.

We now explore the behavior of Graham’s list scheduling
algorithm [17], with jobs sorted to respect nestedness. It does
not depend on the delivery times. The algorithm is called
Nested-LS.

Nested-LS

Step 1. Place all the jobs in a list in the order of the topological
sort on jobs, takingmore constrained jobs first. Set Load

𝑖
= 0,

𝑖 = 1, 2, . . . , 𝑚.

Step 2. For the first unscheduled job 𝑗 in the list, select a
machine 𝑀

𝑖
∈ M

𝑗
for which Load

𝑖
is the smallest (ties

broken arbitrarily). Assign job 𝑗 to machine𝑀
𝑖
. Set Load

𝑖
=

Load
𝑖
+ 𝑝
𝑗
. Repeat this step until all the jobs are scheduled.

The load on amachine is defined to be the total processing
time of the jobs assigned to this machine. The quantity Load

𝑖

represents the current load on machine𝑀
𝑖
during the run of

Nested-LS, 𝑖 = 1, 2, . . . , 𝑚.

Theorem 1. Nested-LS is a 2-approximation algorithm for 𝑃 |
𝑀
𝑗
(𝑛𝑒𝑠𝑡𝑒𝑑) | 𝐿

𝑚𝑎𝑥
that runs in 𝑂(𝑛 log𝑚𝑛) time.

Proof. Let OPT be the objective value of an optimal schedule.
Denote by 𝐿max the objective value of the schedule generated
by Nested-LS. Let 𝑗

1
be the first job in the list generated in

Step 2 for which 𝐿max = 𝑆𝑗
1

+𝑝
𝑗
1

+𝑞
𝑗
1

holds, where 𝑆
𝑗
1

denotes
the time job 𝑗

1
starts processing. Remove all the following

jobs from the list. Remove all the machines in M \M
𝑗
1

and
all the jobs assigned to these machines. This cannot increase
OPT and does not decrease 𝐿max.

A straightforward lower bound on OPT is OPT ≥ 𝑝
𝑗
+

𝑞
𝑗
for any job 𝑗. By the rule of Nested-LS, at the time when

job 𝑗
1
is assigned to its machine 𝑀

𝑖
, 𝑀
𝑖
is the least-loaded

machine among the machines in M
𝑗
1

. It follows that 𝑆
𝑗
1

<

OPT. Consequently, we get 𝐿max = 𝑆𝑗
1

+ 𝑝
𝑗
1

+ 𝑞
𝑗
1

< 2OPT.
The initial step of sorting the jobs to respect nestedness

requires 𝑂(𝑛 log 𝑛) time. Assigning a job to the least-loaded
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eligible machine in Step 2 runs in 𝑂(log𝑚) time. Thus,
Nested-LS runs in 𝑂(𝑛 log𝑚𝑛) time.

3. Simplifying the Input

The nested structure of processing sets can be depicted by
rooted tree 𝑇 = (𝑉, 𝐸), in which each processing set is
represented by a vertex, and the predecessor relationship is
defined by inclusion of the processing sets. Each machine
can be regarded as a one-element processing set and thus it
corresponds to a leaf in 𝑇, even if there are no jobs associated
with this processing set. The root of 𝑇 corresponds to M =

{𝑀
1
,𝑀
2
, . . . ,𝑀

𝑚
}.

For each vertex V ∈ 𝑉(𝑇), let M(V) denote the set of
machines associated with V, which is the disjoint union of
all the processing sets associated with the sons of V. LetJ(V)
denote the set of jobs 𝑗 for whichM

𝑗
coincides withM(V).

Following [15], we transform tree 𝑇 into a binary tree as
follows. If there is vertex V with at least three sons, create new
vertex 𝑢 as the new father of two sons of V and as a new son of
V. Repeat this procedure until we reach a binary tree, which
consists of𝑚 leaves and of𝑚 − 1 nonleaf vertices. Therefore,
we can assume without loss of generality that 𝑇 is a binary
tree.

Given instance 𝐼 of 𝑃 | 𝑀
𝑗
(nested) | 𝐿max, let OPT(𝐼) be

the objective value of an optimal schedule for 𝐼. Let 𝐴 be the
objective value of the schedule for 𝐼 generated by Nested-LS.
We have

OPT (𝐼) ≤ 𝐴 ≤ 2OPT (𝐼) . (1)

Let 𝛼 be some fixed positive integer. Classify jobs as big
and small according to their processing times. Job 𝑗 is big, if
𝑝
𝑗
> 𝐴/(𝛼(𝛼 + 1)), and otherwise it is small.
Modify 𝐼 to get rounded instance 𝐼#(𝛼) as follows:

(i) For each job 𝑗, round its delivery time 𝑞
𝑗
up to the

nearest integer multiple of 𝐴/𝛼; that is, set rounded
delivery time 𝑞#

𝑗
= ⌈𝑞
𝑗
/(𝐴/𝛼)⌉ ⋅ (𝐴/𝛼). Note that

there are at most 𝛼 + 1 different delivery times in
the rounded instance. Let 𝜉

𝑙
= (𝑙 − 1)𝐴/𝛼 denote 𝑙th

delivery time, 𝑙 = 1, 2, . . . , 𝛼 + 1.

(ii) For each big job 𝑗, round its processing time 𝑝
𝑗
up to

the nearest integer multiple of 𝐴/(𝛼2(𝛼 + 1)). Let 𝑝#
𝑗

denote the rounded processing time of big job 𝑗. Note
𝑝
𝑗
≤ 𝑝

#
𝑗
≤ (1 + 1/𝛼)𝑝

𝑗
.

(iii) For each vertex V ∈ 𝑉(𝑇), let 𝑇𝑆
𝑙
(V) be the total

processing time of the small jobs with delivery time
𝜉
𝑙
in J(V). Let 𝑇𝑆#

𝑙
(V) be the value of 𝑇𝑆

𝑙
(V) rounded

up to the nearest integer multiple of𝐴/(𝛼(𝛼+1)).The
small jobs with delivery time 𝜉

𝑙
in J(V) are replaced

with 𝑇𝑆#
𝑙
(V) ⋅ 𝛼(𝛼 + 1)/𝐴 new jobs each of which has

delivery time 𝜉
𝑙
and processing time 𝐴/(𝛼(𝛼 + 1)),

𝑙 = 1, 2, . . . , 𝛼 + 1.

Lemma 2. There is schedule Σ# for 𝐼#(𝛼) with objective value
𝐿
#
≤ (1 + 1/𝛼) ⋅ 𝑂𝑃𝑇(𝐼) + 4𝐴/𝛼.

Proof. Let Σ be an optimal schedule for instance 𝐼 with
objective value OPT(𝐼). Recall that the single machine case
1 ‖ 𝐿max can be solved optimally by Jackson’s rule [18]:
process the jobs successively in order of nondecreasing
delivery times. Hence, we can assume that in Σ on each
machine the jobs with the same delivery time are processed
together in succession. Let 𝑇𝑆

𝑖𝑙
be the total processing time

of the small jobs with delivery time 𝜉
𝑙
processed on machine

𝑀
𝑖
in Σ. Let 𝑇𝑆#

𝑖𝑙
be the value of 𝑇𝑆

𝑖𝑙
rounded up to the

nearest integer multiple of 𝐴/(𝛼(𝛼 + 1)). Replace the small
jobs with delivery time 𝜉

𝑙
processed on machine𝑀

𝑖
in Σ by

2 + 𝑇𝑆
#
𝑖𝑙
⋅ 𝛼(𝛼 + 1)/𝐴 slots each of which has delivery time 𝜉

𝑙

and size 𝐴/(𝛼(𝛼 + 1)), 𝑖 = 1, 2, . . . , 𝑚, 𝑙 = 1, 2, . . . , 𝛼 + 1.
We next explain how to assign all small jobs in 𝐼

#
(𝛼)

to these slots of size 𝐴/(𝛼(𝛼 + 1)). Starting from the leaves
of tree 𝑇, we work our way towards the root in a bottom-
up fashion. Suppose that we are handling vertex V ∈ 𝑉(𝑇).
At this point, all the descendants of V except V itself have
already been handled and some slots have been occupied.
Let 𝑇V be the subtree of 𝑇 rooted at V which contains exactly
2𝑚(V) − 1 vertices, where𝑚(V) = |M(V)| denotes the number
of machines (leaves) in 𝑇V. Let 𝛽𝑙 denote the total processing
time of the small jobs with delivery time 𝜉

𝑙
in all descendants

of V (including V itself) in instance 𝐼, and let 𝛽#
𝑙
denote

the total processing time of the corresponding small jobs in
𝐼
#
(𝛼), 𝑙 = 1, 2, . . . , 𝛼 + 1. Let 𝛾#

𝑙
denote the total size of

the slots with delivery time 𝜉
𝑙
and size 𝐴/(𝛼(𝛼 + 1)) on all

machines in descendant leaves of V. We have the following
two inequalities: 𝛽#

𝑙
≤ 𝛽
𝑙
+ (2𝑚(V) − 1)𝐴/(𝛼(𝛼 + 1)) and

𝛾
#
𝑙
≥ 𝛽
𝑙
+ 2𝑚(V)𝐴/(𝛼(𝛼 + 1)). Therefore, we get 𝛽#

𝑙
≤ 𝛾

#
𝑙
.

Let SJ#
l (V) denote the set of small jobs 𝑗# in 𝐼#(𝛼) with

delivery time 𝑞
𝑗
# = 𝜉
𝑙
, processing time 𝑝

𝑗
# = 𝐴/(𝛼(𝛼 + 1)),

and processing set M
𝑗
# = M(V). Since 𝛽#

𝑙
≤ 𝛾

#
𝑙
, when we

handle vertex V, there are enough unoccupied slots of size
𝐴/(𝛼(𝛼 + 1)) to accommodate the jobs in SJ#

𝑙
(V). For each

job in SJ#
𝑙
(V) (𝑙 = 1, 2, . . . , 𝛼 + 1), we assign an unoccupied

slot to it and then mark this slot as occupied.
After we handle the root of 𝑇, we fit all small jobs in

𝐼
#
(𝛼) into the slots of size 𝐴/(𝛼(𝛼 + 1)) and thereby get an

assignment of the small jobs in 𝐼
#
(𝛼) to 𝑚 machines. We

schedule the small jobs in 𝐼
#
(𝛼) assigned to machine 𝑀

𝑖

as follows. If 𝑇𝑆
𝑖𝑙
= 0 (which means that in Σ machine

𝑀
𝑖
processes no small job with delivery time 𝜉

𝑙
) but the

replacement procedure has assigned some small jobs with
delivery time 𝜉

𝑙
to𝑀
𝑖
, then we schedule these small jobs on

𝑀
𝑖
first, 𝑙 = 1, 2, . . . , 𝛼 + 1, 𝑖 = 1, 2, . . . , 𝑚. We then schedule

all the other small jobs assigned to𝑀
𝑖
by Jackson’s rule, that

is, keeping their order in Σ. (In fact, scheduling all the small
jobs assigned to𝑀

𝑖
by Jackson’s rule can improve the solution.

We schedule them in this way only for ease of the subsequent
analysis.)

The big jobs in 𝐼
#
(𝛼) are easily scheduled. We simply

replace every big job in Σ by its rounded counterpart in 𝐼#(𝛼).
Let Σ# denote the obtained schedule for 𝐼#(𝛼). It remains

only to analyze how the objective value changes, when we
move from scheduleΣ to scheduleΣ#. Rounding up the deliv-
ery times may increase the objective value by𝐴/𝛼. Rounding
up the processing times of the big jobs may increase the
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objective value by a factor of 1 + 1/𝛼. Since there are at
most 𝛼 + 1 different delivery times in 𝐼#(𝛼), the replacement
procedure for the small jobs increases the objective value by
(𝛼+ 1) ⋅ 3𝐴/(𝛼(𝛼+1)) = 3𝐴/𝛼. Hence, 𝐿#, the objective value
of Σ#, is no more than (1 + 1/𝛼) ⋅OPT(𝐼) + 4𝐴/𝛼.

Lemma 3. Let Σ# be a schedule for 𝐼#(𝛼) with objective value
𝐿
#. Then, there is a schedule for 𝐼 with objective value 𝐿

𝑚𝑎𝑥
≤

𝐿
#
+ 𝐴/𝛼.

Proof. We assume without loss of generality that, in Σ# on
each machine, the jobs are scheduled by Jackson’s rule, and
thus the small jobs with the same delivery time are processed
together in succession on each machine. Let 𝑇𝑆#

𝑖𝑙
be the

total processing time of the small jobs with delivery time 𝜉
𝑙

processed on machine 𝑀
𝑖
in Σ

#, 𝑙 = 1, 2, . . . , 𝛼 + 1, 𝑖 =
1, 2, . . . , 𝑚.

We now explain how to assign all small jobs in 𝐼 to 𝑚
machines. Starting from the leaves of tree𝑇, we work our way
towards the root in a bottom-up fashion, as in the proof of
Lemma 2. Suppose that we are handling vertex V ∈ 𝑉(𝑇).
At this point, all the descendants of V except V itself have
already been handled and the associated small jobs have been
assigned. Let 𝛽

𝑙
denote the total processing time of the small

jobs with delivery time 𝜉
𝑙
in all descendants of V (including V

itself) in instance 𝐼, and let𝛽#
𝑙
denote the total processing time

of the corresponding small jobs in 𝐼#(𝛼), 𝑙 = 1, 2, . . . , 𝛼 + 1.
We have 𝛽#

𝑙
≥ 𝛽
𝑙
.

LetSJ
𝑙
(V) denote the set of small jobs 𝑗 in 𝐼with delivery

time 𝑞
𝑗
= 𝜉
𝑙
and processing setM

𝑗
= M(V), 𝑙 = 1, 2, . . . , 𝛼 +

1. For each machine 𝑀
𝑖
∈ M(V), if 𝑇𝑆#

𝑖𝑙
> 0 (which means

that in Σ# machine 𝑀
𝑖
processes at least one small job with

delivery time 𝜉
𝑙
), we assign the small jobs in SJ

𝑙
(V) to 𝑀

𝑖

until the first time that the total processing time of the small
jobs with delivery time 𝜉

𝑙
assigned to𝑀

𝑖
exceeds𝑇𝑆#

𝑖𝑙
(or until

there are no unassigned small jobs inSJ
𝑙
(V)). Since 𝛽#

𝑙
≥ 𝛽
𝑙
,

each job in SJ
𝑙
(V) can be assigned to a machine inM(V).

After we handle the root of 𝑇, we assign all small jobs in
𝐼 to 𝑚 machines. The big jobs in 𝐼 are easily scheduled. We
simply replace every rounded big job in Σ# with its original
counterpart in 𝐼. We then schedule all the jobs assigned to
𝑀
𝑖
by Jackson’s rule, that is, keeping their order in Σ#, 𝑖 =

1, 2, . . . , 𝑚.
Let 𝐿max be the objective value of the obtained schedule

for 𝐼. Since all small jobs in 𝐼 have processing time at most
𝐴/(𝛼(𝛼 + 1)) and there are at most 𝛼 + 1 different delivery
times in 𝐼, the replacement procedure for the small jobs may
increase the objective value by (𝛼 + 1) ⋅ 𝐴/(𝛼(𝛼 + 1)) = 𝐴/𝛼.
The replacement of big jobs will not increase the objective
value. Hence, we get 𝐿max ≤ 𝐿

#
+ 𝐴/𝛼.

4. Solving the Rounded Instance Optimally

In this section, we will present an polynomial time optimal
algorithm for rounded instance 𝐼#(𝛼) obtained in the pre-
ceding section. The basic idea is to generalize the dynamic
programming method used in [15] for solving problem 𝑃 |

𝑀
𝑗
(nested) | 𝐶max.

Recall that all jobs in rounded instance 𝐼
#
(𝛼) have

processing times of form 𝑘𝐴/(𝛼
2
(𝛼 + 1)), where 𝑘 ∈ {𝛼, 𝛼 +

1, . . . , 𝛼
2
(𝛼 + 1)}. We thus can represent subsets of the jobs in

𝐼
#
(𝛼) as vectors ⃗

𝜆 = (𝜆
1

𝛼
, . . . , 𝜆

1

𝛼
2
(𝛼+1)

, . . . , 𝜆
𝛼+1

𝛼
, . . . , 𝜆

𝛼+1

𝛼
2
(𝛼+1)

),
where 𝜆𝑙

𝑘
denotes the number of jobs with delivery time 𝜉

𝑙

and processing time 𝑘𝐴/(𝛼2(𝛼 + 1)), 𝑙 ∈ {1, 2, . . . , 𝛼 + 1},
𝑘 ∈ {𝛼, 𝛼+1, . . . , 𝛼

2
(𝛼+1)}. LetΛ be the set of all such vectors.

Clearly, there are 𝑂(𝑛𝛼
2
(𝛼+1)

) different vectors in Λ. For each
vertex V ∈ 𝑉(𝑇), setJ(V) of jobs 𝑗 in 𝐼#(𝛼) withM

𝑗
= M(V)

is encoded by vector ⃗
𝜆(V).

Let V ∈ 𝑉(𝑇) and ⃗
𝜆 ∈ Λ, where vector ⃗

𝜆 represents a
subset of jobs whose processing sets are proper supersets of
M(V). Let 𝑓(V, ⃗𝜆) denote the minimum objective value over
all the schedules which process the jobs in the descendants
of V and the additional jobs in ⃗

𝜆 on the machines in M(V).
All jobs in the descendants of V must obey the processing
set restrictions, whereas the jobs in ⃗

𝜆 can be assigned to any
machine inM(V).

All values 𝑓(V, ⃗𝜆) can be computed and tabulated in a
bottom-up fashion. If V is a leaf, then 𝑓(V, ⃗𝜆) is equal to
the objective value of the single machine schedule which
processes all the jobs in ⃗

𝜆(V) + ⃗
𝜆 by Jackson’s rule. If V is a

nonleaf vertex, then V has two sons V
1
and V
2
, and

𝑓 (V, ⃗𝜆) = min {max {𝑓 (V
1
, �⃗�
1
) , 𝑓 (V

2
, �⃗�
2
)} : �⃗�
1
, �⃗�
2

∈ Λ, �⃗�
1
+ �⃗�
2
=

⃗
𝜆 (V) + ⃗

𝜆} .

(2)

Since there are 𝑂(𝑛𝛼
2
(𝛼+1)

) different vectors in Λ and 𝛼 is
a fixed integer that does not depend on the input, all values
𝑓(V, ⃗𝜆) can be computed in polynomial time. Finally, since,
for root vertex 𝑟, there is no job whose processing set is a
proper superset ofM(𝑟), the optimal objective value for 𝐼#(𝛼)
is achieved by computing 𝑓(𝑟, (0, . . . , 0)).

We establish the following theorem.

Theorem 4. For any fixed integer 𝛼, rounded instance 𝐼#(𝛼)
can be solved optimally in polynomial time.

5. The Approximation Scheme

We can now put things together.
Let 𝜀 be an arbitrarily small positive constant. Set 𝛼∗ =

⌈11/𝜀⌉. Given instance 𝐼 of 𝑃 | 𝑀
𝑗
(nested) | 𝐿max, we

get rounded instance 𝐼#(𝛼∗) as described in Section 3. Solve
𝐼
#
(𝛼
∗
) optimally as described in Section 4. Denote by Σ#

the resulting optimal schedule with objective value 𝐿#max for
𝐼
#
(𝛼
∗
). Transform Σ

# into schedule Σ with objective value
𝐿max for instance 𝐼 as described in the proof of Lemma 3.

By Lemma 2, we have 𝐿#max ≤ (1+1/𝛼
∗
)⋅OPT(𝐼)+4𝐴/𝛼∗.

Together with Lemma 3, we have 𝐿max ≤ 𝐿
#
max + 𝐴/𝛼

∗
≤

(1 + 1/𝛼
∗
) ⋅ OPT(𝐼) + 5𝐴/𝛼∗. By inequality (1), we have 𝐴 ≤

2OPT(𝐼). It follows that 𝐿max ≤ (1 + 11/𝛼
∗
) ⋅ OPT(𝐼) ≤ (1 +

𝜀) ⋅OPT(𝐼). We have the following theorem.
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Theorem 5. Problem 𝑃 | 𝑀
𝑗
(𝑛𝑒𝑠𝑡𝑒𝑑) | 𝐿

𝑚𝑎𝑥
admits a poly-

nomial time approximation scheme.

6. Concluding Remarks

In this paper, we initiated the study of scheduling parallel
machines with job delivery times and nested processing
set restrictions. The objective is to minimize the maximum
delivery completion time. For this strong NP-hard problem,
we presented a simple and fast 2-approximation algorithm.
We also presented a polynomial time approximation scheme.
A natural open problem is to design fast algorithms with
approximation ratios better than 2. It would also be interest-
ing to study the problem with job release times.
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