
Research Article
Study on H

−

Index of Stochastic Linear
Continuous-Time Systems

Yan Li,1 Tianliang Zhang,2 Xikui Liu,3 and Xiushan Jiang2

1College of Electrical Engineering andAutomation, ShandongUniversity of Science andTechnology, Qingdao, Shandong 266590, China
2College of Information and Control Engineering, China University of Petroleum (East China), Qingdao, Shandong 266590, China
3College of Mathematics and Systems Science, Shandong University of Science and Technology, Qingdao, Shandong 266590, China

Correspondence should be addressed to Xikui Liu; liuxikuiqd@163.com

Received 3 February 2015; Accepted 30 March 2015

Academic Editor: Ruihua Liu

Copyright © 2015 Yan Li et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

This paper studies the H
−

index problem. We obtain a necessary and sufficient condition of H
−

index larger than 𝛾 > 0. A
generalized differential equation is introduced and it is proved that its solvability and the feasibility of theH

−

index are equivalent.
We extend the deterministic cases to the stochastic models. Our results can be used to fault detection filter analysis. Finally, the
effectiveness of the proposed results is illustrated by an example.

1. Introduction

It is well known that many control and filtering problems
have been discussed based on a certain performance index
of a system, such asH2 norm,H

∞

norm, andH
−

index; see
[1–9].H

∞

norm is themeasure of the worst-case disturbance
inputs on the controlled outputs [1–4]. The H

−

index is
a measure of the minimum sensitivity of system outputs
to system inputs. H

∞

norm and H
−

index with specific
application to fault detection filter have been carried out in
[10–17]. To ensure robustness, H

−

index should be maxi-
mized andH

∞

norm should be minimized. UsingH
−

/H
∞

performance can make certain that the residual signal is
maximally sensitive to faults and highly robust to disturbance
inputs; see [16, 17].

In [12], H
−

index was defined as the minimum non-
zero singular value in zero frequency. In [10], the authors
extended the results of [12] to all frequency range. By means
of LMIs, a necessary and sufficient condition was given for
the infinite frequency range. The case for finite frequency
range was concluded through frequency weighting. In recent
decades, a great deal of attention has been attracted to
H
−

index in time domain. A fault residual generator was
designed to maximize the fault sensitivity in the finite time

domain [16–20]. Based onH
−

index, results on optimal fault
detection can be found in [17, 18] and the references. The
lower bound ofH

−

index for linear time-varying systemswas
proposed in [19, 20]. A sliding mode observer was designed
for sensor fault diagnosis of nonlinear time-delay systems;
see [21]. In [22], a fault-tolerant controller was projected to
compensate nonlinear faults by using a fuzzy adaptive fault
observer.

Although there is much work on theH
−

index problem,
to the best of our knowledge, very little work was concerned
with the H

−

index in stochastic systems. In this paper, the
H
−

index for stochastic linear continuous-time systems is
discussed. The definition of the H

−

index is extended to the
stochastic case. We present a necessary and sufficient con-
dition of the H

−

index. A generalized differential equation
is introduced and it is proved that its solvability and the
feasibility of the H

−

index are equivalent. Comparing our
results with the bounded real lemma [2, 9], it shows that the
H
−

index is not completely dual toH
∞

norm.TheH
−

index
discussed in this paper is only for tall or square systems. The
reason for this is thatH

−

index is zero for wide systems. But
bounded real lemma for H

∞

is applicable to any systems.
Finally, the effectiveness of the given methods is illustrated
by numerical example.
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The outline of the paper is organized as follows. In
Section 2, some efficient criteria are given for theH

−

index of
stochastic linear systems in finite horizon. Section 3 contains
an example provided to show the efficiency of the proposed
results. Finally, we conclude this paper in Section 4.

Notations. 𝑅 is the field of real numbers. 𝑅𝑚×𝑛 is the vector
space of all 𝑚 × 𝑛 matrices with entries in 𝑅. S

𝑛

(𝑅) is the
set of all real symmetric matrices 𝑅𝑛×𝑛. 𝐴 is the transpose of
matrix𝐴. 𝐴−1 is the inverse of𝐴. Given positive semidefinite
(positive definite) matrix 𝐴, we denote it by 𝐴 ≥ 0 (𝐴 > 0). 𝐸
is themathematical expectation. 𝐼 is identitymatrix. 0

𝑛

is 𝑛×𝑛

zero matrix. L2
F([0, 𝑇], 𝑅

𝑝

) is the space of nonanticipative
stochastic process 𝑦(𝑡) ∈ 𝑅

𝑝 with respect to increasing 𝜎-
algebras F

𝑡

(𝑡 ≥ 0) satisfying ‖𝑦(𝑡)‖

2
[0,𝑇] < ∞, where

‖𝑦(𝑡)‖

2
[0,𝑇] = 𝐸∫

𝑇

0 𝑦(𝑡)



𝑦(𝑡)𝑑𝑡 = 𝐸∫

𝑇

0 ‖𝑦(𝑡)‖

2
𝑑𝑡. A square

(wide or tall) system denotes a system when the number of
inputs equals (is more than or less than) the outputs number.

2. Finite Horizon Stochastic H
−

Index

In this section, we will discuss the H
−

index problem of
stochastic linear continuous-time systems. We give a neces-
sary and sufficient condition of the H

−

index larger than
𝛾 > 0 in finite horizon.

Consider the following stochastic linear time-varying
systemG:

𝑑𝑥 (𝑡) = [𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) V (𝑡)] 𝑑𝑡

+ [𝐴0 (𝑡) 𝑥 (𝑡) + 𝐵0 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑧 (𝑡) = 𝐶 (𝑡) 𝑥 (𝑡) +𝐷 (𝑡) V (𝑡) , 𝑥 (0) = 𝑥0.

(1)

In the above, 𝜔(𝑡) is the one-dimensional standard Wiener
process defined on the complete probability space (Ω,F,P),
with the natural filter F

𝑡

generated by 𝜔(𝑡) up to time 𝑡.
Consider 𝑥(𝑡) ∈ 𝑅

𝑛, V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), and 𝑧(𝑡) ∈

𝑅

𝑙 are the system state, control input, and regulated output,
respectively. 𝐴(𝑡), 𝐵(𝑡), 𝐴0(𝑡), 𝐵0(𝑡), 𝐶(𝑡), and 𝐷(𝑡) are
coefficients with appropriate dimensions. For any 0 < 𝑇 < ∞

and (V(𝑡), 𝑥0) ∈ L2
F([0, 𝑇], 𝑅

𝑝

) × 𝑅

𝑛, there exists unique
solution 𝑥(𝑡) = 𝑥(𝑡; V, 𝑥0) ∈ L2

F([0, 𝑇], 𝑅

𝑛

) of (1).
The finite horizon stochastic H

−

index of system (1) can
be stated as follows.

Definition 1. For stochastic system (1), given 0 < 𝑇 < ∞, its
H
−

index in [0, 𝑇] is defined as

‖G‖

[0,𝑇]
−

= inf
V ̸=0,𝑥0=0

‖𝑧 (𝑡)‖

[0,𝑇]

‖V (𝑡)‖

[0,𝑇]

= inf
V ̸=0,𝑥0=0

{𝐸∫

𝑇

0 𝑧 (𝑡)



𝑧 (𝑡) 𝑑𝑡}

1/2

{𝐸∫

𝑇

0 V (𝑡)

 V (𝑡) 𝑑𝑡}

1/2 ,

(2)

where V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

).

Remark 2. If V is fault signal and 𝑧 is the residual, then the
H
−

index describes the smallest fault sensitivity of system
(1). In this paper, we suppose that system (1) is tall or
square because theH

−

index is zero for wide system.

Given 𝛾 > 0 and 0 < 𝑇 < ∞, let

𝐽

𝛾

𝑇

(𝑥0, V) = ‖𝑧 (𝑡)‖

2
[0,𝑇] − 𝛾

2
‖V (𝑡)‖

2
[0,𝑇]

= 𝐸∫

𝑇

0
[𝑧 (𝑡)



𝑧 (𝑡) − 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡.

(3)

We will study the following optimal problem:

min
V∈L2

F
([0,𝑇],𝑅𝑝)

𝐽

𝛾

𝑇

(𝑥0, V) . (4)

Remark 3. It can be shown that ‖G‖

[0,𝑇]
−

> 𝛾 is equivalent to
the following inequality

𝐽

𝛾

𝑇

(0, V) = ‖𝑧 (𝑡)‖

2
[0,𝑇] − 𝛾

2
‖V (𝑡)‖

2
[0,𝑇]

= 𝐸∫

𝑇

0
[𝑧 (𝑡)



𝑧 (𝑡) − 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡 > 0,
(5)

∀V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), V(𝑡) ̸= 0.

Remark 4. When 𝑇 = ∞, (2) corresponds to the infinite
horizon case.

Lemma 5. Suppose 𝑃(𝑡) : [0, 𝑇] → S𝑛(𝑅) is continuously
differentiable, 𝑇 > 0. Then, for every 𝑥0 ∈ 𝑅

𝑛, V(𝑡) ∈

L2
F([0, 𝑇], 𝑅

𝑝

),

𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0

𝑃 (0) 𝑥0 −𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)]

+𝐸∫

𝑇

0
[[

𝑥 (𝑡)

V (𝑡)

]



M (𝑡, 𝑃 (𝑡)) [

𝑥 (𝑡)

V (𝑡)

]] 𝑑𝑡,

(6)

whereM(𝑡, 𝑃(𝑡)) = [

𝐿(𝑃(𝑡))+

̇

𝑃(𝑡) 𝐾(𝑃(𝑡))

𝐾(𝑃(𝑡))


𝐻

𝛾
(𝑃(𝑡))

] ∈ S𝑛+𝑙(𝑅),

𝐿 (𝑃 (𝑡)) = 𝑃 (𝑡) 𝐴 (𝑡) +𝐴 (𝑡)



𝑃 (𝑡)

+𝐴0 (𝑡)


𝑃 (𝑡) 𝐴0 (𝑡) +𝐶 (𝑡)



𝐶 (𝑡) ,
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𝐾 (𝑃 (𝑡)) = 𝑃 (𝑡) 𝐵 (𝑡) +𝐴0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡)

+𝐶 (𝑡)



𝐷 (𝑡) ,

𝐻

𝛾

(𝑃 (𝑡)) = 𝐵0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡) +𝐷 (𝑡)



𝐷 (𝑡) − 𝛾

2
𝐼.

(7)

Proof. Let 𝑥0 ∈ 𝑅

𝑛, V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), and 𝑥(𝑡) =

𝑥(𝑡; V, 𝑥0) denote the corresponding solution of (1). Applying

Ito’s formula to 𝑥(𝑡)



𝑃(𝑡)𝑥(𝑡) and taking expectations, we
have that, for any 𝑇 > 0,

𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)] − [𝑥 (0) 𝑃 (0) 𝑥 (0)]

= 𝐸∫

𝑇

0
𝑑 [𝑥 (𝑡)



𝑃 (𝑡) 𝑥 (𝑡)]

= 𝐸∫

𝑇

0
[

𝑥 (𝑡)

V (𝑡)

]



Q (𝑡, 𝑃 (𝑡)) [

𝑥 (𝑡)

V (𝑡)

] 𝑑𝑡,

(8)

where

Q (𝑡, 𝑃 (𝑡)) =

[

[

𝑃 (𝑡) 𝐴 (𝑡) + 𝐴 (𝑡)



𝑃 (𝑡) + 𝐴0 (𝑡)


𝑃 (𝑡) 𝐴0 (𝑡) + ̇

𝑃 (𝑡) 𝑃 (𝑡) 𝐵 (𝑡) + 𝐴0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡)

𝐵 (𝑡)



𝑃 (𝑡) + 𝐵0 (𝑡)


𝑃 (𝑡) 𝐴0 (𝑡) 𝐵0 (𝑡)


𝑃 (𝑡) 𝐵0 (𝑡)

]

]

. (9)

So

𝐽

𝛾

𝑇

(𝑥0, V) = 𝐸∫

𝑇

0
[‖𝐶𝑥 (𝑡) +𝐷V (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
] 𝑑𝑡

+ 𝑥 (0) 𝑃 (0) 𝑥 (0)

− 𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)]

+𝐸∫

𝑇

0
[

[

𝑥 (𝑡)

V (𝑡)

]

]



Q (𝑡, 𝑃 (𝑡))

[

[

𝑥 (𝑡)

V (𝑡)

]

]

𝑑𝑡

= 𝑥 (0) 𝑃 (0) 𝑥 (0) − 𝐸 [𝑥 (𝑇)



𝑃 (𝑇) 𝑥 (𝑇)]

+𝐸∫

𝑇

0
[

[

𝑥 (𝑡)

V (𝑡)

]

]



M (𝑡, 𝑃 (𝑡))

[

[

𝑥 (𝑡)

V (𝑡)

]

]

𝑑𝑡,

(10)

which ends the proof.

Below, we prove the following theoremwhich is necessary
in this paper.

Theorem 6. For (1) and some given 𝛾 > 0, if the following
differential Riccati equation

𝐿 (𝑃 (𝑡)) +

̇

𝑃 (𝑡) = 𝐾 (𝑃 (𝑡))𝐻

𝛾

(𝑃 (𝑡))

−1
𝐾 (𝑃 (𝑡))



,

𝐻

𝛾

(𝑃 (𝑡)) > 0,

𝑃 (𝑇) = 0

(11)

admits solution 𝑃

𝑇

(𝑡) on [0, 𝑇], then ‖G‖

[0,𝑇]
−

> 𝛾.

Proof. By Lemma 5, for every V(𝑡) ∈ L2
F([0, 𝑇], 𝑅

𝑝

), V ̸= 0,
𝑥0 = 0, we conclude that

𝐽

𝛾

𝑇

(0, V) = 𝐸∫

𝑇

0
[

[

𝑥 (𝑡)

V (𝑡)

]

]



M (𝑡, 𝑃

𝑇

(𝑡))

[

[

𝑥 (𝑡)

V (𝑡)

]

]

𝑑𝑡.

(12)

By using completion of squares argument and the first equal-
ity in (11), we have

𝐽

𝛾

𝑇

(0, V) = 𝐸∫

𝑇

0
𝑥 (𝑡)



[𝐿 (𝑃

𝑇

(𝑡)) +

̇

𝑃

𝑇

(𝑡) −𝐾 (𝑃

𝑇

(𝑡))

⋅𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



] 𝑥 (𝑡) 𝑑𝑡

+𝐸∫

𝑇

0
{[V (𝑡) +𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥 (𝑡)]



⋅ 𝐻

𝛾

(𝑃

𝑇

(𝑡))

⋅ [V (𝑡) +𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥 (𝑡)]} 𝑑𝑡

= 𝐸∫

𝑇

0
{[V (𝑡) − V∗ (𝑡)]𝐻𝛾 (𝑃

𝑇

(𝑡))

⋅ [V (𝑡) − V∗ (𝑡)]} 𝑑𝑡,

(13)

where V∗(𝑡) = −𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥(𝑡).
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From 𝐻

𝛾

(𝑃

𝑇

(𝑡)) > 0, 𝐽𝛾
𝑇

(0, V) ≥ 0, to show 𝐽

𝛾

𝑇

(0, V) > 0,
we define the operator L: LV(𝑡) = V(𝑡) − V∗(𝑡) with its
realization:

𝑑𝑥 (𝑡) = (𝐴 (𝑡) 𝑥 (𝑡) + 𝐵 (𝑡) V (𝑡)) 𝑑𝑡

+ [𝐴0 (𝑡) 𝑥 (𝑡) + 𝐵0 (𝑡) V (𝑡)] 𝑑𝜔 (𝑡) ,

𝑥 (0) = 0,

V (𝑡) − V∗ (𝑡) = V (𝑡) +𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥 (𝑡) .

(14)

ThenL−1 exists, which is determined by

𝑑𝑥 (𝑡) = [𝐴 (𝑡) − 𝐵 (𝑡)𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
(𝐵 (𝑡)



𝑃

𝑇

(𝑡)

+ 𝐵0 (𝑡)


𝑃

𝑇

(𝑡) 𝐴0 (𝑡) +𝐷 (𝑡)



𝐶 (𝑡))] 𝑥 (𝑡) 𝑑𝑡

+ [𝐴0 (𝑡) − 𝐵0 (𝑡)𝐻
𝛾

(𝑃

𝑇

(𝑡))

−1
(𝐵 (𝑡)



𝑃

𝑇

(𝑡)

+ 𝐵



0 (𝑡) 𝑃𝑇 (𝑡) 𝐴0 (𝑡) +𝐷 (𝑡)



𝐶 (𝑡))] 𝑥 (𝑡) 𝑑𝜔 (𝑡)

+ 𝐵 (𝑡) (V (𝑡) − V∗ (𝑡)) 𝑑𝑡 + 𝐵0 (𝑡) (V (𝑡) − V∗ (𝑡)) 𝑑𝜔 (𝑡) ,

𝑥0 = 0,

(15)

where V(𝑡) = −𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



𝑥(𝑡) + (V(𝑡) − V∗(𝑡)).
We assume that 𝐻

𝛾

(𝑃

𝑇

(𝑡)) ≥ 𝜖𝐼, 𝜖 > 0, so there exists
constant 𝐶0 > 0, such that

𝐽

𝛾

𝑇

(0, V)

= 𝐸∫

𝑇

0
[V (𝑡) − V∗ (𝑡)]𝐻𝛾 (𝑃

𝑇

(𝑡)) [V (𝑡) − V∗ (𝑡)] 𝑑𝑡

≥ 𝜖









V (𝑡) − V∗ (𝑡)




2
[0,𝑇] = 𝜖 ‖LV (𝑡)‖

2
[0,𝑇]

≥ 𝐶0 ‖V (𝑡)‖

2
[0,𝑇] > 0.

(16)

That is, ‖G‖

[0,𝑇]
−

> 𝛾.
Now, we consider the following equation:

̇

𝑋 (𝑡) + 𝐿 (𝑋 (𝑡)) +𝐾 (𝑋 (𝑡)) 𝐹 (𝑡) + 𝐹 (𝑡)



𝐾 (𝑋 (𝑡))



+𝐹 (𝑡)



𝐻

𝛾

(𝑋 (𝑡)) 𝐹 (𝑡) = 0, 𝑡 ∈ [0, 𝑇] ,

𝑋 (𝑇) = 0,

(17)

where 𝐹(𝑡) ∈ 𝐶[0, 𝑇] and this equation has unique solution
𝑋(𝑡) = 𝑃

𝛾

𝐹

(𝑡), 𝑡 ∈ [0, 𝑇].

It is easy to see that (17) satisfies the following equation:

̇

𝑃

𝛾

𝐹

(𝑡) + [

𝐼

𝐹 (𝑡)

]



[

𝐿 (𝑃

𝛾

𝐹

(𝑡)) 𝐾 (𝑃

𝛾

𝐹

(𝑡))

𝐾 (𝑃

𝛾

𝐹

(𝑡))



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡))

] [

𝐼

𝐹 (𝑡)

]

= 0, 𝑡 ∈ [0, 𝑇] ,

𝑃

𝛾

𝐹

(𝑇) = 0.

(18)

Lemma 7. Suppose 𝐹(𝑡) ∈ 𝐶[0, 𝑇] and 𝑃

𝛾

𝐹

(𝑡) is the solution of
(18). Then if V(𝑡) ∈ L2

F([0, 𝑇], 𝑅

𝑝

), one obtains

𝐽

𝛾

𝑇

(𝑥0, V+𝐹𝑥

𝐹

) = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
[V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡) + 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡)

+ V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)] 𝑑𝑡,

(19)

where 𝑥

𝐹

(𝑡) = 𝑥(𝑡, 𝐹(𝑡)𝑥

𝐹

(𝑡) + V(𝑡), 𝑥0) is the solution of

𝑑𝑥

𝐹

(𝑡) = (𝐴 (𝑡) + 𝐵 (𝑡) 𝐹 (𝑡)) 𝑥

𝐹

(𝑡) 𝑑𝑡

+ (𝐴0 (𝑡) + 𝐵0 (𝑡) 𝐹 (𝑡)) 𝑥

𝐹

(𝑡) 𝑑𝑤 (𝑡)

+ 𝐵0 (𝑡) V (𝑡) 𝑑𝑤 (𝑡) + 𝐵 (𝑡) V (𝑡) 𝑑𝑡

(20)

with 𝑥

𝐹

(0) = 𝑥0 and

𝐺 (𝑡) = 𝐾 (𝑃

𝛾

𝐹

(𝑡))



+𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) 𝐹 (𝑡) .

(21)

As V = 0, then

𝐽

𝛾

𝑇

(𝑥0, 𝐹𝑥𝐹) = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0. (22)

Proof. In terms of Lemma 5with𝑃(𝑡) = 𝑃

𝛾

𝐹

(𝑡) and𝐹(𝑡)𝑥

𝐹

(𝑡)+

V(𝑡) for V(𝑡),

𝐽

𝛾

𝑇

(𝑥0, V+𝐹𝑥

𝐹

) = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
{[

𝑥

𝐹

(𝑡)

𝐹 (𝑡) 𝑥

𝐹

(𝑡) + V (𝑡)

]



M (𝑡, 𝑃

𝛾

𝐹

(𝑡))

⋅ [

𝑥

𝐹

(𝑡)

𝐹 (𝑡) 𝑥

𝐹

(𝑡) + V (𝑡)

]}𝑑𝑡 = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
{𝑥

𝐹

(𝑡)



[

𝐼

𝐹 (𝑡)

]



⋅ [

𝐿 (𝑃

𝛾

𝐹

(𝑡)) +

̇

𝑃

𝛾

𝐹

(𝑡) 𝐾 (𝑃

𝛾

𝐹

(𝑡))

𝐾 (𝑃

𝛾

𝐹

(𝑡))



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡))

] [

𝐼

𝐹 (𝑡)

] 𝑥

𝐹

(𝑡)} 𝑑𝑡
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+𝐸∫

𝑇

0
{V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡) + 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡)

+ V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)} 𝑑𝑡 = 𝑥



0𝑃
𝛾

𝐹

(0) 𝑥0

+𝐸∫

𝑇

0
{V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡) + 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡)

+ V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)} 𝑑𝑡.

(23)

This means that (19) holds. Let V = 0 in (19); we obtain (22).
Now we are in a position to prove that 𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) is
invertible for 𝑡 ∈ [0, 𝑇].

Lemma 8. For system (1), if ‖G‖

[0,𝑇]
−

> 𝛾 for some given 𝛾 > 0,
𝐹(𝑡) ∈ 𝐶[0, 𝑇], 𝑇 > 0, and 𝑃

𝛾

𝐹

(𝑡) satisfies (18). Then,

𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) ≥ [(‖G‖

[0,𝑇]
−

)

2
− 𝛾

2
] 𝐼 > 0, 𝑡 ∈ [0, 𝑇] . (24)

Proof. Let us first prove that 𝐻𝛾(𝑃𝛾
𝐹

(𝑡)) ≥ 0. Suppose this is
false; then there exists 𝑡

∗

∈ [0, 𝑇), 𝑢 ∈ 𝑅

𝑙, ‖𝑢‖ = 1 such that
𝑢



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡

∗

))𝑢 ≤ −𝜂 for some 𝜂 > 0. Then, for sufficiently
small 𝛿 > 0,

𝑢



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) 𝑢 ≤ −

𝜂

2
, 𝑡 ∈ [𝑡

∗

, 𝑡

∗

+ 𝛿] ⊂ [0, 𝑇] . (25)

Define

V (𝑡) =

{

{

{

0, 𝑡 ∈ [0, 𝑡∗) ∪ (𝑡

∗

+ 𝛿, 𝑇] ,

𝑢, 𝑡 ∈ [𝑡

∗

, 𝑡

∗

+ 𝛿] .

(26)

Using Lemma 7 with this V(𝑡) and 𝑥0 = 0, we can derive that
𝑥

𝐹

(𝑡) = 0 for 𝑡 ∈ [0, 𝑡∗] and

𝐽

𝛾

𝑇

(0, V) = 𝐸∫

𝑇

0
[









𝐶 (𝑡) 𝑥

𝐹

(𝑡) +𝐷 (𝑡) V (𝑡)









2

− 𝛾

2
‖V (𝑡)‖

2
] 𝑑𝑡 = 𝐸∫

𝑇

0
[V (𝑡)



𝐺 (𝑡) 𝑥

𝐹

(𝑡)

+ 𝑥

𝐹

(𝑡)



𝐺 (𝑡)

 V (𝑡) + V (𝑡)



𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) V (𝑡)] 𝑑𝑡

≤ 𝐸∫

𝑡

∗
+𝛿

𝑡

∗

(2 









𝐺 (𝑡)



𝑢



















𝑥

𝐹

(𝑡)









−

𝜂

2
)𝑑𝑡.

(27)

Since 𝑥

𝐹

(𝑡) is continuous and 𝑥

𝐹

(𝑡

∗

) = 0, (27) is negative.
Moreover, the condition ‖G‖

[0,𝑇]
−

> 𝛾 implies 𝐽

𝛾

𝑇

(0, V) ≥ 0.
As a result, this is a contradiction. If 𝑡∗ = 𝑇, we can replace
[𝑡

∗

, 𝑡

∗

+ 𝛿] by [𝑇 − 𝛿, 𝑇] and use a similar proof.
Next, let ‖G‖

[0,𝑇]
−

> (𝛾

2
+𝜌

2
)

1/2 for any 𝜌 > 0 and 𝜆 = (𝛾

2
+

𝜌

2
)

1/2. Replacing 𝛾 with 𝜆 in (18), we obtain the correspond-
ing solution 𝑃

𝜆

𝐹

(𝑡). Applying the previous step, we can deduce

that 𝐻𝜆(𝑃𝜆
𝐹

(𝑡)) ≥ 0. For any 𝑡0 ∈ [0, 𝑇), set 𝐹
𝑡0

= 𝐹(𝑡 + 𝑡0),
𝑡 ∈ [0, 𝑇−𝑡0]. Let𝑃

𝜆

𝐹𝑡0
(𝑡) be the solution of (18) with 𝛾 replaced

by 𝜆 and 𝐹 replaced by 𝐹

𝑡0
on [0, 𝑇 − 𝑡0]. Then, 𝑃𝜆

𝐹𝑡0
(𝑡) =

𝑃

𝜆

𝐹

(𝑡 + 𝑡0), 𝑡 ∈ [0, 𝑇 − 𝑡0]. By (22), for any 𝑡0 ∈ [0, 𝑇), 𝑥0 ∈ 𝑅

𝑛,

𝑥



0𝑃
𝜆

𝐹

(𝑡0) 𝑥0 = 𝑥



0𝑃
𝜆

𝐹𝑡0
(0) 𝑥0 = 𝐽

𝜆

𝑇−𝑡0
(𝑥0, 𝐹𝑡0𝑥𝐹𝑡0

)

≤ 𝐽

𝛾

𝑇−𝑡0
(𝑥0, 𝐹𝑡0𝑥𝐹𝑡0

) = 𝑥



0𝑃
𝛾

𝐹

(𝑡0) 𝑥0,

(28)

and so 𝐻

𝜆

(𝑃

𝛾

𝐹

(𝑡0)) ≥ 𝐻

𝜆

(𝑃

𝜆

𝐹

(𝑡0)) ≥ 0. By continuity,
𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑡)) ≥ 𝜌

2
𝐼 for all 𝑡 ∈ [0, 𝑇]. As this holds for arbitrary

𝜌

2
< (‖G‖

[0,𝑇]
−

)

2
−𝛾

2, it follows that𝐻𝛾(𝑃𝛾
𝐹

(𝑡)) ≥ [(‖G‖

[0,𝑇]
−

)

2
−

𝛾

2
]𝐼 > 0. This completes the proof.

Remark 9. When 𝑡 = 𝑇, (24) becomes 𝐻

𝛾

(𝑃

𝛾

𝐹

(𝑇)) =

𝐷(𝑇)



𝐷(𝑇) − 𝛾

2
𝐼 > 0. If system (1) is time-invariant, then

𝐷



𝐷−𝛾

2
𝐼 > 0. (29)

Remark 10. By the equality 𝐴(𝐼 − 𝐵𝐴)

−1
= (𝐼 − 𝐴𝐵)

−1
𝐴, we

have that 𝐶[𝐼 − 𝐷(𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



]𝐶 = 𝐶



(𝐼 − 𝛾

−2
𝐷𝐷



)

−1
𝐶.

If system (1) is time-invariant and square, by (29),

𝐶



[𝐼 −𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶

= 𝐶



(𝐼 − 𝛾

−2
𝐷𝐷



)

−1
𝐶 ≤ 0.

(30)

Now, we present the following theorem which is impor-
tant in this paper.

Theorem 11. Suppose system (1) is time-invariant and square
and satisfies ‖G‖

[0,𝑇]
−

> 𝛾 for given 𝛾 ≤ 0. Then (11) has a
unique solution 𝑃

𝑇

(𝑡) ≤ 0 on [0, 𝑇] for every 𝑇 > 0. Moreover,
𝐽

𝛾

𝑇

(𝑥0, V) is minimized by the feedback control:

V∗ (𝑡) = 𝐹

𝑇

(𝑡) 𝑥

𝐹𝑇
(𝑡) ,

𝐹

𝑇

(𝑡) = −𝐻

𝛾

(𝑃

𝑇

(𝑡))

−1
𝐾(𝑃

𝑇

(𝑡))



,

(31)

where 𝑥

𝐹𝑇
(𝑡) satisfies

𝑑𝑥

𝐹𝑇
(𝑡) = (𝐴+𝐵𝐹

𝑇

(𝑡)) 𝑥

𝐹𝑇
(𝑡) 𝑑𝑡

+ [𝐴0 +𝐵0𝐹𝑇 (𝑡)] 𝑥𝐹𝑇 (𝑡) 𝑑𝑤 (𝑡) ,

𝑥

𝐹𝑇
(0) = 𝑥0

(32)

and the optimal cost is

min
V∈L2

F
([0,𝑇],𝑅𝑝)

𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0𝑃𝑇 (0) 𝑥0. (33)
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Proof. We prove that ‖G‖

[0,𝑇]
−

> 𝛾 implies the existence
of solution 𝑃

𝑇

(𝑡) of (11) on [0, 𝑇]. Using a contradiction
argument, we suppose that (11) does not admit a solu-
tion. By the standard theory of differential equations, there
exists unique solution 𝑃

𝑇

(𝑡) backward in time on maximal
interval [𝑇0, 𝑇] (𝑇0 ≥ 0), and as 𝑡 → 𝑇0, 𝑃𝑇(𝑡) becomes
unbounded.

Let 0 < 𝛿 < 𝑇 − 𝑇0, 𝑥(𝑇0 + 𝛿) = 𝑥

𝑇0 ,𝛿
∈ 𝑅

𝑛, 𝑄(𝑡) =

𝐵



𝑃

𝑇

(𝑡) + 𝐵



0𝑃𝑇(𝑡)𝐴0 + 𝐷



𝐶, 𝑅(𝑡) = 𝐵



0𝑃𝑇(𝑡)𝐵0 + 𝐷



𝐷 − 𝛾

2
𝐼,

by completing the squares; then

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝐸∫

𝑇

𝑇0+𝛿
[𝑧 (𝑡)



𝑧 (𝑡)

− 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡 = 𝐸∫

𝑇

𝑇0+𝛿
[𝑧 (𝑡)



𝑧 (𝑡)

− 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡 + 𝐸∫

𝑇

𝑇0+𝛿
𝑑 (𝑥 (𝑡)



𝑃

𝑇

(𝑡) 𝑥 (𝑡)) 𝑑𝑡

+ 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
= 𝐸∫

𝑇

𝑇0+𝛿
𝑥 (𝑡)



[𝐶



𝐶

+𝐴



𝑃

𝑇

(𝑡) + 𝑃

𝑇

(𝑡) 𝐴 +𝐴



0𝑃𝑇 (𝑡) 𝐴0 + ̇

𝑃

𝑇

(𝑡)

−𝑄 (𝑡)



𝑅 (𝑡)

−1
𝑄 (𝑡)] 𝑥 (𝑡) 𝑑𝑡 + 𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)

+ 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)]



𝑅 (𝑡) [V (𝑡)

+ 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)] 𝑑𝑡 + 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿

= 𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡) + 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)]



𝑅 (𝑡) [V (𝑡)

+ 𝑅 (𝑡)

−1
𝑄 (𝑡) 𝑥 (𝑡)] 𝑑𝑡 + 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
.

(34)

Obviously,

min
V∈L2

F
([𝑇0+𝛿,𝑇],𝑅

𝑝
)

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)

= 𝐽

𝛾

(𝑥, V∗, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
,

(35)

where V∗(𝑡) = −𝑅(𝑡)

−1
𝑄(𝑡)𝑥(𝑡).

Furthermore, we can see that

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝐸∫

𝑇

𝑇0+𝛿
[𝑧 (𝑡)



𝑧 (𝑡)

− 𝛾

2V (𝑡)

 V (𝑡)] 𝑑𝑡

= 𝐸∫

𝑇

𝑇0+𝛿
{[𝐶𝑥 (𝑡) +𝐷V (𝑡)]



[𝐶𝑥 (𝑡) +𝐷V (𝑡)]

− 𝛾

2V (𝑡)

 V (𝑡)} 𝑑𝑡 = 𝐸∫

𝑇

𝑇0+𝛿
𝑥 (𝑡)



𝐶



[𝐼

−𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝑡) 𝑑𝑡 +𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)

+ (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)]



(𝐷



𝐷−𝛾

2
𝐼) [V (𝑡)

+ (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)] 𝑑𝑡.

(36)

From Remark 10,

𝐽

𝛾

(𝑥, Ṽ, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝐸∫

𝑇

𝑇0+𝛿
𝑥 (𝑡)



⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝑡) 𝑑𝑡 ≤ 0,

(37)

where Ṽ(𝑡) = −(𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥(𝑡). Considering (35), we
get

𝑥



𝑇0 ,𝛿
𝑃

𝑇

(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
≤ 𝐽

𝛾

(𝑥, Ṽ, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) ≤ 0, (38)

which implies that

𝑃

𝑇

(𝑇0 + 𝛿) ≤ 0. (39)

By linearity, the solution of (1) with initial state 𝑥

𝑇0 ,𝛿
satisfies

𝑥 (𝑡, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) = 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)

+ 𝑥 (𝑡, V, 0, 𝑇0 + 𝛿) .

(40)

Suppose Φ(𝑡) is the solution of

𝐶



𝐶+𝐴



Φ (𝑡) +Φ (𝑡) 𝐴+𝐴



0Φ (𝑡) 𝐴0 + ̇

Φ (𝑡) = 0,

Φ (𝑇) = 0,
(41)

and we have

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) − 𝐽

𝛾

(𝑥, V, 0, 𝑇0 + 𝛿)

= 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
+𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)



⋅ (𝐵



0Φ (𝑡) +𝐷



𝐶)𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)] 𝑑𝑡

+𝐸∫

𝑇

𝑇0+𝛿
[𝑥 (𝑡, 0, 𝑥

𝑇0 ,𝛿
, 𝑇0 + 𝛿)



(𝐵



0Φ (𝑡) +𝐷



𝐶)



⋅ V (𝑡)] 𝑑𝑡.

(42)



Mathematical Problems in Engineering 7

Take ‖G‖

[0,𝑇]
−

≥ (𝛾

2
𝜖

2

)

1/2,

V (𝑡)

=

{

{

{

Ṽ (𝑡) = − (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡) , 𝑡 ∈ [0, 𝑇0 + 𝛿]

V (𝑡) , 𝑡 ∈ (𝑇0 + 𝛿, 𝑇] ,

(43)

and it is easy to show that

𝐽

𝛾

(𝑥, V, 0, 𝑇0 + 𝛿) = 𝐸∫

𝑇

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
) 𝑑𝑡

−𝐸∫

𝑇0+𝛿

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖Ṽ (𝑡)‖

2
) 𝑑𝑡

= 𝐸∫

𝑇

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
) 𝑑𝑡 −𝐸∫

𝑇0+𝛿

0
𝑥 (𝑡)



⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝑡) 𝑑𝑡

−𝐸∫

𝑇0+𝛿

0
[Ṽ (𝑡) + (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)]



⋅ (𝐷



𝐷−𝛾

2
𝐼)

⋅ [Ṽ (𝑡) + (𝐷



𝐷−𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝑡)] 𝑑𝑡

≥ 𝐸∫

𝑇

0
(‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
) 𝑑𝑡 ≥ 𝜖

2

‖V (𝑡)‖

2
[0,𝑇]

≥ 𝜖

2

‖V (𝑡)‖

2
[𝑇0+𝛿,𝑇]

.

(44)

It follows that

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) ≥ 𝐸∫

𝑇

𝑇0+𝛿
𝜖

2

‖V (𝑡)‖

2
𝑑𝑡

+ 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
+𝐸∫

𝑇

𝑇0+𝛿
[V (𝑡)



(𝐵



0Φ (𝑡)

+𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)] 𝑑𝑡

+𝐸∫

𝑇

𝑇0+𝛿
[𝑥 (𝑡, 0, 𝑥

𝑇0 ,𝛿
, 𝑇0 + 𝛿)



(𝐵



0Φ (𝑡) +𝐷



𝐶)



⋅ V (𝑡)] 𝑑𝑡 = 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿
+𝐸∫

𝑇

𝑇0+𝛿











𝜖 [V

− 𝜖

−2

(𝐵



0Φ (𝑡) + 𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)]











2
𝑑𝑡

−𝐸∫

𝑇

𝑇0+𝛿











𝜖

−1

(𝐵



0Φ (𝑡) +𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0

+ 𝛿)











2
𝑑𝑡 ≥ 𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿

−𝐸∫

𝑇

𝑇0+𝛿











𝜖

−1

(𝐵



0Φ (𝑡) +𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0

+ 𝛿)











2
𝑑𝑡.

(45)

It is obvious that there exists constant 𝐶0 > 0 such that

𝐶2










𝑥

𝑇0 ,𝛿











2
≥ 𝐸∫

𝑇

𝑇0+𝛿











𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)











2
𝑑𝑡. (46)

So, there is constant 𝐶1 > 0 such that

𝐸∫

𝑇

𝑇0+𝛿











𝜖

−1

(𝐵



0Φ (𝑡) +𝐷



𝐶) 𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)











2
𝑑𝑡

≤ 𝐶1










𝑥

𝑇0 ,𝛿











2
.

(47)

In addition,

𝑥



𝑇0 ,𝛿
Φ(𝑇0 + 𝛿) 𝑥

𝑇0 ,𝛿

= −𝐸∫

𝑇

𝑇0+𝛿
𝑑 (𝑥 (𝑡)



Φ (𝑡) 𝑥 (𝑡))

= 𝐸∫

𝑇

𝑇0+𝛿











𝑥 (𝑡, 0, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿)𝐶











2
𝑑𝑡 ≥ 0.

(48)

From (45), we have

𝐽

𝛾

(𝑥, V, 𝑥
𝑇0 ,𝛿

, 𝑇0 + 𝛿) ≥ −𝐶1










𝑥

𝑇0 ,𝛿











2
.

(49)

In view of (35) and (39), it yields

−𝐶1 ≤ 𝑃

𝑇

(𝑇0 + 𝛿) ≤ 0. (50)

So, 𝑃
𝑇

(𝑇0 + 𝛿) can not become unbounded as 𝛿 → 0, which
means that (11) has unique solution 𝑃

𝑇

(𝑡) on [0, 𝑇].
Setting 𝐹(𝑡) = 𝐹

𝑇

(𝑡), 𝑡 ∈ [0, 𝑇], in (17), from (31), we
obtain

̇

𝑃

𝑇

(𝑡) + 𝐿 (𝑃

𝑇

(𝑡)) +𝐾 (𝑃

𝑇

(𝑡)) 𝐹 (𝑡)

+ 𝐹 (𝑡)



𝐾(𝑃

𝑇

(𝑡))



+𝐹 (𝑡)



𝐻

𝛾

(𝑃

𝑇

(𝑡)) 𝐹 (𝑡) = 0.
(51)

Hence 𝑃

𝑇

(𝑡) satisfies (17), or equivalently (18). So

𝑃

𝛾

𝐹𝑇
(𝑡) = 𝑃

𝑇

(𝑡) , 𝑡 ∈ [0, 𝑇] . (52)

By (31),

𝐺 (𝑡) = 𝐾 (𝑃

𝑇

(𝑡))



+𝐻

𝛾

(𝑃

𝑇

(𝑡)) 𝐹

𝑇

(𝑡) = 0, (53)
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and, in terms of Lemma 7,

𝐽

𝛾

𝑇

(𝑥0, V+𝐹

𝑇

𝑥)

= 𝑥



0𝑃𝑇 (0) 𝑥0 +𝐸∫

𝑇

0
[V (𝑡)



𝐻

𝛾

(𝑃

𝑇

(𝑡)) V (𝑡)] 𝑑𝑡.

(54)

But by Lemma 8,

𝐻

𝛾

(𝑃

𝑇

(𝑡)) = 𝐻

𝛾

(𝑃

𝛾

𝐹𝑇
(𝑡)) ⪰ [(‖G‖

[0,𝑇]
−

)

2
− 𝛾

2
] 𝐼

≻ 0, 𝑡 ∈ [0, 𝑇] .

(55)

Hence, V∗(𝑡) = 𝐹

𝑇

(𝑡)𝑥(𝑡) minimizes 𝐽

𝛾

𝑇

(𝑥0, V) and
minV∈L2

F
([0,𝑇],𝑅𝑝)𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0𝑃𝑇(0)𝑥0.

According to Theorems 6 and 11, we get the following
theorem.

Theorem 12. If system (1) is time-invariant and square, for
given 𝛾 > 0, the following are equivalent:

(i) Consider ‖G‖

[0,𝑇]
−

> 𝛾.

(ii) The following equation

𝑃 (𝑡) 𝐴+𝐴



𝑃 (𝑡) +𝐴



0𝑃 (𝑡) 𝐴0 +𝐶



𝐶+

̇

𝑃 (𝑡)

= (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)

⋅ (𝐵



0𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼)

−1

⋅ (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)



,

𝐵



0𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼 > 0,

𝑃 (𝑇) = 0

(56)

has unique solution 𝑃

𝑇

(𝑡) ≤ 0 on [0, 𝑇]. Moreover,
minV∈L2

F
([0,𝑇],𝑅𝑝)𝐽

𝛾

𝑇

(𝑥0, V) = 𝑥



0𝑃𝑇(0)𝑥0.

Remark 13. For given 𝛾 > 0, if we replace 𝐵, 𝐶, 𝐷, and V(𝑡)
with 𝐵

𝛿

= [
𝐵 0
𝑛×𝑛

], 𝐶
𝛿

= [
𝐶 𝛿𝐼

𝑛

]

, 𝐷
𝛿

= [

𝐷 0𝑙×𝑛
0𝑛×𝑙 0𝑛×𝑛 ], and

V
𝛿

(𝑡) = [
V(𝑡) 0

𝑛×𝑛

]

, respectively, and 𝑧(𝑡) with 𝑧

𝛿

(𝑡) in (1),
we deduce the correspondingH

−

index ‖G‖

[0,𝑇]
𝛿−

and

𝐽

𝛾

𝑇,𝛿

(𝑥0, V) = 𝐸∫

𝑇

0
{









𝑧

𝛿

(𝑡)









2
− 𝛾

2 






V
𝛿

(𝑡)









2
} 𝑑𝑡

= 𝐸∫

𝑇

0
{‖𝑧 (𝑡)‖

2
− 𝛾

2
‖V (𝑡)‖

2
+ 𝛿

2
𝐼} 𝑑𝑡.

(57)

When ‖G‖

[0,𝑇]
−

> 𝛾, then ‖G‖

[0,𝑇]
𝛿−

> 𝛾. Using Theorem 12 to
the modified data, it is easy to see that the following equation

𝑃 (𝑡) 𝐴+𝐴



𝑃 (𝑡) +𝐴



0𝑃 (𝑡) 𝐴0 +𝐶



𝐶+𝛿

2
𝐼 +

̇

𝑃 (𝑡)

= (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)

⋅ (𝐵



0

𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼)

−1

⋅ (𝑃 (𝑡) 𝐵 +𝐴



0𝑃 (𝑡) 𝐵0 +𝐶



𝐷)



,

𝐵



0

𝑃 (𝑡) 𝐵0 +𝐷



𝐷−𝛾

2
𝐼 > 0,

𝑃 (𝑇) = 0

(58)

has unique solution 𝑃

𝛿,𝑇

(𝑡) ≤ 0 on [0, 𝑇]. Moreover,
minV∈L2

F
([0,𝑇],𝑅𝑝)𝐽

𝛾

𝑇,𝛿

(𝑥0, V) = 𝑥



0𝑃𝛿,𝑇(0)𝑥0.

Now, we are to show what happens as 𝑇 increases.

Theorem 14. If system (1) is time-invariant and square,
‖G‖

[0,𝑇]
−

> 𝛾 for some 𝛾 > 0. Then 𝑃

𝑇

(𝑡) in (56) decreases as 𝑇
increases for every 𝑡 ∈ [0, 𝑇].

Proof. Suppose 𝑇 > 𝑇, 𝑡 ∈ [0, 𝑇], and 𝑥0 ∈ 𝑅

𝑛. Let V∗
𝑇−𝑡

be
optimal for 𝑥0 on [0, 𝑇 − 𝑡], and set

V (𝜏)

=

{

{

{

V∗
𝑇−𝑡

(𝜏) , 𝜏 ∈ [0, 𝑇 − 𝑡]

− (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝜏) , 𝜏 ∈ (𝑇 − 𝑡, 𝑇 − 𝑡] .

(59)

By the time invariance of 𝑃
𝑇

(𝑡), 𝑃
𝑇−𝑡

(0) = 𝑃

𝑇

(𝑡). Then,

𝑥



0𝑃𝑇 (𝑡) 𝑥0 = 𝑥



0𝑃𝑇−𝑡 (0) 𝑥0 ≤ 𝐽

𝛾

𝑇−𝑡

(𝑥0, V)

= 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) + 𝐸∫

𝑇−𝑡

𝑇−𝑡

{‖𝑧 (𝜏)‖

2
− 𝛾

2
‖V (𝜏)‖

2
} 𝑑𝜏

= 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) + 𝐸∫

𝑇−𝑡

𝑇−𝑡

{𝑥



(𝜏)

⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝜏)} 𝑑𝜏

+𝐸∫

𝑇−𝑡

𝑇−𝑡

{[V (𝜏) + (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



𝐶𝑥 (𝜏)]



⋅ (𝐷



𝐷−𝛾

2
𝐼) [V (𝜏) + (𝐷



𝐷 − 𝛾

2
𝐼)

−1

𝐷



𝐶𝑥 (𝜏)]} 𝑑𝜏
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= 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) + 𝐸∫

𝑇−𝑡

𝑇−𝑡

{𝑥



(𝜏)

⋅ 𝐶



[𝐼 −𝐷 (𝐷



𝐷 − 𝛾

2
𝐼)

−1
𝐷



]𝐶𝑥 (𝜏)} 𝑑𝜏

≤ 𝐽

𝛾

𝑇−𝑡

(𝑥0, V
∗

𝑇−𝑡

) = 𝑥



0𝑃𝑇 (𝑡) 𝑥0.

(60)

This means that 𝑃
𝑇

(𝑡) decreases as 𝑇 increases for every 𝑡 ∈

[0, 𝑇].

3. A Numerical Example

Below, we give a numerical example to illustrate the rightness
of Theorems 12 and 14.

Example 1. In system (1), we consider a two-dimensional
linear stochastic system with the following parameters:

𝐴 = [

0 1

1 2

] ,

𝐵 = [

2 1

1 3

] ,

𝐶 = [

1 1

2 3

] ,

𝐷 = [

1 0

0 1

] ,

𝐴0 = [

1 2

2 1

] ,

𝐵0 = [

1 0

0 0

] .

(61)

Set 𝛾 = 0.5, 𝑇 = 2, 3; by solving (56), we can obtain the
solutions of

𝑃2 (𝑡) = [

𝑝

11
2 (𝑡) 𝑝

12
2 (𝑡)

𝑝

12
2 (𝑡) 𝑝

22
2 (𝑡)

] ,

𝑃3 (𝑡) = [

𝑝

11
3 (𝑡) 𝑝

12
3 (𝑡)

𝑝

12
3 (𝑡) 𝑝

22
3 (𝑡)

] ,

(62)

for which their trajectories are shown in Figure 1. If we set
𝑡 = 1, then it yields

𝑃2 (1) = [

−0.0892 −0.0953
−0.0953 −0.1446

] ,

𝑃3 (1) = [

−0.1044 −0.0889
−0.0889 −0.1489

] .

(63)

It is easy to see that𝑃2(1) > 𝑃3(1), which verifies the rightness
of Theorem 14.
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Figure 1: The trajectories of 𝑃2(𝑡) and 𝑃3(𝑡).

4. Conclusion

In this paper, we have solved the H
−

index problem where
both stochastic and deterministic perturbations are present.
Necessary and sufficient condition for the lower bound ofH

−

index is given by means of the solvability of a generalized
differential equation.The proposed results are not completely
dual toH

∞

norm, and the effectiveness of the givenmethods
is illustrated by numerical example.
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