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The acceleration performance of EV, which affects a lot of performances of EV such as start-up, overtaking, driving safety, and ride
comfort, has become increasingly popular in recent researches. An improved variable gain PID control algorithm to improve the
acceleration performance is proposed in this paper. The results of simulation with Matlab/Simulink demonstrate the effectiveness
of the proposed algorithm through the control performance of motor velocity, motor torque, and three-phase current of motor.
Moreover, it is investigated that the proposed controller is valid by comparison with the other PID controllers. Furthermore, the
AC induction motor experiment set is constructed to verify the effect of proposed controller.

1. Introduction

With the increased emphasis on saving energy and reducing
emission, electric vehicles (EVs) have emerged as very strong
candidates to achieve these goals [1–5].Moreover, the acceler-
ation performance of EV, which affects a lot of performances
of EV such as start ability, passing ability, driving safety, and
ride comfort, is the key point of EV researches.

Vector control algorithm, which can accurately control
the torque and has a wide control range of motor velocity and
also has a current loop which can be used for current limiting
protection, is widely used in EVdriving control. However, the
velocity loop controller of vector control algorithm, which
uses traditional PID control algorithm generally, limits the
dynamic performance of driving system and the acceleration
performance of EV. During the last few years, the velocity
loop controller of EVAC inductionmotor (ACIM) controller
system is researched and improved unceasingly and many
methods are presented. One method is using the fuzzy
controller to replace velocity loop traditional PID controller
and current loop traditional PID controller of vector control
algorithm [6–8], which can make the control system track
the different given velocity rapidly and without overshoot in

different load and has strong ability against load disturbance,
but its steady-state accuracy is not high because of no existing
integration element. Another method is using the neutral
network PID controller to replace velocity loop traditional
PID controller of vector control algorithm [9–11], which has
the advantages of adjusting velocity rapidly, zero overshoot,
smooth and small-fluctuation control signals, and good
system tracking, but it reduces the EV control performance
due to learning slowly in learning process and long response
time. Literature [12] also presented amethod using the fuzzy-
PI controller which executes fuzzy control algorithm when
velocity deviation is greater than given threshold and executes
traditional PID control algorithm when velocity deviation is
less instead of velocity loop traditional PID controller [13].
The method can make velocity response rapidly with small
overshoot [14], but it is difficult to achieve completely smooth
switching andmay cause velocity hopwhen control algorithm
switches, thereby affecting the driving safety and ride comfort
when EV accelerates.

In this paper, we design a vector control algorithm for
vehicle asynchronousmotor based on improved variable gain
PID controller which can make motor velocity rise rapidly
and no overshoot. Moreover, it can satisfy the demands of
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EV driving system dynamic performance and acceleration
performance no matter whether the EV runs in low velocity,
normal velocity, high velocity, or variable velocity.

The sections are organized as follows. In Section 2, asyn-
chronous motor model is studied. In Section 3, improved
variable gain PID control algorithm is designed to improve
the acceleration performance. In Section 4, vector control
algorithm for EV asynchronous motor based on improved
variable gain PID controller is proposed. Furthermore the
stability condition is given. In Section 5, the effectiveness
of controller is demonstrated by simulation with Mat-
lab/Simulink (Figure 4). Section 6 presents some concluding
remarks.

2. AC Induction Motor Model

ACIM is widely applied to EV driving system, which has
many good characteristics such as robustness, durability,
simple structure, reliable operation, low cost, low torque
ripple, low noise, no position sensor, and high velocity limit.
The design of ACIM for EV which is different from normal
ACIM and must satisfy the power performance of EV must
have the following characteristics: (1) constant power output
and big velocity adjustable range for satisfying the demands
for flat road, overtaking, and so on when run in high/low
velocity, (2) smaller mass and volume in the condition of
certain power level, and (3) robust structure and resistance
to vibrations [15].

This paper which takes ACIM for example researches
motor mathematical model of EV driving system. The math-
ematical model of ACIM is a nonlinear, high order, close
coupling multivariable system. Ignore these factors such as
core loss, space harmonics, the change of frequency, the
change of temperature, and the saturation of magnetic circuit
on the impact ofwinding resistanceswhen establishingmotor
model [16].

A physical model of ACIM is shown in Figure 1. The
three-phase winding resistances which are 120∘ phase differ-
ent in the space are symmetrical, and the mutual inductance
and self-inductance of every winding resistance are constant.
The mathematical models of ACIM, which consist of voltage
matrix equation, magnetic linkage matrix equation, and
torque equation, can be obtained according to the physical
model of ACIM.

Based on the voltage balance principle of three-phase
stator winding resistances, the voltage matrix equation [17]
can be written as
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Figure 1: The physical model of ACIM.

are magnetic linkage of rotor winding resistance, 𝑅
𝑠
is stator

resistance,𝑅
𝑟
is rotor resistance, and𝑝 is differential operator.

Based on the principle that the magnetic linkage of every
winding resistance is equal to its self-inductance magnetic
linkage plus mutual inductance magnetic linkage with other
winding resistances, the magnetic linkage matrix equation
can be written as
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where 𝐿
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is self-inductance and 𝐿
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is mutual inductance.
The torque equation can be expressed as
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where 𝑛
𝑝
is pole pairs, 𝐿

𝑚
is mutual inductance, and 𝜃 is

electrical degree difference between 𝑎 axis and 𝐴 axis.
The ACIM, whose mathematical model is very complex,

is very difficult to be controlled in practical application.
The vector control algorithm controls ACIM as DC motor
through coordinate transformation for the problem that the
mathematical model ACIM is very complex so that the
governing performance of ACIM can be comparable withDC
motor.
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3. Improved Variable Gain PID Control
Algorithm Design

The fundamental thought of traditional variable gain PID
control algorithm is matching the cumulative velocity of
integral value with the magnitude of deviation. The integral
action reduces to nothing for preventing integral saturation
when system deviation is large and is reinforced for improv-
ing the stability of velocity when system deviation is small.
The more desirable situation is matching the magnitude
of proportional coefficient with deviation. The action of
proportional part is reinforced for improving the dynamic
performance of system when system deviation is large and
reduces for preventing overshoot when system deviation is
small. This paper designs an improved variable gain PID
control algorithm based on improving the variable gain PID
control algorithm.

The proportional and integral term of improved variable
gain PID control algorithm can be expressed as
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where 𝑥[𝑒(𝑘)] and 𝑦[𝑒(𝑘)] are the functions of deviation 𝑒(𝑘).
As 𝑒(𝑘) increases, 𝑥[𝑒(𝑘)] increases and 𝑦[𝑒(𝑘)] reduces. As
𝑒(𝑘) reduces, 𝑥[𝑒(𝑘)] reduces and 𝑦[𝑒(𝑘)] increases.
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where 𝑒max is the maximum value of deviation between
desired value and feedback value after the desired value of
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Finally, the improved variable gain PID control algorithm
is obtained as

𝑢 (𝑘) = (𝑘
𝑝
+ 𝑥 [𝑒 (𝑘)]) 𝑒 (𝑘)

+ 𝑘
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(8)

Because requirement of improved variable gain PID
control algorithm to the values of parameters 𝑚

1
, 𝑚
2
, 𝑚
3
,

𝑚
4
, 𝑘
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, 𝑘
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, and 𝑘
𝑖

is not accurate, the values are easy to be
ensured.

4. Vector Control Algorithm for Vehicle
Asynchronous Motor Based on Improved
Variable Gain PID Controller

The block diagram of vector control algorithm for EV ACIM
based on improved variable gain PID controller is obtained
in Figure 2. This algorithm, which uses rotator flux oriented,
uses velocity and current double closed-loop control algo-
rithm in control structure.

In outer loop control, collect motor rotor velocity 𝜔
𝑟
via

revolution velocity transducer from the ACIM side. Then,
set the deviation between expected rotor velocity 𝜔∗

𝑟

and
feedback rotor velocity 𝜔

𝑟
as the input of automatic voltage

regulator (AVR), and the output is expected electromagnetic

torque 𝑇∗
𝑒

. The expected electromagnetic torque via torque-
current transformation and slicing obtains the inner loop
expected torque current 𝑖∗

𝑠𝑞

.The requisite parameter 𝜃 of Park
transformation and Park inverse transformation is provided
by flux linkage observer. The inputs of weak magnetic block
are 𝑢
𝑠𝛼
, 𝑢
𝑠𝛽
, the maximum output voltage value of inverter is

𝑢
𝑠𝑚
, and the maximum motor current value in safe running

is 𝑖
𝑠𝑚
, and the outputs are the slicing values of expected

excitation current 𝑖∗
𝑠𝑑

and expected torque current 𝑖∗
𝑠𝑞

.
The transfer function block diagram of vector control

algorithm for EV asynchronous motor based on improved
variable gain PID controller can be obtained in Figure 2.

In Figure 3, 1/𝑇
𝑐𝑞
𝑠 + 1 is closed-loop transfer function of

torque control system. So the transfer function of controlled
object can be expressed as

𝐺 (𝑠) =
1
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∗
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, (9)

where 𝑘
𝑖𝑞

is 𝑞 loop integral coefficient of vector control
algorithm current loop, 𝜎 is leakage inductance coefficient of
ACIM, 𝐿

𝑠
is stator inductance of ACIM, and 𝐽 is moment of

inertia of ACIM.
The differentiation element of PID control algorithm,

which is sensitive to the noise of input signal, is not used
in the system which has bigger noise in general. Thus, only
PI control in the velocity loop controller of vector control
algorithm for EV ACIM in general is used.

The transfer function of velocity loop controller based
on improved variable gain PID control algorithm is given
as

𝐶 (𝑠) =
(𝑘
𝑝
+ 𝑥 [𝑒 (𝑘)]) 𝑠 + 𝑘

𝑖
𝑦 [𝑒 (𝑘)]

𝑠
, (10)

where 𝑘
𝑝
is proportional coefficient of traditional PID control

algorithm, 𝑘
𝑖
is integral coefficient of PID control algorithm,

𝑘
𝑝1

≤ 𝑥[𝑒(𝑘)] ≤ 𝑘
𝑝2

, and 𝑘
𝑖

≤ 𝑦[𝑒(𝑘)] ≤ 1. Here 𝑘
𝑝1

, 𝑘
𝑝2

,
and 𝑘
𝑖

are parameters of improved variable gain PID control
algorithm to be determined.
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Figure 4: Simulation diagram constructed by Matlab/Simulink.
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Figure 5: The simulation result of motor in low-velocity range.

Therefore, the closed-loop transfer function of system is
obtained as

𝜑 (𝑠) =
𝐶 (𝑠) 𝐺 (𝑠)

1 + 𝐶 (𝑠) 𝐺 (𝑠)

=
(𝑘
𝑝
+ 𝑥 [𝑒 (𝑘)]) 𝑠 + 𝑘

𝑖
𝑦 [𝑒 (𝑘)]

(𝜎𝐿
𝑠
𝐽/𝑘
𝑖𝑞
) 𝑠3 + 𝐽𝑠2 + (𝑘

𝑝
+ 𝑥 [𝑒 (𝑘)]) 𝑠 + 𝑘

𝑖
𝑦 [𝑒 (𝑘)]

.

(11)

Using Routh stability criterion [18] to judge the stability
of system can obtain the stability condition of system as

𝑘


𝑝1

>
𝜎𝐿
𝑠
𝑘
𝑖

𝑘
𝑖𝑞

− 𝑘
𝑝
,

𝑘


𝑖

> 0.

(12)

The system can be stable if the values of parameters 𝑘
𝑝1

and 𝑘
𝑖

satisfy the condition of (9) when designing the vector
control algorithm for EV ACIM based on improved variable
gain PID controller.

5. Simulation and Interpretation of Results

To study the improvements of the improved variable gain
PID control algorithm, it is imperative to compare it to clas-
sical PID control algorithm through simulation. The motor
parameters of 20 kW ACIM which is used in simulation are
given in Table 1.

Through debugging the simulation model of specific
ACIM described in Table 1, proportional and integral gains
as 0.63797 and 30.158, respectively, can be obtained, and the
values of parameters of improved variable gain PID control
algorithm in the velocity loop controller are 𝑘

𝑝
= 2.26, 𝑘

𝑖
=

3.58,𝑚
1
= 0.06,𝑚

2
= 𝑚
3
= 0.04,𝑚

4
= 0.16, 𝑘

𝑝1

= 0, 𝑘
𝑝2

= 4,
and 𝑘

𝑖

= 0.01. 𝑘
𝑝1

> 𝜎𝐿
𝑠
𝑘
𝑖
/𝑘
𝑖𝑞
− 𝑘
𝑝
= −2.2538 and 𝑘

𝑖

> 0;
these satisfy the stability condition of system.

As shown in Figure 3, take a PID controller for example
for comparison. Sample time 𝑇

𝑠
is 500𝜇s which is the sample

period of the closed-loop system.

5.1. Low-Velocity Range. EV low running velocity is about
10 km/h, and the corresponding motor velocity is about
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Figure 6: The simulation result of three-phase current.

Table 1: The parameters of ACIM.

Rated line voltage 𝑈
𝑁

180V
Rated torque 𝑇

𝑒𝑁

53Nm
Rated velocity 𝑛

𝑁

3600 rpm
Stator resistance 𝑅

1

0.0205 ohm
Rotor resistance 𝑅

2

0.0097 ohm
Stator leakage inductance 𝐿 ls 9.2668e − 05H
Rotor leakage inductance 𝐿 lr 10.9033e − 07H
Mutual inductance 𝐿

𝑚

0.0055887H
Pole pairs 2

50 rad/s. If the expected velocity is motor nominal velocity
of 50 rad/s in simulation, the control result is illustrated in
Figure 5.

In Figure 5, the response time of the PID controller is
about 3 s, and the overshoot is about 14%. The response time
of variable gain PID controller is about 2 s, and the overshoot
is 0. However, the proposed controller can still track the
desired velocity less than 1 s without 0 overshoots.

In Figure 6, compared with PID controller and variable
gain PID controller, the peak of three-phase current is less

Time (s)
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Figure 7: The simulation result of motor in moderate-velocity
range.
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Figure 8: The simulation result of three-phase current.
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Figure 9: The simulation result of motor in high-velocity range.

than 100A. In addition, it is investigated that the proposed
controller is valid by comparison with the other PID con-
trollers.

5.2. Moderate-Velocity Range. EV normal running velocity is
80 km/h to 100 km/h, and the corresponding motor velocity
is about 370 rad/s. If the expected velocity is motor nominal
velocity of 370 rad/s in simulation, the control result is
illustrated in Figure 7.

In Figure 7, the response time of the PID controller is
about 3.5 s, and the overshoot is about 10.8%. The response
time of variable gain PID controller is about 3 s, and the
overshoot is 0. However, the proposed controller can still
track the desired velocity less than 2 s without 0 overshoots.

In Figure 8, compared with PID controller and variable
gain PID controller, three-phase current changes slowly and
the response time is smaller. In addition, it is investigated that
the proposed controller is valid by comparison with the other
PID controllers.

5.3. High-Velocity Range. EV high running velocity is about
120 km/h, and the corresponding motor velocity is about
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Figure 10: The simulation result of three-phase current.

630 rad/s. If the given expected velocity is motor nominal
velocity of 630 rad/s in simulation, the control result is
illustrated in Figure 9.

In Figure 9, the response time of the PID controller is
about 5 s, and the overshoot is about 11.1%.The response time
of variable gain PID controller is about 7 s, and the overshoot
is 0. However, the proposed controller can still track the
desired velocity less than 4 s without 0 overshoots.

In Figure 10, compared with PID controller and variable
gain PID controller, three-phase current changes slowly and
the response time is smaller. In addition, it is investigated that
the proposed controller is valid by comparison with the other
PID controllers.

5.4. Variable Velocity Range. In order to test wheter the
method designed in this paper can satisfy the application
needs in velocity, we make simulation of motor in variable
velocity range with the initial expected velocity as 630 rad/s
and turn to 300 rad/s at the 4th second. The control result is
illustrated in Figure 11.

As shown in Figure 11, the response time of the PID
controller is about 2.5 s, and the overshoot is about 7.9%. The
response time of variable gain PID controller is about 3 s, and
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Figure 11: The simulation result of motor in variable velocity range.
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the overshoot is 0. However, the proposed controller can still
track the desired velocity less than 4 s without 0 overshoots.

6. Conclusion

This paper has presented a novel approach in the automotive
field to implement the improved variable gain PID controller
to control EV ACIM. In this paper, the design of variable
gain PID controller and stability analysis have been presented
along with simulation. The simulation results qualitatively
demonstrate that the improved variable gain PID controller
could improve on the control of motor velocity in the EV
versus using the classical PID control method. In addition,
this control method can satisfy the demands of EV driving
system dynamic performance and acceleration performance
when EV runs in low velocity, moderate velocity, high
velocity, and variable velocity.
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