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This paper proposes solving contingency-constrained optimal power flow (CC-OPF) by a simplex-based chaotic particle swarm
optimization (SCPSO). The associated objective of CC-OPF with the considered valve-point loading effects of generators is
to minimize the total generation cost, to reduce transmission loss, and to improve the bus-voltage profile under normal or
postcontingent states. The proposed SCPSO method, which involves the chaotic map and the downhill simplex search, can avoid
the premature convergence of PSO and escape local minima. The effectiveness of the proposed method is demonstrated in two
power systems with contingency constraints and compared with other stochastic techniques in terms of solution quality and
convergence rate. The experimental results show that the SCPSO-based CC-OPF method has suitable mutation schemes, thus
showing robustness and effectiveness in solving contingency-constrained OPF problems.

1. Introduction

The purpose of an optimal power flow (OPF) function is
to schedule the power system controls so as to optimize the
objective function while satisfying a set of nonlinear equality
and inequality constraints. The equality constraints are the
nodal power balance equations, while the inequality con-
straints are the limits of all control or dependent variables [1,
2]. The objective function is mainly to optimize both active-
power and reactive-power dispatches. Currently, the security
and optimality of system operation have been simultaneously
treated for a power system economy-security control, thus
adding more complexity to the system operation [3, 4].

In practical power system operation, the control variables
in the contingency-constrained OPF (CC-OPF) problem can
be divided into continuous variables, such as power output
of PV-bus generator (PG) and PV-bus voltage (VG), and
discrete variables, such as transformer-tap setting (Tp) and
shunt admittance of the switchable shunt capacitor/reactor
(Yh). Therefore, the OPF problem is a highly constrained,
large-dimensional, and nonconvex optimization problem
with valve-point loading effects (VPLEs) of the thermal
generator being taken into consideration [5–7]. The VPLEs

result in the ripples in the fuel cost function, thus the number
of local optima is also increased. The CC-OPF problem
is represented as a nonsmooth optimization problem with
equality and inequality constraints that cannot be solved by
the traditional mathematical methods.

According to the economy-security tendency, performing
the OPF operation, the preprotection strategies of the system
and the security constraints should be taken into account.
The security constraints include the transmission capacity
limit and the bus-voltage limit. It is expected to establish
an economy-security operation model to defense the system
that may suffer contingency impacts [3–5]. In [3], the CC-
OPF scheduling can be undertaken to bring the system to a
more acceptable level of security represented by level 1 or 2.
Regardless of whether the system is in a normal operation
or contingent state, the security constraints ensure that the
system can secure the operation. Thus, the aspect of system
economy-security control can be carried out. However, to
construct a security-constrained optimal control for a power
system generation-transmission network is an extremely
difficult task. Moreover, this difficulty tends to increase with
growth in system size, interconnection, and other operating
problems.
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Previous efforts in solving OPF problems have employed
various optimization techniques, such as genetic algorithms
(GA) [7–11], tabu search (TS) [12, 13], evolutionary
programming (EP) [14, 15], differential evolution [14–
16], and particle swarm optimization (PSO) [5, 17–21]. In
particular, because of its simple concept, easy implemen-
tation, and quick convergence, PSO has by now gained
much attention and has been widely employed in solving
OPF problems [22–27]. However, the objective function
that does not consider contingency constraints may result
in improper implementation of system economy-security
control. Moreover, premature convergence may result in the
local optima solution obtained by PSO [27]. Studies by
Higashi and Iba [26] showed that although the standard
PSO discovered solutions of reasonable quality much faster
than other evolutionary algorithms, it did not possess the
ability of the solutions as the number of generations was
increased. Consequently, the particles become stagnated after
a certain number of iterations, which reveals that some
particles become inactive and the search performance cannot
be further improved.

Chaos is a kind of characteristic of nonlinear systems. A
chaotic motion can traverse every state in a certain region
by its own regularity, and every state is visited only once.
Due to the unique ergodicity and special ability to avoid
being trapped in local optima, chaos search is much higher
in some other stochastic algorithms, even though the chaos
search often needs a large number of iterations to reach the
global optimum and is not effective in large searching space.
Recently, several attempts for PSO using chaos methods
based on logistic map were made to overcome the drawbacks
of PSO technique with premature convergence [27–31].

In this paper, a chaotic PSO technique with a simplex
operator (SCPSO) for solving the CC-OPF problems is
proposed. The proposed SCPSO method, which involves
the chaotic map and the downhill simplex search, can
avoid premature convergence of PSO and escape local
minima. The objective of CC-OPF with the valve-point
loading effects of generators taken into consideration is not
only to minimize total generation cost, but also to reduce
transmission loss and improve the bus-voltage profile under
normal or postcontingent state. The effectiveness of the
proposed method is demonstrated in two power systems with
contingency constraints, the 26-bus and the IEEE 57-bus
systems, and compared with other stochastic techniques in
terms of solution quality and convergence rate.

The remainder of this paper is organized as follows.
Section 2 provides the formulation of CC-OPF problem.
Section 3 describes the fundamentals of SCPSO approach.
Section 4 explains the development of the proposed method.
Numerical examples and comparisons are provided in
Section 5. Finally, Section 6 outlines the conclusion and
future research.

2. Contingency-Constrained OPF Problem

In general, the CC-OPF is a static, nonlinear, and nonconvex
optimization problem, which determines a set of optimal
variables from the network state, load data, and system

parameters. Optimal values are computed in order to
achieve a certain goal such as minimum generation cost or
transmission line power loss subject to number of equality
and inequality constraints.

2.1. Contingency Constraints. Contingency constraints con-
stitute a fundamental element of economy-security control.
The contingency-constrained OPF formulation can be stated
as

Min
x,u

f
(
x(0),u(0)

)
(1)

s.t. g(k)
(
x(k),u(k)

)
= 0, for k = 0, 1, . . . ,Nc, (2)

h(k)
(
x(k),u(k)

)
≥ 0, for k = 0, 1, . . . ,Nc, (3)

where x is the set of controllable quantities in the system
and u is the set of dependent variables. Objective function
(1) is scalar. Equalities (2) are the conventional power
equations. Inequalities (3) are the limits on the control
variables x and the operating limits on the power system.
The superscript “o” represents the precontingency (base-
case) state being optimized, and superscript “k” (k > 0)
represents the postcontingency states for the Nc contingency
cases. Moreover, the equality constraints g(o) change to g(k)

to reflect the outage equipment and the control variables x(o)

responded by changing to x(k).

2.2. Valve-Point Loading Effect of Generator. Typically, the
valve-point effects, due to wire drawing as each steam
admission valve starting to open, produce ripple-like heat
rate curve as in Figure 1 [7]. To model this effect, a recurring
rectified sinusoid contribution is added to the second-order
polynomial function to represent the input-output equation.
Thus, the fuel cost functions taking into account the valve-
point effects were expressed as

Ci(PGi) = ai + biPGi + ciP
2
Gi +

∣∣∣di · sin
(
ei
(
Pmin
Gi − PGi

))∣∣∣,

(4)

where ai, bi, ci, di, and ei are the cost coefficients of unit i.

2.3. Control and Dependent Variables. In this paper, the
vector of control variables is defined as x = [PG,VG,Tp,Yh]
and the vector of dependent variables is defined as u =
[QG,V , S], where QG is the reactive power of PV-bus
generator, V is the PQ-bus voltage, and S is the line flow in
transmission line.

2.4. Objective Function. In this paper, two subproblems of
CC-OPF, namely, active power dispatch and reactive power
dispatch, are considered simultaneously. The former is to
achieve the goal of minimum generation cost, and the latter
is to achieve the goal of minimum transmission line loss
and minimum bus voltage deviation. However, an advanced
goal of CC-OPF should be defined not only to minimize
the total generation cost but also to reduce the transmission
line loss and to improve the bus-voltage profile under
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Figure 1: Example input-output curve with five valve points. A–E:
Operating points of admission valves.

pre-contingency or post-contingency state. Minimizing the
generation cost is the main objective, and reducing the
transmission line loss and improving the bus voltage are
also considered as objectives of CC-OPF with the valve-point
loading effects of generators.

Considering the difference in homogeneity of above-
mentioned three objectives, however, the three objectives
are the relationship of positive correlation according to
the characteristic of the CC-OPF problem, so that an
optimal solution obtained by the optimization algorithm can
minimize the total fuel cost while involving less transmission
line loss and bus voltage deviation. Hence, to convert the
multiobjective problem into a single optimization problem
is feasible.

Therefore, the objective function of the CC-OPF is
formulated as (5) for determining an optimal setting of
control variables while minimizing the objective function.

f (x) =
NG∑

i=1

Ci(x) +
NL∑

l=1

βl · Pl(x) +
NB∑

j=1

βj ·
(∣∣∣Vj(x)−Vref

∣∣∣
)

,

(5)

where NG is the number of generator buses, NB is the number
of buses, NL is the number of transmission line, and Pl is
the loss of transmission line l. Parameter βl is a weight factor
for transferring the transmission line loss into a penalty cost,
while βj is also a weight factor for transferring the voltage
deviation of bus into a penalty cost. Two weight factors can
be actively assigned according to the operation status, βl and
βj are set to be 1.0 for transmission lines and buses energized,
and 0.0 for de-energized. Vref is a magnitude of reference
voltage; in general, Vref = 1.0 pu.

(i) Equality Constraints. System power flow equations:

P(k)
i −

NB∑

j=1

∣∣∣Y (k)
i j

∣∣∣
∣∣∣V (k)

i

∣∣∣
∣∣∣V (k)

j

∣∣∣ cos
(
δ(k)
i − δ(k)

j − θ(k)
i j

)
= 0,

Q(k)
i −

NB∑

j=1

∣∣∣Y (k)
i j

∣∣∣
∣∣∣V (k)

i

∣∣∣
∣∣∣V (k)

j

∣∣∣ sin
(
δ(k)
i − δ(k)

j − θ(k)
i j

)
= 0.

(6)

(ii) Inequality Constraints.

(1) Active and reactive power limits of generators:

Pmin
Gi ≤ P(k)

Gi ≤ Pmax
Gi , i ∈ NG, (7)

Qmin
Gi ≤ Q(k)

Gi ≤ Qmax
Gi , i ∈ NG. (8)

(2) Bus-voltage limit:

Vmin
j ≤ V (k)

j ≤ Vmax
j , j ∈ NB. (9)

(3) Transmission capacity limit:

∣∣∣S(k)
m

∣∣∣ ≤ Smax
m , m ∈ NE. (10)

(4) Transformer-tap setting limit:

Tmin
pn ≤ T(k)

pn ≤ Tmax
pn , n ∈ NTp. (11)

(5) Operation limits of switchable capacitor/reactor
devices:

Ymin
hk ≤ Y (k)

hk ≤ Ymax
hk , k ∈ NSh, (12)

where NE is the number of network branches, NTp is the
number of transformer branches, and NSh is the number of
the reactive power source installation buses.

Therefore, the contingency-constrained OPF problem
must be solved subject to both pre-contingency and post-
contingency constraints of the selected contingency cases.

3. Chaotic Particle Swarm Optimization with
Simplex Operator

3.1. Chaotic Particle Swarm Optimization

(i) Classical PSO. PSO as an optimization tool provides
a population-based search procedure in which individu-
als (called particles) change their positions (coordinates)
over time. In a PSO system, particles fly around in a
D-dimensional search space. During flight, each particle
adjusts its position according to its own experience and the
experience of neighboring particles, making use of the best
position encountered by itself and its neighbors.

The particle swarm works by adjusting trajectories
through manipulation of each coordinate of a particle. Let
xi = (xi1, xi2, . . . , xiD), and vi = (vi1, vi2, . . . , viD) denote
the positions and the corresponding flight speed (velocity)
of the particle i in a continuous search space, respectively.
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The particles are manipulated according to the following
equations [11].

v(t+1)
i = w(t)v(t)

i + c1 · r1 ·
(
x(t)
gbest − x(t)

i

)

+ c2r2

(
x(t)
pbest,i − x(t)

i

)
,

(13)

x(t+1)
i = x(t)

i + v(t+1)
i , (14)

where t: pointer of iterations (generations), w: inertia weight
factor, c1, c2: acceleration constant, r1, r2: uniform random
value in the range [0, 1], v(t)

i : velocity of particle xi at

iteration t, and |v(t)
i | ≤ vmax

i , where vmax
i is the maximum

velocity limits of xi, x
(t)
i : current position of particle i at

iteration t, x(t)
pbest,i: the previous best position of particle xi at

iteration t, x(t)
gbest: the best position among all individuals in

the population at iteration t, v(t+1)
i : new velocity of particle

xi, and x(t+1)
i : new position of particle xi.

In (13), the proper selection of inertia weight w will
provide a balance between global explorations and local
exploitation, thus requiring fewer iterations on average to
find an optimal solution. In general, a decreasing linearly
inertia weight w is set (15).

w(t) = wmax − wmax −wmin

tmax
× t, (15)

where tmax is the maximum number of iterations (genera-
tions) and t is the current number of iterations.

(ii) Chaotic-PSO. The advantages of the classical PSO are
simple concept, easy implementation, robustness to con-
trol parameters, and computational efficiency. However,
it depends greatly on its parameters and exists as the
premature convergence phenomenon, especially in solving
complex multihump problems with equality and inequality
constraints. Conversely, owing to the properties of unique
ergodicity, inherent stochastic property, and irregularity of
chaos, a chaotic search can traverse every state in a certain
space by its own regularity and visit every state once only,
which helps avoid being trapped in local optima. Thus, a
chaotic search has a much higher precision than some other
stochastic algorithms [27–30].

(iii) Chaotic Map. To enrich the search behavior and avoid
the premature phenomenon of PSO in solving OPF prob-
lems, incorporating a chaotic search into PSO to construct
a chaotic PSO is proposed. The chaotic search algorithm is
developed from the chaotic evolution of variables. Two well-
known chaotic maps, logistic map and tent map, are the most
common maps used in chaotic searches [27–29, 31].

The logistic map is defined by

zn+1 = 4zn(1− zn), 0 ≤ z0 ≤ 1, n = 0, 1, 2, . . . (16)

The feature of the logistic map is that a small difference
in the initial value of the chaotic variable would result in a
considerable difference in its long-time behaviors; a chaotic

x1 x1

x2 x2

x3 x3
xc

xr

xe

x2

x3

Figure 2: Four operations in downhill simplex method. (xr :
reflection, xe: expansion, xc: contraction, x′2, x′3: shrinkage).

variable can travel ergodically over the entire search space
[18, 19].

The tent map is defined by

zn+1 = μ(1− 2|zn − 0.5|), 0 ≤ z0 ≤ 1, μ ∈ [0, 1]. (17)

Similar to the uniform distribution function in the
interval [0, 1], the tent map has outstanding advantages and
faster iterative speed than the logistic map, and therefore,
it has excellent characteristic of ergodicity. In this paper,
the tent map is employed to generate chaotic variables for
enriching the search behavior.

3.2. Simplex Operator

(i) Downhill Simplex Method. A local search method called
the Downhill simplex method is one of the most popular
derivate-free nonlinear optimization algorithms [32, 33]. In
the n-dimensional space, a simplex is a polyhedron with
n+1 vertices. The method iteratively updates the worst point
by four operations process: reflection, expansion, contraction,
and shrinkage that are shown in Figure 2. Reflection involves
moving the worst point (vertex) of simplex to a point
reflected through the remaining n points. If this point is
better than the best point, then the method attempts to
expand the simplex along this line. This operation is called
expansion. On the other hand, if the new point is not much
better than the previous point, then the simplex is contracted
along one dimension from the worst point. The procedure
is called contraction. Moreover, if the new point is worse
than the previous points, the simplex is contracted along all
dimensions toward the best point and steps down the valley.
The procedure is called shrinkage.

In each iteration, new points are computed, along with
their function values, to form a new simplex. By repeating
this series of operations, the method finds the optimal
solution.

(ii) Simplex Search Algorithm. The calculation procedures of
the simplex search algorithm (SSA) are described as follows
[32–35]. The flowchart of SSA is shown in Figure 3.

(1) Order and relabel the n + 1 points as x1, x2, . . . , xn+1

so that f (x1) ≤ f (x2) ≤ · · · ≤ f (xn+1).
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Figure 3: Flowchart of SSA.

(2) Generate a trial point xr by reflection, such that

xr = x + α(x − xn+1), (18)

where x is the centroid of the n best points in the
vertices of the simplex. If f (x1) ≤ f (xr) ≤ f (xn),
replace xn+1 by xr .

(3) If f (xr) < f (x1), generate a new point xe by
expansion, such that

xe = x + β(xr − x). (19)

If f (xe) < f (xr), replace xn+1 by xe, otherwise replace
xn+1 by xr .

(4) If f (xr) ≥ f (xn), generate a new point xc by
contraction, such that

xc = x + γ(xn+1 − x). (20)

If f (xc) < f (xn+1), replace xn+1 by xc.

(5) If f (xc) ≥ f (xn+1), shrink along all dimensions
toward x1, such that

x′i = x1 + η
(
x i −x1

)
. (21)

Replace xi by x′i . Evaluate f at the n new vertices.

(6) Order and relabel the vertices of the new simplex as
x1, x2, . . . , xn+1, such that f (x1) ≤ f (x2) ≤ · · · ≤
f (xn+1). If the stopping criterion is satisfied, then
stop. Otherwise go to step 2.

In general, four scalar parameters, coefficients of reflec-
tion α, expansion β, contraction γ, and shrinkage must be
specified to define a complete downhill simplex method η.
Many articles have reported that coefficient values of α = 1.0,
β = 2.0, γ = 0.5, and η = 0.5 are used [34]. Figure 2 shows
the reflection, expansion, contraction, and shrinkage points
for a simplex in two dimensions using the values of above-
mentioned coefficients.

3.3. Chaotic-PSO with Simplex Operator. To enhance the
exploration-exploitation ability of the chaotic PSO method,
the chaotic-PSO with simplex operator is included. The
proposed method is made up of two parts. One is the
chaotic-PSO that engages in global exploration, the other is
the simplex search for increasing the local exploitation that
can escape the local minimum and accelerate the converge
process. The calculation procedures of the proposed SCPSO
algorithm are described as follows.

(1) Set the tmax and generate the initial population.
Compare the fitness of each particle to obtain its
xpbest. The best xpbest is denoted xgbest.

(2) Use the tent map (μ = 1) to generate the chaotic
variables according to (22).

z(k)
i = x(t)

i − xmin
i

xmax
i − xmin

i

,

z(k+1)
i z(k+1)

i =
(

1− 2
∣∣∣z(k)

i − 0.5
∣∣∣
)

, i = 0, 1, 2, . . . ,D.

(22)
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According to the boundary limits of

continuous/discrete control variables,

randomly generate the initial particles x(t)

and a population.
t = 1

Contingency analysis using secure (n− 1)
criterion

t = t + 1

Get the best particle xgbest

END

No
Stopping rule is satisfied ?

Evaluate the fitness
using (5)

Yes

Satisfy the contingency
constraints (9)-(10)?

No Yes

Perform the proposed SCPSO operations to

obtain new offspring x(t+1)

Fitness λ

Figure 4: Operating procedures of the proposed SCPSO-based CC-OPF method.

Map the chaotic variables z(k+1)
i into the search range

of decision variables x(k+1)
i .

x(t)
i = xmin

i + z(k+1)
i

(
xmax
i − xmin

i

)
, i = 0, 1, 2, . . . ,D. (23)

(3) Update the particle’s velocity v(t+1) and position x(t+1)

according to (13) and (14), respectively. In addition,
|v(t+1)| ≤ vmax.

Evaluate the fitness f (t+1) for each update particle.

Update x(t+1)
pbest and x(t+1)

gbest if needed.

(4) Order and relabel all new particles (new offsprint)
x(t+1) according to their fitness. Apply a small number
of iterations of simplex search to improve all new
particles in the population.

(5) Let t := t + 1 and repeat Steps 2–5 until the stopping
criterion (t > tmax) is met.

(6) The latest xgbest is the optimal solution.

4. Development of the Proposed Method

4.1. Representation of Particle. In this paper, the particle
comprises both continuous control variables xc and discrete

control variables xd. A particle x is a mixed-integer structure,
that is, x = [xc, xd] = [PG,VG,Tp,Yh]. The physical variables
are encoded as follows.

(1) Continuous variable xci taking the real value in the
interval [xmin

ci , xmax
ci ], xci ∈ [PG,VG].

(2) Discrete variable xdi taking the decimal integer value
ni in the interval [0, . . . ,Mi], xdi ∈ [Tp,Yh].

Mi = INT

(
xmax
di − xmin

di

STi

)
, (24)

where STi is the adjustable step size of the discrete control
variable xdi. INT(·) is the operator rounding the variable to
the nearest integer. To transform a discrete variable xdi into a
practical control value is as in (25).

xdi = xmin
di + ni · STi. (25)

4.2. SCPSO-Based CC-OPF. As mentioned above, the objec-
tive of CC-OPF is not only to minimize total operation
cost, but also to enhance transmission security, reduce
transmission loss, and improve the bus-voltage profile
under pre-contingency or post-contingency state. The search
procedures of the SCPSO-based CC-OPF method are shown
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Table 1: Generating unit capacity and coefficients in 26-bus System.

Bus no. Pmin
i Pmax

i Qmin
i Qmax

i Smax
i ai bi ci di ei

1 100 500 80 300 550 240 7.0 0.0070 100 0.0545

2 50 200 40 250 300 200 10.0 0.0095 80 0.0825

3 80 300 40 150 350 220 8.5 0.0090 80 0.0710

4 50 150 40 80 200 200 11.0 0.0090 50 0.0930

5 50 200 40 160 250 220 10.5 0.0080 80 0.0825

26 50 120 15 50 150 190 12.0 0.0075 50 0.0900

in Figure 4. The objective function in (5) is employed as
a fitness function. If a particle x is a feasible solution
and satisfies all constraints, its fitness will be measured
by (5). Otherwise, its fitness will be penalized with a
very large positive constant λ (i.e., the dependent variable
violates either the equality constraints (6) or the inequality
constraints (8)-(10)).

5. Numerical Examples and Results

When the constraints of the valve-point loading effects of
generators are considered, the OPF problem becomes non-
convex and may thus degrade the quality of solution and
convergence rate. To verify the feasibility and robustness of
the proposed SCPSO-based OPF method, a 26-bus and an

IEEE 57-bus systems were tested. The proposed method was
compared with other stochastic methods, such as chaotic-
based PSO (CPSO) [27], PSO with Gaussian mutation
(MPSO) [25], improved PSO with linearly decreasing inertia
weight (IPSO) [22], hybrid genetic algorithm (HGA) [11]
and differential evolution (DE) [16], in terms of solution
quality and computation efficiency using the same fitness
function and particle definition. The maximum number of
iterations for all the algorithms is set to 100.

5.1. Description of Study Systems

(i) 26-Bus System. The system that contains six thermal
units, 26 buses, and 46 transmission lines is shown in
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Table 2: Generating unit capacity and coefficients in IEEE 57-bus System.

Bus no. Pmin
Gi Pmax

Gi Qmin
Gi Qmax

Gi Smax
Gi ai bi ci di ei

1 100 500 −200 300 550 240 7.0 0.007 100 0.0545

2 50 150 −50 60 200 200 11.0 0.009 50 0.0930

3 50 150 −50 60 200 200 11.0 0.009 50 0.0930

6 50 120 −40 50 180 190 12.0 0.0075 50 0.0900

8 80 300 −150 200 350 220 8.5 0.009 80 0.0710

9 50 120 −40 50 180 190 12.0 0.0075 50 0.0900

12 80 300 −150 200 350 220 8.5 0.009 80 0.0710

Table 3: System state under normal operation and post-contingency.

Study system
Normal operation (Pre-contingency) Postcontingency

Line Line flow (Mva) Line outage Overload

26-bus L2−7 74.31 L2−7 L1−18, L2−8, L8−12

IEEE 57-bus L1−17 100.82 L1−17 L1−16, L2-3

Figure 5 [12]. The load demand is 1263 MW. The detailed
characteristics of the six thermal units with the valve-point
loading effects are given in Table 1. Let Bus 1 denote the slack
bus; the bus data, branch data, transformer-tap data, and
shunt-capacitor bank data of the system are shown in [16].

The system has a total of 27 control variables as follows:
5 unit active power outputs, 6 generator-bus voltage magni-
tudes, 7 transformer-tap settings, and 9 var-injection values
of shunt capacitor. The adjustable range of the transformer-
tap is from 0.9 pu to 1.1 pu, and the shunt admittance of
shunt capacitor is 0.0 to j0.05 pu. The adjustable step size
is from 0.01 pu in the transformer-tap settings, and the
changing step size is j0.005 pu in the shunt admittance.
According to (24), the M values of the two discrete variables
above are 20 and 10, respectively. The upper and lower limits
of the generator-bus and load-bus voltages are 0.95 pu and
1.05 pu, respectively.

(ii) IEEE 57-Bus System. The IEEE 57-bus system contains
seven thermal units, 57 buses and 46 transmission lines. The
load demand is 1250.8 MW. The detailed characteristics of
the seven thermal generators with the valve-point loading
effects are given in Table 2. Bus 1 is the swing bus.

The system has a total of 31 control variables as follows: 6
active power outputs, 7 generator-bus voltage magnitudes, 15
transformer-tap settings, and 3 var-injection values of shunt
capacitor. Because the adjustable range of the transformer-
tap is 0.9–1.1 pu, and the shunt admittance ranges from
0.0 to 0.1 pu, the adjustable step size in the transformer-tap
settings is 0.01 pu, and the changing step size in the shunt
admittance is 0.005 pu. The M values of the two discrete
variables above are 20 and 10, respectively. The upper and
lower limits of the generator-bus and load-bus voltages are
0.9 pu and 1.1 pu, respectively.

5.2. Selected Contingency Event. Table 3 shows two states
of the study systems. One is the normal operation (pre-
contingency), and the other is the post-contingency with
a selected contingency occurring. In 26-bus system, the

power flow on transmission line L2–7 is about 74.31 Mva in
normal economic operation. From the results of contingency
selecting, one of the most critical faults is proven line L2–7

outage. When line L2–7 faulted, three lines (L1–18, L2–8, and
L8–12) were overloaded, as shown in Figure 5. In the IEEE
57-bus system, the power flow on transmission line L1–17

is about 100.82 Mva under normal operation. When L1–17

faulted, two lines ( L1–16 and L2-3) were overloaded.

5.3. Parameters of Algorithms. Through repeated experi-
ments, the suitable parameters of the proposed SCPSO
method in Table 4 can be used. The population size is set
to be 50 and the number of iterations is set to be 100.
Those coefficients of reflection α, expansion β, contraction
γ, and shrinkage η in SSA method are 1.0, 2.0, 0.5, and
0.5, respectively. Maximum number of iterations for the SSA
method is set to be 10.

5.4. Experimental Results. In each study system, a total
of 30 trials were performed. The simulation results are
summarized in Table 5. The optimal settings of control
variables obtained by the four proposed methods are shown
in Table 6.

In Table 5, three performance indexes, namely the distri-
bution region (Δ f ), the mean value (μ), and the standard
deviation (σ) are employed to verify the robustness of the
proposed method. Best fitness obtained by each trial was
recorded. The proposed indexes were employed to evaluate
the effectiveness of the proposed method in solving the CC-
OPF problem.

Δ f = fmax − fmin,

μ = 1
n

n∑

i=1

fi,

σ =
√√√√ 1
n

n∑

i=1

(
fi − μ

)2,

(26)
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Table 4: Parameters of proposed algorithms.

PSO Parameters SCPSO, CPSO, MPSO, IPSO

w 0.9–0.4

c1 1.05

c2 1.05

vmax
ci xmax

ci /2

vmax
di Mi/2

HGA and DE Parameters HGA DE

CR (crossover rate) 0.6 0.5

Pm (mutation rate) 0.05 —

F (scaling factor) 0.5

Table 5: Comparisons of four methods in two study Systems.

Study system Method
Fitness Performance index

fmin (best) fmax (worst) Δ f μ σ

26-bus

SCPSO 15499 15587 87 15573 14.3111

CPSO 15503 15612 109 15578 26.2314

MPSO 15545 15633 88 15618 27.1884

IPSO 15552 15658 106 15619 27.2129

HGA 15568 15857 189 15658 29.1129

DE 15575 15714 139 15668 30.4691

IEEE 57-bus

SCPSO 15426 15504 78 15447 16.1596

CPSO 15435 15550 109 15471 30.1171

MPSO 15436 15546 110 15479 40.2011

IPSO 15443 15561 118 15494 37.1354

HGA 15453 15573 120 15511 47.3282

DE 15470 15579 109 15518 39.5413
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Figure 6: Convergence tendency. (a) Convergence tendencies of average fitness over 30 trials in 26-bus system. (b) Convergence tendencies
of average fitness over 30 trials in IEEE 57-bus system.
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Table 6

(a) Optimal settings of control variables in 26-bus system

Control variable SCPSO CPSO MPSO IPSO HGA DE

PG1 446.1746 448.1017 445.7566 453.3504 451.8483 452.6614

PG2 164.7378 166.1304 200.0000 165.0258 166.6793 165.7782

PG3 258.4341 258.1863 262.1278 259.9621 257.4760 256.2267

PG4 149.5769 149.9920 118.0309 136.5176 144.1294 142.0623

PG5 164.5429 164.4053 200.0000 164.5045 166.6446 163.0210

PG26 91.1452 87.9374 50.0000 103.2680 94.6340 102.8937

V1 1.0327 1.0279 1.0411 1.0404 1.0403 1.0286

V2 0.9920 1.0500 1.0088 1.0174 1.0186 1.0190

V3 1.0345 1.0201 1.0211 0.9943 0.9959 0.9907

V4 1.0346 0.9823 1.0004 0.9754 1.0308 1.0320

V5 1.0233 1.0101 0.9751 1.0090 1.0055 1.0053

V26 1.0208 1.0291 1.0248 1.0048 1.0055 1.0082

Tp2-3 1.0200 1.0200 1.1000 1.0100 1.0600 1.0600

Tp2−13 1.0200 1.0000 0.9700 1.0000 0.9300 0.9200

Tp3−13 0.9700 0.9700 0.9500 0.9900 0.9900 0.9700

Tp4−8 0.9800 0.9800 1.0200 1.0200 1.0200 1.0300

Tp4−12 0.9800 0.9900 1.0400 1.0300 1.0000 1.0100

Tp6−19 0.9600 0.9500 1.0100 0.9800 0.9700 0.9300

Tp7−9 0.9800 0.9800 0.9500 0.9600 0.9600 0.9600

Yh1 0.0500 0.0000 0.0050 0.0500 0.0400 0.0500

Yh4 0.0300 0.0350 0.0400 0.0300 0.0300 0.0150

Yh5 0.0500 0.0500 0.0500 0.0400 0.0500 0.0150

Yh6 0.0500 0.0500 0.0150 0.0200 0.0450 0.0500

Yh9 0.0150 0.0400 0.0150 0.0400 0.0300 0.0250

Yh11 0.0250 0.0450 0.0350 0.0250 0.0350 0.0300

Yh12 0.0500 0.0350 0.0250 0.0500 0.0300 0.0200

Yh15 0.0500 0.0350 0.0100 0.0500 0.0200 0.0450

Yh19 0.0450 0.0500 0.0150 0.0250 0.0200 0.0500

Fitness f 15499 15503 15545 15552 15568 15575

Ci($) 15487 15491 15532 15539 15558 15562

PLoss (MW) 11.6166 11.7561 12.9153 12.5594 12.8161 12.6880∑ |Vi −Vref| 0.3432 0.3411 0.5225 0.4599 0.4402 0.3485

(b) Optimal settings of control variables in IEEE 57-bus system

Control variable SCPSO CPSO MPSO IPSO HGA DE

PG1(W) 330.6258 331.4865 331.3076 331.8135 330.6408 331.6042

PG2(W) 50.0000 56.1645 83.7176 84.4205 83.7784 83.9324

PG3(W) 117.5876 117.7136 117.6009 117.8681 92.7311 117.6796

PG6(W) 84.8626 85.8677 84.8836 87.4047 85.0812 60.2967

PG8(W) 300.0000 256.9933 256.9824 257.0185 257.0101 256.9304

PG9(W) 84.8851 119.8924 95.4473 91.9031 120.0000 120.0000

PG12(W) 300.0000 299.9529 300.0000 300.0000 300.0000 300.0000

VG1 1.0500 1.0500 1.0500 1.0500 1.0500 1.0500

VG2 1.0480 1.0495 1.0500 1.0497 1.0497 1.0500

VG3 1.0500 1.0500 1.0500 1.0498 1.0079 1.0478

VG6 1.0496 1.0462 1.0500 1.0500 1.0500 1.0500

VG8 1.0500 1.0498 1.0500 1.0500 1.0500 1.0456

VG9 1.0341 1.0446 1.0438 1.0433 1.0500 1.0500
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(b) Continued.

Control variable SCPSO CPSO MPSO IPSO HGA DE

VG12 1.0252 1.0500 1.0500 1.0500 1.0500 1.0498

Tp4−18 0.9700 0.9600 0.9600 0.9400 1.0100 0.9600

Tp7−29 0.9700 1.0300 1.0000 1.0500 0.9400 0.9400

Tp9−55 0.9700 1.0300 0.9900 1.0500 0.9400 0.9400

Tp10−51 0.9400 0.9400 0.9400 0.9600 0.9500 1.0100

Tp11−41 0.9900 1.0300 0.9700 0.9300 0.9600 1.1000

Tp11−43 0.9300 0.9200 0.9300 1.1000 0.9400 0.9200

Tp13−49 0.9000 0.9000 0.9000 0.9200 0.9000 1.0100

Tp14−46 0.9200 0.9200 0.9200 0.9400 0.9300 0.9800

Tp15−45 0.9300 0.9400 0.9400 0.9400 0.9300 0.9600

Tp20−21 1.0200 1.0400 1.0100 1.0000 1.1000 0.9400

Tp24−25 1.0300 0.9500 1.0000 0.9200 0.9600 0.9300

Tp24−26 1.0400 1.0900 1.0800 1.1000 1.0000 0.9500

Tp32−34 0.9800 0.9600 0.9500 0.9400 0.9600 0.9000

Tp40−56 1.0300 1.0100 1.0400 1.0800 1.0300 0.9600

Tp39−57 0.9900 1.0400 0.9800 1.0400 1.0200 0.9400

Yh18 0.0900 0.0500 0.0250 0.0300 0.1000 0.0700

Yh25 0.1000 0.0800 0.1000 0.0600 0.1000 0.0650

Yh53 0.0800 0.1000 0.1000 0.1000 0.0700 0.0650

Fitness f 15426 15435 15436 15443 15453 15470

Ci($) 15407 15415 15414 15420 15429 15448

PLoss (MW) 17.1611 17.2709 19.1394 19.6284 18.4116 19.6433∑ |Vi −Vref| 2.3280 2.6581 2.7262 2.6219 2.8305 2.1472

where f is the best fitness of each trial, fmax and fmin are
the maximum and minimum fitness, respectively, among 30
trials. n is the number of trials.

As seen in Table 6, in the 26-bus system, as compared
with those obtained by other stochastic methods, the per-
formance indexes obtained by the proposed SCPSO method,
Δ f = 35, μ = 15829, and σ = 14.3111, are obviously better.
In the IEEE 57-bus system, as compared with those obtained
by other PSO methods, the performance indexes obtained by
the proposed SCPSO method, Δ f = 78, μ = 15447, and
σ = 16.1596, are also obviously better.

In addition, as shown by Table 5, the proposed SCPSO
method is still the most outstanding method in terms of
fitness, generation cost, transmission loss, and bus-voltage
deviation. For example, in the 26-bus system, the SCPSO
method has the best fitness of 15812, thus implying a
total generation cost of $15,487, a transmission loss of
11.6166 MW, and a summation of bus-voltage deviation of
0.3432 pu. In the IEEE 57-bus system, the SCPSO method
has the best fitness of 15426, thus implying a total generation
cost of $15,407, a transmission loss of 17.1611 MW, and
a summation of bus-voltage deviation of 2.3280 pu. These
results have shown that the proposed SCPSO method can
obtain better solution quality.

5.5. Discussion. Figures 6(a)-6(b) present the convergence
tendency using different stochastic methods for showing
further the advantages of the proposed SCPSO method. The
convergence tendency of average fitness of each proposed

method can be found in the 30 trials. As seen in both figures,
the proposed SCPSO method has the best convergence
behavior that can escape the local optima. Specially, the
SCPSO method is superior to the CPSO method because the
former has the simplex operator that can avoid being trapped
in local minima.

System operations must know which line or generation
outages will cause power flows or voltages to fall outside
limits. To verify the feasibility of the solution obtained by
the SCPSO method, two profiles of bus voltage are employed
and shown in Figure 7. One is a study system under normal
operation, denoted by the circle symbol, and the other is a
study system under post-contingency conditions, denoted by
the cross symbol. Contingency analysis procedures single out
failure events such as one-line outage in a power system. The
proposed SCPSO-based OPF method is used to check the
security constraints. For each outage tested, it checks all lines
and voltages against their respective limits. For two study
cases, tested systems can work under security constraints
including the generation limit, transmission capacity limit,
transformer-tap setting limit, and capacitor capacity limit, as
shown in Tables 6(a) and 6(b). In the 26-bus system, as can be
seen, the optimal settings of control variables obtained by the
proposed SCPSO method can still maintain the least possible
deviation of bus voltage even when line L2–7 faulted. In the
IEEE 57-bus system, the same phenomenon was obtained by
the proposed SCPSO method when line L1–17 faulted. The
results show that the optimal settings of control variables
allow systems to be operated defensively.
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Figure 7: Bus voltage profiles of study systems. (a) Bus voltage profile of system in 26-bus system. (b) Bus voltage profile of system in IEEE
57-bus system.

6. Conclusion

In this paper, an associated objective of CC-OPF is defined to
be capable of minimizing the total generation cost as well as
enhancing the security of the system even if the system suffers
transmission line outages. For effectively solving the CC-OPF
problem, a chaotic particle swarm optimization with sim-
plex operator (SCPSO) is presented. The proposed SCPSO
method, which involves the chaotic map and the downhill
simplex search, can avoid the premature convergence of PSO
and escape local minima. As shown in various comparisons,
the solutions obtained by the proposed SCPSO method are
superior to those obtained by other stochastic techniques in
terms of solution quality and convergence characteristic.

Our main work in the future is to find out a more efficient
parameter control method to verify further the advantages of
the proposed SCPSO method in solving large-scale CC-OPF
and security-constrained OPF problems.
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[10] M. Todorovski and D. Rajičić, “An initialization procedure
in solving optimal power flow by genetic algorithm,” IEEE
Transactions on Power Systems, vol. 21, no. 2, pp. 480–487,
2006.

[11] M. Younes, M. Rahli, and L. Abdelhakem-Koridak, “Optimal
Power Flow based on Hybrid Genetic Algorithm,” Journal of



Applied Computational Intelligence and Soft Computing 13

Information Science and Engineering, vol. 23, no. 6, pp. 1801–
1816, 2007.

[12] M. A. Abido, “Optimal power flow using tabu search algo-
rithm,” Electric Power Components and Systems, vol. 30, no. 5,
pp. 469–483, 2002.

[13] T. Kulworawanichpong and S. Sujitjorn, “Optimal power flow
using tabu search,” IEEE Power Engineering Review, vol. 22, no.
6, pp. 37–40, 2002.

[14] H. R. Cai, C. Y. Chung, and K. P. Wong, “Application of differ-
ential evolution algorithm for transient stability constrained
optimal power flow,” IEEE Transactions on Power Systems, vol.
23, no. 2, pp. 719–728, 2008.

[15] C. Y. Chung, C. H. Liang, K. P. Wong, and X. Z. Duan,
“Hybrid algorithm of differential evolution and evolutionary
programming for optimal reactive power flow,” IET Genera-
tion, Transmission and Distribution, vol. 4, no. 1, pp. 84–93,
2010.

[16] A. A. Abou El Ela, M. A. Abido, and S. R. Spea, “Optimal
power flow using differential evolution algorithm,” Electric
Power Systems Research, vol. 80, no. 7, pp. 878–885, 2010.

[17] M. A. Abido, “Optimal power flow using particle swarm
optimization,” International Journal of Electrical Power and
Energy Systems, vol. 24, no. 7, pp. 563–571, 2002.

[18] A. A. A. Esmin, G. Lambert-Torres, and A. C. Zambroni de
Souza, “A hybrid particle swarm optimization applied to loss
power minimization,” IEEE Transactions on Power Systems, vol.
20, no. 2, pp. 859–866, 2005.

[19] N. Mo, Z. Y. Zou, K. W. Chan, and T. Y. G. Pong, “Transient
stability constrained optimal power flow using particle swarm
optimisation,” IET Generation, Transmission and Distribution,
vol. 1, no. 3, pp. 476–483, 2007.

[20] M. R. AlRashidi and M. E. El-Hawary, “Hybrid particle swarm
optimization approach for solving the discrete OPF problem
considering the valve loading effects,” IEEE Transactions on
Power Systems, vol. 22, no. 4, pp. 2030–2038, 2007.

[21] P. E. O. Yumbla, J. M. Ramirez, and C. A. Coello Coello,
“Optimal power flow subject to security constraints solved
with a particle swarm optimizer,” IEEE Transactions on Power
Systems, vol. 23, no. 1, pp. 33–40, 2008.

[22] J. B. Park, Y. W. Jeong, J. R. Shin, and K. Y. Lee, “An improved
particle swarm optimization for nonconvex economic dis-
patch problems,” IEEE Transactions on Power Systems, vol. 25,
no. 1, pp. 156–166, 2010.

[23] J. Kennedy and R. Eberhart, “Particle swarm optimization,”
in Proceedings of IEEE International Conference on Neural
Netwroks, vol. 4, pp. 1942–1948, Perth, Australia, November
1995.

[24] Y. Shi and R. C. Eberhart, “Empirical study of particle swarm
optimization,” in Proceedings of the Congress on Evolutionary
Computation, vol. 3, pp. 1945–1950, Piscataway, NJ, USA, July
1999.

[25] A. Stacey, M. Jancic, and I. Grundy, “Particle swarm opti-
mization with mutation,” in Proceedings of IEEE International
Conference on Evolutionary Computation, vol. 2, pp. 1425–
1430, December 2003.

[26] N. Higashi and H. Iba, “Particle swarm optimization with
Gaussian mutation,” in Proceedings of the IEEE on Swarm
Intelligence Symposium, pp. 72–79, April 2003.

[27] B. Liu, L. Wang, Y. H. Jin, F. Tang, and D. X. Huang, “Improved
particle swarm optimization combined with chaos,” Chaos,
Solitons and Fractals, vol. 25, no. 5, pp. 1261–1271, 2005.

[28] L. D. S. Coelho, “A quantum particle swarm optimizer with
chaotic mutation operator,” Chaos, Solitons and Fractals, vol.
37, no. 5, pp. 1409–1418, 2008.

[29] H. Liu, “An adaptive chaotic particle swarm optimization,”
in Proceedings of the 2nd ISECS International Colloquium
on Computing, Communication, Control, and Management
(CCCM ’09), pp. 254–257, August 2009.

[30] K. Tatsumi, H. Yamamoto, and T. Tanino, “A perturbation
based chaotic particle swarm optimization using multi-
type swarms,” in Proceedings of International Conference on
Instrumentation, Control and Information Technology, SICE
Annual Conference, pp. 1199–1203, Osaka, Japan, August 2008.

[31] Y. He, J. Zhou, C. Li, J. Yang, and Q. Li, “A precise chaotic
particle swarm optimization algorithm based on improved
tent map,” in Proceedings of the 4th International Conference on
Natural Computation (ICNC ’08), pp. 569–573, October 2008.

[32] J. A. Nelder and R. Mead, “A simplex method for function
minimization,” Computer Journal, vol. 7, pp. 308–313, 1965.

[33] V. Torczon, “On the convergence of pattern search algo-
rithms,” SIAM Journal on Optimization, vol. 7, no. 1, pp. 123–
145, 1997.

[34] A. R. Hedar and M. Fukushima, “Hybrid simulated annealing
and direct search method for nonlinear unconstrained global
optimization,” Optimization Methods and Software, vol. 17, no.
5, pp. 891–912, 2002.

[35] S. K. S. Fan, Y. C. Liang, and E. Zahara, “Hybrid simplex search
and particle swarm optimization for the global optimization
of multimodal functions,” Engineering Optimization, vol. 36,
no. 4, pp. 401–418, 2004.



Submit your manuscripts at
http://www.hindawi.com

Computer Games 
 Technology

International Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Distributed 
 Sensor Networks

International Journal of

Advances in

Fuzzy
Systems

Hindawi Publishing Corporation
http://www.hindawi.com

Volume 2014

International Journal of

Reconfigurable
Computing

Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

 Applied 
Computational 
Intelligence and Soft 
Computing

 Advances in 

Artificial 
Intelligence

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Advances in
Software Engineering
Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Electrical and Computer 
Engineering

Journal of

Journal of

Computer Networks 
and Communications

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation

http://www.hindawi.com Volume 2014

 Advances in 

Multimedia

 International Journal of 

Biomedical Imaging

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Artificial
Neural Systems

Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Robotics
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Computational 
Intelligence and 
Neuroscience

Industrial Engineering
Journal of

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Modelling & 
Simulation 
in Engineering
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

The Scientific 
World Journal
Hindawi Publishing Corporation 
http://www.hindawi.com Volume 2014

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014

Human-Computer
Interaction

Advances in

Computer Engineering
Advances in

Hindawi Publishing Corporation
http://www.hindawi.com Volume 2014


