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A transportation problem involving multiple objectives, multiple products, and three constraints, namely, source, destination,
and conveyance, is called the multiobjective multi-item solid transportation problem (MOMISTP). Recently, Kundu et al. (2013)
proposed a method to solve an unbalanced MOMISTP. In this paper, we suggest a method, which first converts an unbalanced
problem to a balanced one. In one case of an example, while the method proposed by Kundu et al. concludes infeasibility, our
method gives a feasible solution.

1. Introduction

In today’s business environment, competition is increasing
day by day and each organization aims to find better ways
to deliver values to the customers in a cost effective manner
within the specified time and fulfill their demands. For this
they think of different ideas. One of the ideas can be using
different type of transportation modes to save time and
money.

Taking into account this factor, the conventional trans-
portation problem proposed by Hitchcock in 1941 [1] was
generalized to the transportation problem which takes into
account three types of constraints, namely, source, destina-
tion, and conveyance constraints instead of only source and
destination constraints. This generalized problem is called
the solid transportation problem. It was introduced by Schell
in 1955 [2]. Solid transportation problem plays a major role
in today’s business economics as many business situations
resemble this. Solution procedure to the solid transportation
problem was given by Haley [3].

In many real-world problems, there are situations where
several objectives are to be considered and optimized at the
same time. Such problems are calledmultiobjective problems.
Inmultiobjective transportation problems, instead of optimal
solution, optimal compromise solution or efficient solution

(feasible solution for which no improvement in any objective
function is possible without sacrificing at least one of the
objective functions) is considered. Zimmermann [4] gave
the fuzzy programming technique for the multiobjective
transportation problems. B. Liu and Y.-K. Liu [5] presented
expected value model for fuzzy programming.

The geometric programming approach for multiobjective
transportation problems was considered by Islam and Roy
[6]. Gupta et al. [7] proposed a method, called Mehar’s
method, to find the exact fuzzy optimal solution of unbal-
anced fully fuzzy multiobjective transportation problems.
Gupta and Mehlawat [8] proposed an algorithm for a fuzzy
transportation problem to select a new type of coal.

The multiobjective transportation problems in which
heterogeneous items are to be transported fromdifferent pro-
duction points to different consumer points using different
modes of conveyance are called multiobjective multi-item
solid transportation problems (MOMISTPs).

Due to shortage of information, insufficient data, lack of
evidence, and so forth, the data for a transportation system
such as availabilities, demands, and conveyance capacities
are not always exact but can be fuzzy or arbitrary or both.
Bector and Chandra [9] have presented a systematic study
of fuzzy mathematical programming. The MOMISTPs in
which at least one of the parameters is represented by fuzzy
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number [10] are called the fuzzy multiobjective multi-item
solid transportation problems.

Genetic algorithm was used by Li et al. [11] to solve
multiobjective solid transportation problem (MOSTP) in
which only objective function coefficients were taken as
fuzzy numbers. Bit et al. [12] applied the fuzzy programming
technique to solve MOSTP. Fuzzy MOSTP where all the
parameters except decision variables are taken as fuzzy
numbers have been solved by Gen et al. [13] and Ojha et
al. [14]. Expected-constrained programming for an uncertain
solid transportation problem is given by Cui and Sheng [15].
Baidya et al. have discussed the multi-item interval valued
solid transportation problem in [16, 17]. A method to solve
multiobjective solid transportation problems in uncertain
environment has been presented in [18]. Kundu et al. [19,
20] have proposed methods to solve fuzzy MOMISTP. They
have applied the fuzzy programming technique and global
criterion method to find the optimal compromise solu-
tion.

In this paper a new method is proposed to solve the
fuzzy MOMISTP. The application of proposed method is
shown by solving two numerical examples in which objective
function coefficients, availabilities, and demand parameters
are represented by trapezoidal fuzzy numbers. In one case of
an example, while the method proposed in [19] concludes no
feasible solution, our method gives an optimal compromise
solution.

The present paper is organized as follows: Section 2
contains the basic definitions and ranking approach for
trapezoidal fuzzy numbers.Mathematicalmodel for the fuzzy
MOMISTP is presented in Section 3. The existing method
[19] is discussed in Section 4. A new method to solve the
fuzzy MOMISTP is proposed in Section 5. To illustrate the
proposed method, two numerical examples have been solved
in Section 6. Section 7 consists of the results of the two
problems with the existing method [19] and that of the
proposed method. The interpretation of the results has been
given in Section 8. Conclusions are discussed in Section 9.

2. Preliminaries [9, 21, 22]

In this section, some basic definitions, arithmetic operations,
and ranking approach of trapezoidal fuzzy numbers are
presented.

2.1. Basic Definitions

Definition 1. A fuzzy number ̃𝐴 defined on the universal set
of real numbers R, denoted by ̃𝐴 = (𝑎, 𝑏, 𝑐, 𝑑), is said to be a
trapezoidal fuzzy number if its membership function 𝜇

̃

𝐴

(𝑥)

is given by

𝜇
̃

𝐴

(𝑥) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(𝑥 − 𝑎)

(𝑏 − 𝑎)

, 𝑎 ≤ 𝑥 < 𝑏

1, 𝑏 ≤ 𝑥 ≤ 𝑐

(𝑥 − 𝑑)

(𝑐 − 𝑑)

, 𝑐 < 𝑥 ≤ 𝑑

0, otherwise.

(1)

Definition 2. A trapezoidal fuzzy number ̃𝐴 = (𝑎, 𝑏, 𝑐, 𝑑) is
said to be zero trapezoidal fuzzy number if and only if 𝑎 = 0,
𝑏 = 0, 𝑐 = 0, and 𝑑 = 0.

Definition 3. A trapezoidal fuzzy number ̃𝐴 = (𝑎, 𝑏, 𝑐, 𝑑) is
said to be nonnegative trapezoidal fuzzy number if and only
if 𝑎 ≥ 0.

Definition 4. The support of a fuzzy number ̃𝐴 on 𝑋 is the
crisp set of all 𝑥 ∈ 𝑋 such that 𝜇

̃

𝐴

(𝑥) > 0.

Definition 5. The core of a fuzzy number ̃𝐴 on 𝑋 is the crisp
set of all 𝑥 ∈ 𝑋 such that 𝜇

̃

𝐴

(𝑥) = 1.

Remark 6. If, for a trapezoidal fuzzy number ̃𝐴 = (𝑎, 𝑏, 𝑐, 𝑑),
𝑏 = 𝑐, then it is called a triangular fuzzy number and is
denoted by (𝑎, 𝑏, 𝑏, 𝑑) or (𝑎, 𝑏, 𝑑) or (𝑎, 𝑐, 𝑑).

Definition 7. Two trapezoidal fuzzy numbers ̃

𝐴

1

=

(𝑎

1

, 𝑏

1

, 𝑐

1

, 𝑑

1

) and ̃

𝐴

2

= (𝑎

2

, 𝑏

2

, 𝑐

2

, 𝑑

2

) are said to be
equal if 𝑎

1

= 𝑎

2

, 𝑏
1

= 𝑏

2

, 𝑐
1

= 𝑐

2

, and 𝑑
1

= 𝑑

2

.

2.2. Arithmetic Operations. Let ̃𝐴
1

= (𝑎

1

, 𝑏

1

, 𝑐

1

, 𝑑

1

) and ̃𝐴
2

=

(𝑎

2

, 𝑏

2

, 𝑐

2

, 𝑑

2

) be two trapezoidal fuzzy numbers. Then

(i) ̃𝐴
1

⊕

̃

𝐴

2

= (𝑎
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+ 𝑎

2
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, 𝑑

1

+ 𝑑

2

),
(ii) ̃𝐴

1

⊖

̃

𝐴

2

= (𝑎

1

− 𝑑

2

, 𝑏

1

− 𝑐

2

, 𝑐

1

− 𝑏

2

, 𝑑

1

− 𝑎

2

),

(iii) 𝑘̃𝐴
1

= {

(𝑘𝑎

1
,𝑘𝑏

1
,𝑘𝑐

1
,𝑘𝑑

1
), 𝑘≥0

(𝑘𝑑

1
,𝑘𝑐

1
,𝑘𝑏

1
,𝑘𝑎

1
), 𝑘≤0,

(iv) ̃𝐴
1

⊗

̃

𝐴

2

= (𝑎, 𝑏, 𝑐, 𝑑),

where 𝑎 = min(𝑎
1

𝑎

2
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1

𝑑

2

, 𝑑

1

𝑎
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, 𝑑

1

𝑑
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𝑏
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, 𝑏
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𝑐

2
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𝑐

1

𝑏
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1

𝑐

2

), 𝑐 = max(𝑏
1

𝑏

2

, 𝑏

1

𝑐

2

, 𝑐

1

𝑏

2

, 𝑐

1

𝑐

2

), and 𝑑 = max(𝑎
1

𝑎

2

,

𝑎

1

𝑑

2

, 𝑑

1

𝑎

2

, 𝑑

1

𝑑

2

).

2.3. Liou and Wang Ranking Approach for Trapezoidal Fuzzy
Numbers. In this paper, we shall use the ranking approach
suggested by Liou and Wang [22] to find the crisp value of
trapezoidal fuzzy numbers. According to this approach we
have the following.

Let 𝐹(R) be a set of fuzzy numbers defined on the set of
real numbers R and let ̃𝐴 = (𝑎, 𝑏, 𝑐, 𝑑) ∈ 𝐹(R). Then

R (̃𝐴) =
(𝑎 + 𝑏 + 𝑐 + 𝑑)

4

(2)

is called a ranking function R : 𝐹(R) → R, which maps
each fuzzy number into the real line.

2.4. Comparison of Trapezoidal Fuzzy Numbers. Let ̃𝐴
1
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, 𝑑

2
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̃

𝐴

1

≻

̃

𝐴

2

if R (̃𝐴
1
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≺
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𝐴
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if R (̃𝐴
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) = R (̃𝐴
2

) .

(3)
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3. Mathematical Model of
Multiobjective Multi-Item Solid
Transportation Problem [19]

A multiobjective multi-item solid transportation problem
with 𝑅 objectives, in which 𝑙 different items are to be
transported from 𝑚 sources (𝑆

𝑖

) to 𝑛 destinations (𝐷
𝑗

) via 𝐾
different conveyances, can be formulated as follows:

Minimize (𝑍

1

, 𝑍

2

, . . . , 𝑍

𝑅

)

subject to
𝑛

∑

𝑗=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

≤ 𝑎

𝑝

𝑖

; 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑝 ≤ 𝑙

𝑚

∑

𝑖=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

≥

̃

𝑏

𝑝

𝑗

; 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑝 ≤ 𝑙

𝑙

∑

𝑝=1

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝑥

𝑝

𝑖𝑗𝑘

≤ 𝑒

𝑘

; 1 ≤ 𝑘 ≤ 𝐾

𝑥

𝑝

𝑖𝑗𝑘

≥ 0, ∀𝑖, 𝑗, 𝑘, 𝑝,

(4)

where 𝑎𝑝
𝑖

is the fuzzy availability of item 𝑝 at 𝑆
𝑖

, ̃𝑏𝑝
𝑗

is the
fuzzy demand of item 𝑝 at 𝐷

𝑗

, 𝑐𝑡𝑝
𝑖𝑗𝑘

is the fuzzy penalty
for transporting one unit of item 𝑝 from 𝑆

𝑖

to 𝐷
𝑗

via 𝑘th
conveyance for 𝑡th objective 𝑍

𝑡

, 𝑒
𝑘

is the total fuzzy capacity
of 𝑘th conveyance, 𝑥𝑝

𝑖𝑗𝑘

is the quantity of item 𝑝 to be
transported from 𝑆

𝑖

to 𝐷
𝑗

using 𝑘th conveyance, and 𝑍
𝑡

=

∑

𝑙

𝑝=1

∑

𝑚

𝑖=1

∑

𝑛

𝑗=1

∑

𝐾

𝑘=1

(𝑐

𝑡𝑝

𝑖𝑗𝑘

𝑥

𝑝

𝑖𝑗𝑘

), 1 ≤ 𝑡 ≤ 𝑅.
For the above problem to be balanced, it should satisfy the

following conditions.

(i) Total availability of an item at all sources should be
equal to its demand at all the destinations.

(ii) Overall availability of all the items at all the sources,
overall demand of all the items at all the destinations,
and total conveyance capacity should be equal.

Mathematically, it means

(i) R(∑𝑚
𝑖=1

𝑎

𝑝

𝑖

) = R(∑
𝑛

𝑗=1

̃

𝑏

𝑝

𝑗

), 1 ≤ 𝑝 ≤ 𝑙,

(ii) R(∑𝑙
𝑝=1

∑

𝑚

𝑖=1

𝑎

𝑝

𝑖

) = R(∑
𝑙

𝑝=1

∑

𝑛

𝑗=1

̃

𝑏

𝑝

𝑗

) = R(∑
𝐾

𝑘=1

𝑒

𝑘

).

4. The Existing Method

Recently, Kundu et al. [19] proposed a method to solve
the fuzzy MOMISTPs. Their method does not require to
convert the unbalanced MOMISTP to a balanced one. The
first step is to defuzzify the fuzzy parameters (availability,
demand, conveyance capacity, and objective function coeffi-
cients). On defuzzification, the problem gets converted to the
crisp multiobjective multi-item transportation problem. For
defuzzification, the authors have used two different methods.
They observed out that the expected value model does not
give a feasible solution. It may be due to the fact that the
expected value method gives R (total availability) = 122.25,

R (total demand) = 116, and R (total conveyance capacity)
= 104.5. Thus R (total conveyance capacity) < R (total
demand), which implies infeasibility.

In this paper, we propose a method for MOMISTPs. The
method first converts an unbalanced problem to a balanced
one. Therefore the expected value model gives a feasible
solution. This is then used to obtain its optimal compromise
solution. Our method gives better value of the objective
function than that obtained in [19].

5. The Proposed Method

In this section a new method has been proposed to find the
optimal compromise solution of fuzzy MOMISTP in which
all the parameters except the decision variables are repre-
sented by trapezoidal fuzzy numbers.Themethod consists of
the following steps.

Step 1. Check whether the problem under consideration is
balanced or not (according to the definition given in Section
3).

For this, find ∑𝑚
𝑖=1

𝑎

𝑝

𝑖

and ∑𝑛
𝑗=1

̃

𝑏

𝑝

𝑗

for each 𝑝, 1 ≤ 𝑝 ≤ 𝑙.
Check the equality of the two as given in Definition 7.

Case 1. If R(∑𝑚
𝑖=1

𝑎

𝑝

𝑖

) = R(∑
𝑛

𝑗=1

̃

𝑏

𝑝

𝑗

), 1 ≤ 𝑝 ≤ 𝑙, that is, the
problem is balanced, then go to Step 2.

Case 2. If R(∑𝑚
𝑖=1

𝑎

𝑝

𝑖

) ̸= R(∑
𝑛

𝑗=1

̃

𝑏

𝑝

𝑗

) for any 𝑝, 1 ≤ 𝑝 ≤ 𝑙,
then, tomake the problembalanced, proceed according to the
following subcases. One or both of these subcases may apply.

Case 2.1. Check ifR(∑𝑚
𝑖=1

𝑎

𝑝

𝑖

) < R(∑
𝑛

𝑗=1

̃

𝑏

𝑝

𝑗

). Say this happens
for one or more items. Then introduce a dummy source with
fuzzy availabilities of these items equal to any nonnegative
trapezoidal fuzzy number whose ranks are equal to the
difference of ranks of total demand and total availability
of the corresponding items. Assume the unit fuzzy cost of
transporting these items from this dummy source to any of
the destinations via any of the conveyances as zero trapezoidal
fuzzy number.

Case 2.2. Check if R(∑𝑚
𝑖=1

𝑎

𝑝

𝑖

) > R(∑
𝑛

𝑗=1

̃

𝑏

𝑝

𝑗

) for one or
more items. Then introduce a dummy destination similar to
dummy source in Case 2.1.

Now proceed to Step 2.

Step 2. Using Step 1, we have R(∑
𝑙

𝑝=1

∑

𝑢

𝑖=1

𝑎

𝑝

𝑖

) =

R(∑
𝑙

𝑝=1

∑

V
𝑗=1

̃

𝑏

𝑝

𝑗

) = 𝑉 (say) (where 𝑢 = 𝑚 or 𝑚 + 1

and V = 𝑛 or 𝑛 + 1).

Case 1. Consider 𝑉 = R(∑
𝐾

𝑘=1

𝑒

𝑘

); that is, overall availability,
overall demand, and overall conveyance capacity are equal;
then go to Step 3.

Case 2 (𝑉 −R(∑𝐾
𝑘=1

𝑒

𝑘

) = 𝛼 ̸= 0). Then one of the following
conditions will hold.

Case 2.1 (𝛼 > 0). Then introduce a dummy conveyance
having fuzzy capacity equal to any nonnegative fuzzy number
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whose rank is equal to 𝛼. Assume the unit fuzzy cost of
transportation from all the source to all the destination via
this added dummy conveyance as zero trapezoidal fuzzy
number.

Case 2.2 (𝛽 = −𝛼 > 0). Then check whether in Step 1 a
dummy source and/or a dummy destination were introduced
or not.

Case 2.2.1. If both a dummy source and a dummy destination
were introduced, then increase the overall fuzzy availability
and fuzzy demand of the already added dummy source and
dummy destination by a nonnegative fuzzy number whose
rank is 𝛽.

Case 2.2.2. If only a dummy source is introduced in Step 1,
then increase its overall availability by a nonnegative fuzzy
number having rank 𝛽 and also add a dummy destination
having this increased demand.

Case 2.2.3. If only a dummy destination is introduced in Step
1, then increase its overall demand by a nonnegative fuzzy
number having rank 𝛽 and also add a dummy source having
this increased availability.

Case 2.2.4. If neither a dummy source nor a dummy destina-
tion was introduced in Step 1, then add a dummy source as
well as a dummy destination having availability and demand
equal to any nonnegative fuzzy number whose rank is 𝛽.

Assume the unit fuzzy cost of transportation from the
newly introduced source to all the destinations via any of the
conveyance as zero trapezoidal fuzzy number.

The problem is balanced now.

Step 3. The next step is to convert the balanced fuzzy
MOMISTP problem, obtained by using Steps 1 and 2, into a
crisp MOMISTP. We will discuss two different methods for
this.

Step 3.1 (using rank of the fuzzy number). Formulate the
crisp model by obtaining the rank of the objective function
coefficients as well as the constraints, as shown in the
following:

Minimize (𝑍

1

, 𝑍

2

, . . . , 𝑍

𝑅

)

subject to
𝑛

∑

𝑗=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

= R (𝑎
𝑝

𝑖

) , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑝 ≤ 𝑙

𝑚

∑

𝑖=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

= R (̃𝑏
𝑝

𝑗

) , 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑝 ≤ 𝑙

𝑙

∑

𝑝=1

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

= R (𝑒
𝑘

) , 1 ≤ 𝑘 ≤ 𝐾

𝑥

𝑝

𝑖𝑗𝑘

≥ 0, ∀𝑖, 𝑗, 𝑘, 𝑝,

(5)

where

𝑍

𝑡

=

𝑙

∑

𝑝=1

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐾

∑

𝑘=1

R (𝑐
𝑡𝑝

𝑖𝑗𝑘

) 𝑥

𝑝

𝑖𝑗𝑘

, 1 ≤ 𝑡 ≤ 𝑅. (6)

This method provides a crisp optimal compromise solution.

Step 3.2 (using the concept of minimum of fuzzy number)

Step 3.2.1 (brief overview of themethod). Since a fuzzy number
̃

𝑍 cannot be minimized directly, Buckley et al. [23] proposed
to find min ̃𝑍 by first converting it to a multiobjective
problem:

min ̃𝑍 = (max𝐴
𝐿

,min𝐶,min𝐴
𝑈

) , (7)

where 𝐴
𝐿

, 𝐴
𝑈

are the areas under the graph of membership
function of ̃𝑍 to the left and right of the center of core 𝐶.

In the above multiobjective problem, we wish to

(i) maximize the possibility of getting values less than 𝐶,

(ii) minimize the possibility of getting values more than
𝐶.

This multiobjective problem is then changed to the
following single objective optimization problem:

min {𝜆
1

[𝑀 − 𝐴

𝐿

] + 𝜆

2

𝐶 + 𝜆

3

𝐴

𝑈

} , (8)

where 𝑀 > 0 is so large such that max𝐴
𝐿

is equivalent to
min[𝑀 − 𝐴

𝐿

]; 𝜆
𝑖

> 0, 𝑖 = 1, 2, 3, and 𝜆
1

+ 𝜆

2

+ 𝜆

3

= 1. The
values of 𝜆

𝑖

’s depend upon the decision maker’s choice.

Step 3.2.2 (to calculate the values of 𝐴
𝐿

, 𝐶, and 𝐴
𝑅

). Since
we have taken the objective function coefficients to be
trapezoidal fuzzy numbers, let

𝑐

𝑡𝑝

𝑖𝑗𝑘

= (𝑐

1𝑡𝑝

𝑖𝑗𝑘

, 𝑐

2𝑡𝑝

𝑖𝑗𝑘

, 𝑐

3𝑡𝑝

𝑖𝑗𝑘

, 𝑐

4𝑡𝑝

𝑖𝑗𝑘

) . (9)

Therefore, each objective function is also a trapezoidal fuzzy
number

̃

𝑍

𝑡

= (𝑍

1

𝑡

, 𝑍

2

𝑡

, 𝑍

3

𝑡

, 𝑍

4

𝑡

) , (10)

where 𝑍𝑟
𝑡

= ∑

𝑙

𝑝=1

∑

𝑚

𝑖=1

∑

𝑛

𝑗=1

∑

𝐾

𝑘=1

(𝑐

𝑟𝑡𝑝

𝑖𝑗𝑘

𝑥

𝑝

𝑖𝑗𝑘

), 1 ≤ 𝑟 ≤ 4. The
values of 𝐴

𝐿

, 𝐶, and 𝐴
𝑅

can be calculated as follows:

𝐶 =

𝑍

2

𝑡

+ 𝑍

3

𝑡

2

, 𝐴

𝐿

=

𝑍

3

𝑡

− 𝑍

1

𝑡

2

, 𝐴

𝑅

=

𝑍

4

𝑡

− 𝑍

2

𝑡

2

.

(11)
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Yes

No

Yes

No

Start

Is availability of each item 
equal to its demand?

Balance by adding a source
or destination as required 

Total availability = total demand
= total conveyance capacity?

Convert the problem to balanced one by
adding a dummy conveyance or source 

or destination or both source and
destination as required

Formulate the crisp value model

Apply fuzzy programming technique to 
obtain the optimal compromise solution

Stop

Figure 1: Flow chart for the proposed method.

Now, formulate the crisp model as shown in the following:

Minimize (𝑍

1

, 𝑍

2

, . . . , 𝑍

𝑅

)

subject to
𝑛

∑

𝑗=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

= R (𝑎
𝑝

𝑖

) , 1 ≤ 𝑖 ≤ 𝑚, 1 ≤ 𝑝 ≤ 𝑙

𝑚

∑

𝑖=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

= R (̃𝑏
𝑝

𝑗

) , 1 ≤ 𝑗 ≤ 𝑛, 1 ≤ 𝑝 ≤ 𝑙

𝑙

∑

𝑝=1

𝑚

∑

𝑖=1

𝑛

∑

𝑗=1

𝐾

∑

𝑘=1

𝑥

𝑝

𝑖𝑗𝑘

= R (𝑒
𝑘

) , 1 ≤ 𝑘 ≤ 𝐾

𝑥

𝑝

𝑖𝑗𝑘

≥ 0, ∀𝑖, 𝑗, 𝑘, 𝑝,

(12)

where

𝑍

𝑡

= {𝜆

1

[𝑀 − 𝐴

𝐿

(𝑍

𝑡

)] + 𝜆

2

𝐶 (𝑍

𝑡

) + 𝜆

3

𝐴

𝑈

(𝑍

𝑡

)} ,

1 ≤ 𝑡 ≤ 𝑅

𝜆

𝑖

> 0, 𝑖 = 1, 2, 3, 𝜆

1

+ 𝜆

2

+ 𝜆

3

= 1.

(13)

Step 4. Solve the crisp multiobjective linear programming
problem, obtained in Step 3, by any of the existing mul-
tiobjective programming techniques and find the optimal
compromise solution.

Remark 8. There are several defuzzification methods (e.g.,
[22, 24]) to defuzzify the fuzzy numbers. But in this paper, we

will use the defuzzification method given by Liou and Wang
[22] as explained in Section 2.4, called the rank value. One
can use any of the defuzzification methods.

A flowchart of the proposed method is shown in Figure 1.

6. Numerical Example

6.1. Example 1. Consider the fuzzy MOMISTP solved by
Kundu et al. [19] in which two items are to be transported
via two different conveyances from two sources to three des-
tinations and consisting of two different objective functions.
Solve the problems to find the amount of goods to be shipped
from source(s) to destination(s) so that the total demand at
all the destinations is met at the minimum total cost and in
minimum time possible. Data of the problem is as shown in
Tables 1, 2, 3, 4, and 5.

From Table 5, we find that, for the first item, total
availability (∑2

𝑖=1

𝑎

1

𝑖

) = (21, 24, 26, 28) ⊕ (28, 32, 35, 37) =

(49, 56, 61, 65) and total demand (∑3
𝑗=1

̃

𝑏

1

𝑗

) = (14, 16, 19, 22)⊕

(17, 20, 22, 25) ⊕ (12, 15, 18, 21) = (43, 51, 59, 68).
Similarly, for the second item, total availability (∑2

𝑖=1

𝑎

2

𝑖

) =

(57, 62, 67, 72) and total demand (∑3
𝑗=1

̃

𝑏

2

𝑗

) = (51, 58, 63, 71).
After calculating the rank for all these, we find that

R(
2

∑

𝑖=1

𝑎

𝑙

𝑖

) > R(
3

∑

𝑗=1

̃

𝑏

𝑙

𝑗

) , 𝑙 = 1, 2. (14)
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Table 1: Unit penalties of transportation for item 1 in the first
objective.

(a)

Conveyance 𝑘 = 1

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(5, 8, 9, 11) (4, 6, 9, 11) (10, 12, 14, 16)
𝑆

2

(8, 10, 13, 15) (6, 7, 8, 9) (11, 13, 15, 17)

(b)

Conveyance 𝑘 = 2

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(9, 11, 13, 15) (6, 8, 10, 12) (7, 9, 12, 14)
𝑆

2

(10, 11, 13, 15) (6, 8, 10, 12) (14, 16, 18, 20)

Table 2: Unit penalties of transportation for item 2 in the first
objective.

(a)

Conveyance 𝑘 = 1

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(9, 10, 12, 13) (5, 8, 10, 12) (10, 11, 12, 13)
𝑆

2

(11, 13, 14, 16) (7, 9, 12, 14) (12, 14, 16, 18)

(b)

Conveyance 𝑘 = 2

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(11, 13, 14, 15) (6, 7, 9, 11) (8, 10, 11, 13)
𝑆

2

(14, 16, 18, 20) (9, 11, 13, 14) (13, 14, 15, 16)

So to balance the problem add a dummy destination𝐷
4

with
demands of items 1 and 2 equal to any fuzzy number whose
ranks are 2.5 and 3.75, respectively. This makes

R(
2

∑

𝑙=1

2

∑

𝑖=1

𝑎

𝑙

𝑖

) = R(
2

∑

𝑙=1

3

∑

𝑗=1

̃

𝑏

𝑙

𝑗

) = 122.25. (15)

Also, R(∑2
ℎ=1

𝑒

ℎ

) = 104.5 < 122.25. Therefore, insert a
dummy conveyance having total fuzzy capacity equal to any
fuzzy number with rank 17.75. As a dummy destination and
a dummy conveyance are introduced, assume 𝑐1

𝑖4𝑘

= 𝑐

2

𝑖4𝑘

=

𝑐

1

𝑖𝑗3

= 𝑐

2

𝑖𝑗3

= (0, 0, 0, 0) for all 𝑖 = 1, 2; 𝑗 = 1, 2, 3, 4; and
𝑘 = 1, 2, 3.

The considered problem is now balanced and consists
of two objectives, two items, two sources, four destinations,
and three different modes of transportation. The number of
constraints is 2 × 2 + 4 × 2 + 3 = 15.

Forming the crisp model by using the ranking technique
as explained in Step 3.1, the model is as shown in the
following.

Table 3: Unit penalties of transportation for item 1 in the second
objective.

(a)

Conveyance 𝑘 = 1

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(4, 5, 7, 8) (3, 5, 6, 8) (7, 9, 10, 12)
𝑆

2

(6, 8, 9, 11) (5, 6, 7, 8) (6, 7, 9, 10)

(b)

Conveyance 𝑘 = 2

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(6, 7, 8, 9) (4, 6, 7, 9) (5, 7, 9, 11)
𝑆

2

(4, 6, 8, 10) (7, 9, 11, 13) (9, 10, 11, 12)

Table 4: Unit penalties of transportation for item 2 in the second
objective.

(a)

Conveyance 𝑘 = 1

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(5, 7, 9, 10) (4, 6, 7, 9) (9, 11, 12, 13)
𝑆

2

(10, 11, 13, 14) (6, 7, 8, 9) (7, 9, 11, 12)

(b)

Conveyance 𝑘 = 2

Sources Destinations
𝐷

1

𝐷

2

𝐷

3

𝑆

1

(7, 8, 9, 10) (4, 5, 7, 8) (8, 10, 11, 12)
𝑆

2

(6, 8, 10, 12) (5, 7, 9, 11) (9, 10, 12, 14)

Table 5: Availability and demand data.

Fuzzy availability Fuzzy demand Conveyance capacity
𝑎

1

1

= (21, 24, 26, 28) ̃

𝑏

1

1

= (14, 16, 19, 22) 𝑒

1

= (46, 49, 51, 53)
𝑎

1

2

= (28, 32, 35, 37) ̃

𝑏

1

2

= (17, 20, 22, 25) 𝑒

2

= (51, 53, 56, 59)
𝑎

2

1

= (32, 34, 37, 39) ̃

𝑏

1

3

= (12, 15, 18, 21)
𝑎

2

2

= (25, 28, 30, 33) ̃

𝑏

2

1

= (20, 23, 25, 28)
̃

𝑏

2

2

= (16, 18, 19, 22)
̃

𝑏

2

3

= (15, 17, 19, 21)

Problem (P1)

Minimize 𝑍

1

= 8.25𝑥

1

111

+ 12𝑥

1

112

+ 0𝑥

1

113

+ 7.5𝑥

1

121

+ 9𝑥

1

122

+ 0𝑥

1

123

+ 13𝑥

1

131

+ 10.5𝑥

1

132

+ 0𝑥

1

133

+ 0𝑥

1

141

+ 0𝑥

1

142

+ 0𝑥

1

143

+ 11.5𝑥

1

211

+ 12.25𝑥

1

212

+ 0𝑥

1

213

+ 7.5𝑥

1

221

+ 9𝑥

1

222

+ 0𝑥

1

223

+ 14𝑥

1

231
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+ 17𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

241

+ 0𝑥

1

242

+ 0𝑥

1

243

+ 11𝑥

2

111

+ 13.25𝑥

2

112

+ 0𝑥

2

113

+ 8.75𝑥

2

121

+ 8.25𝑥

2

122

+ 0𝑥

2

123

+ 11.5𝑥

2

131

+ 10.5𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 13.5𝑥

2

211

+ 17𝑥

2

212

+ 0𝑥

2

213

+ 10.5𝑥

2

221

+ 11.75𝑥

2

222

+ 0𝑥

2

223

+ 15𝑥

2

231

+ 14.5𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

Minimize 𝑍

2

= 6𝑥

1

111

+ 7.5𝑥

1

112

+ 0𝑥

1

113

+ 5.5𝑥

1

121

+ 6.5𝑥

1

122

+ 0𝑥

1

123

+ 9.5𝑥

1

131

+ 8𝑥

1

132

+ 0𝑥

1

133

+ 0𝑥

1

141

+ 0𝑥

1

142

+ 0𝑥

1

143

+ 8.5𝑥

1

211

+ 7𝑥

1

212

+ 0𝑥

1

213

+ 6.5𝑥

1

221

+ 10𝑥

1

222

+ 0𝑥

1

223

+ 8𝑥

1

231

+ 10.5𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

241

+ 0𝑥

1

242

+ 0𝑥

1

243

+ 7.75𝑥

2

111

+ 8.5𝑥

2

112

+ 0𝑥

2

113

+ 6.5𝑥

2

121

+ 6𝑥

2

122

+ 0𝑥

2

123

+ 11.25𝑥

2

131

+ 10.25𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 12𝑥

2

211

+ 9𝑥

2

212

+ 0𝑥

2

213

+ 7.5𝑥

2

221

+ 8𝑥

2

222

+ 0𝑥

2

223

+ 9.75𝑥

2

231

+ 11.25𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

subject to 𝑥

1

111

+ 𝑥

1

112

+ 𝑥

1

113

+ 𝑥

1

121

+ 𝑥

1

122

+ 𝑥

1

123

+ 𝑥

1

131

+ 𝑥

1

132

+ 𝑥

1

133

+ 𝑥

1

141

+ 𝑥

1

142

+ 𝑥

1

143

= 24.75

𝑥

2

111

+ 𝑥

2

112

+ 𝑥

2

113

+ 𝑥

2

121

+ 𝑥

2

122

+ 𝑥

2

123

+ 𝑥

2

131

+ 𝑥

2

132

+ 𝑥

2

133

+ 𝑥

2

141

+ 𝑥

2

142

+ 𝑥

2

143

= 35.5

𝑥

1

211

+ 𝑥

1

212

+ 𝑥

1

213

+ 𝑥

1

221

+ 𝑥

1

222

+ 𝑥

1

223

+ 𝑥

1

231

+ 𝑥

1

232

+ 𝑥

1

233

+ 𝑥

1

241

+ 𝑥

1

242

+ 𝑥

1

243

= 33.0

𝑥

2

211

+ 𝑥

2

212

+ 𝑥

2

213

+ 𝑥

2

221

+ 𝑥

2

222

+ 𝑥

2

223

+ 𝑥

2

231

+ 𝑥

2

232

+ 𝑥

2

233

+ 𝑥

2

241

+ 𝑥

2

242

+ 𝑥

2

243

= 29.0

𝑥

1

111

+ 𝑥

1

112

+ 𝑥

1

113

+ 𝑥

1

211

+ 𝑥

1

212

+ 𝑥

1

213

= 17.75

𝑥

2

111

+ 𝑥

2

112

+ 𝑥

2

113

+ 𝑥

2

211

+ 𝑥

2

212

+ 𝑥

2

213

= 24.0

𝑥

1

121

+ 𝑥

1

122

+ 𝑥

1

123

+ 𝑥

1

221

+ 𝑥

1

222

+ 𝑥

1

223

= 21.0

𝑥

2

121

+ 𝑥

2

122

+ 𝑥

2

123

+ 𝑥

2

221

+ 𝑥

2

222

+ 𝑥

2

223

= 18.75

𝑥

1

131

+ 𝑥

1

132

+ 𝑥

1

133

+ 𝑥

1

231

+ 𝑥

1

232

+ 𝑥

1

233

= 16.5

𝑥

2

131

+ 𝑥

2

132

+ 𝑥

2

133

+ 𝑥

2

231

+ 𝑥

2

232

+ 𝑥

2

233

= 18.0

𝑥

1

141

+ 𝑥

1

142

+ 𝑥

1

143

+ 𝑥

1

241

+ 𝑥

1

242

+ 𝑥

1

243

= 2.5

𝑥

2

141

+ 𝑥

2

142

+ 𝑥

2

143

+ 𝑥

2

241

+ 𝑥

2

242

+ 𝑥

2

243

= 3.75

𝑥

1

111

+ 𝑥

1

121

+ 𝑥

1

131

+ 𝑥

1

141

+ 𝑥

1

211

+ 𝑥

1

221

+ 𝑥

1

231

+ 𝑥

1

241

+ 𝑥

2

111

+ 𝑥

2

121

+ 𝑥

2

131

+ 𝑥

2

141

+ 𝑥

2

211

+ 𝑥

2

221

+ 𝑥

2

231

+ 𝑥

2

241

= 49.75

𝑥

1

112

+ 𝑥

1

122

+ 𝑥

1

132

+ 𝑥

1

142

+ 𝑥

1

212

+ 𝑥

1

222

+ 𝑥

1

232

+ 𝑥

1

242

+ 𝑥

2

112

+ 𝑥

2

122

+ 𝑥

2

132

+ 𝑥

2

142

+ 𝑥

2

212

+ 𝑥

2

222

+ 𝑥

2

232

+ 𝑥

2

242

= 54.75

𝑥

1

113

+ 𝑥

1

123

+ 𝑥

1

133

+ 𝑥

1

143

+ 𝑥

1

213

+ 𝑥

1

223

+ 𝑥

1

233

+ 𝑥

1

243

+ 𝑥

2

113

+ 𝑥

2

123

+ 𝑥

2

133

+ 𝑥

2

143

+ 𝑥

2

213

+ 𝑥

2

223

+ 𝑥

2

233

+ 𝑥

2

243

= 17.75.

(16)

Applying the fuzzy programming technique [4] to the above
crispmultiobjective linear programming problem, the results
obtained are as follows:

𝐿

1

(min (𝑍
1

)) = 938.06, 𝑈

1

(max (𝑍
1

)) = 1061.0,

𝐿

2

(min (𝑍
2

)) = 682.5, 𝑈

2

(max (𝑍
2

)) = 777.875,

(17)
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and the obtained optimal compromise solution is given as
follows:

𝑥

1

111

= 8.25, 𝑥

1

132

= 16.5, 𝑥

1

212

= 9.5,

𝑥

1

221

= 21.0, 𝑥

1

242

= 2.5, 𝑥

2

111

= 18.63,

𝑥

2

122

= 16.88, 𝑥

2

212

= 1.79, 𝑥

2

213

= 3.58,

𝑥

1

221

= 1.88, 𝑥

2

232

= 3.83, 𝑥

2

233

= 14.17,

𝑥

2

242

= 3.75, 𝜆 = 0.78, 𝑍

1

= 945.3425;

𝑍

2

= 703.46.

(18)

Forming the crisp model using the concept of minimum of
fuzzy number as explained in Step 3.2 of the proposedmethod
taking𝑀 = 500, 𝜆

1

= 𝜆

2

= 0.4, 𝜆

3

= 0.2, the following crisp
multiobjective transportation problem is obtained.

Problem (P2)

Minimize 𝑍

1

= 2.9𝑥

1

111

+ 4.4𝑥

1

112

+ 0𝑥

1

113

+ 2.5𝑥

1

121

+ 3.2𝑥

1

122

+ 0𝑥

1

123

+ 4.8𝑥

1

131

+ 3.7𝑥

1

132

+ 0𝑥

1

133

+ 0𝑥

1

141

+ 0𝑥

1

142

+ 0𝑥

1

143

+ 4.1𝑥

1

211

+ 4.6𝑥

1

212

+ 0𝑥

1

213

+ 2.8𝑥

1

221

+ 3.2𝑥

1

222

+ 0𝑥

1

223

+ 5.2𝑥

1

231

+ 6.4𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

241

+ 0𝑥

1

242

+ 0𝑥

1

243

+ 4.1𝑥

2

111

+ 5𝑥

2

112

+ 0𝑥

2

113

+ 3𝑥

2

121

+ 3𝑥

2

122

+ 0𝑥

2

123

+ 4.4𝑥

2

131

+ 3.9𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 5.1𝑥

2

211

+ 6.4𝑥

2

212

+ 0𝑥

2

213

+ 3.7𝑥

2

221

+ 4.3𝑥

2

222

+ 0𝑥

2

223

+ 5.6𝑥

2

231

+ 5.6𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

+ 200

Minimize 𝑍

2

= 2.1𝑥

1

111

+ 2.8𝑥

1

112

+ 0𝑥

1

113

+ 1.9𝑥

1

121

+ 2.3𝑥

1

122

+ 0𝑥

1

123

+ 3.5𝑥

1

131

+ 2.8𝑥

1

132

+ 0𝑥

1

133

+ 0𝑥

1

141

+ 0𝑥

1

142

+ 0𝑥

1

143

+ 3.1𝑥

1

211

+ 2.4𝑥

1

212

+ 0𝑥

1

213

+ 2.4𝑥

1

221

+ 3.6𝑥

1

222

+ 0𝑥

1

223

+ 2.9𝑥

1

231

+ 4𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

241

+ 0𝑥

1

242

+ 0𝑥

1

243

+ 2.7𝑥

2

111

+ 3.2𝑥

2

112

+ 0𝑥

2

113

+ 2.3𝑥

2

121

+ 2.1𝑥

2

122

+ 0𝑥

2

123

+ 4.2𝑥

2

131

+ 3.8𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 4.5𝑥

2

211

+ 3.2𝑥

2

212

+ 0𝑥

2

213

+ 2.8𝑥

2

221

+ 2.8𝑥

2

222

+ 0𝑥

2

223

+ 3.5𝑥

2

231

+ 4.2𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

+ 200

(19)

subject to the constraints as in Problem (P1).
Solving this problem using fuzzy programming tech-

nique, obtained results are as follows:

𝐿

1

(min (𝑍
1

)) = 540.88, 𝐴

𝐿

(𝑍

1

) = 170.25,

𝐶 (𝑍

1

) = 936.625, 𝐴

𝑅

(𝑍

1

) = 174.625

𝑈

1

(min (𝑍
1

)) = 587.75, 𝐴

𝐿

(𝑍

1

) = 181.75,

𝐶 (𝑍

1

) = 1051.125, 𝐴

𝑅

(𝑍

1

) = 200.0

𝐿

2

(min (𝑍
2

)) = 439.05, 𝐴

𝐿

(𝑍

2

) = 170.25,

𝐶 (𝑍

2

) = 733.875, 𝐴

𝑅

(𝑍

2

) = 161.75.

𝑈

2

(min (𝑍
2

)) = 476.3, 𝐴

𝐿

(𝑍

2

) = 144.5,

𝐶 (𝑍

2

) = 768.375, 𝐴

𝑅

(𝑍

2

) = 133.75

(20)

The optimal compromise solution is found to be

𝑥

1

111

= 8.25, 𝑥

1

132

= 16.5, 𝑥

1

212

= 9.5,

𝑥

1

221

= 21.0, 𝑥

1

242

= 2.5, 𝑥

2

111

= 20.5,

𝑥

2

122

= 12.56, 𝑥

2

132

= 2.44, 𝑥

2

212

= 1.31,

𝑥

2

213

= 2.19, 𝑥

2

222

= 6.19, 𝑥

2

233

= 15.56,

𝑥

2

242

= 3.75, 𝜆 = 0.73.

(21)

𝑍

1

= 553.722, 𝐴
𝐿

(𝑍

1

) = 161.25, 𝐶(𝑍
1

) = 963.025, 𝐴
𝑅

(𝑍

1

)

= 165.06, and [872.37, 1053.68] is the core of the objective
function 𝑍

1

.
𝑍

2

= 449.247, 𝐴
𝐿

(𝑍

2

) = 163.815, 𝐶(𝑍
2

) = 710.79,
𝐴

𝑅

(𝑍

1

) = 152.405, and [624.26, 797.32] is the core of the
objective function 𝑍

2

.

6.2. Example 2. If a MOMISTP in which availability of
one or more items is less than the corresponding demand
and/or total conveyance capacity is less than total demand
is solved by the method presented in [19], it terminates with
the conclusion that the problem is infeasible. However, such
problems can be solved by themethod proposed in this paper,
since it starts after balancing the unbalanced problem. Let the
availability data in Example 1 (Table 5) be changed to Table 6,
so that the total availability of some items is less and of some
items is more than their total demand, keeping the demand
and the unit penalty of transportation the same.
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Table 6: Availability and demand data.

Fuzzy availability Fuzzy demand Conveyance capacity
𝑎

1

1

= (15, 18, 22, 27) ̃

𝑏

1

1

= (14, 16, 19, 22) 𝑒

1

= (46, 49, 51, 53)
𝑎

1

2

= (20, 25, 29, 32) ̃

𝑏

1

2

= (17, 20, 22, 25) 𝑒

2

= (51, 53, 56, 59)
𝑎

2

1

= (32, 34, 37, 39) ̃

𝑏

1

3

= (12, 15, 18, 21)
𝑎

2

2

= (25, 28, 30, 33) ̃

𝑏

2

1

= (20, 23, 25, 28)
̃

𝑏

2

2

= (16, 18, 19, 22)
̃

𝑏

2

3

= (15, 17, 19, 21)

We find that

R(
2

∑

𝑖=1

𝑎

1

𝑖

) = 47 < R(
3

∑

𝑗=1

̃

𝑏

1

𝑗

) = 55.25,

R(
2

∑

𝑖=1

𝑎

2

𝑖

) = 64.5 > R(
3

∑

𝑗=1

̃

𝑏

2

𝑗

) = 60.75,

R(
2

∑

ℎ=1

𝑒

ℎ

) = 104.5.

(22)

So to balance the problem add a dummy source 𝑆
3

having
availability of item 1 only and a dummy destination 𝐷

4

with demand of item 2 only, equal to any nonnegative fuzzy
numbers whose ranks are 8.25 and 3.75, respectively, and a
dummy conveyance having availability equal to any fuzzy
number having rank 15.25. Assume the unit transportation
penalties from 𝑆

3

to all the destinations and from all the
sources to𝐷

4

via any of the conveyances as 𝑐1
3𝑗𝑘

= 𝑐

2

𝑖4𝑘

= 𝑐

1

𝑖𝑗3

=

𝑐

2

𝑖𝑗3

= (0, 0, 0, 0) for all 𝑖 = 1, 2, 3; 𝑗 = 1, 2, 3, 4; and 𝑘 = 1, 2, 3.
After balancing the problem and forming the expected

value model using ranking technique the obtained problem
is shown as follows.

Problem (P3)

Minimize 𝑍

1

= 8.25𝑥

1

111

+ 12𝑥

1

112

+ 0𝑥

1

113

+ 7.5𝑥

1

121

+ 9𝑥

1

122

+ 0𝑥

1

123

+ 13𝑥

1

131

+ 10.5𝑥

1

132

+ 0𝑥

1

133

+ 11.5𝑥

1

211

+ 12.25𝑥

1

212

+ 0𝑥

1

213

+ 7.5𝑥

1

221

+ 9𝑥

1

222

+ 0𝑥

1

223

+ 14𝑥

1

231

+ 17𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

311

+ 0𝑥

1

312

+ 0𝑥

1

313

+ 0𝑥

1

321

+ 0𝑥

1

322

+ 0𝑥

1

323

+ 0𝑥

1

331

+ 0𝑥

1

332

+ 0𝑥

1

333

+ 11𝑥

2

111

+ 13.25𝑥

2

112

+ 0𝑥

2

113

+ 8.75𝑥

2

121

+ 8.25𝑥

2

122

+ 0𝑥

2

123

+ 11.5𝑥

2

131

+ 10.5𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 13.5𝑥

2

211

+ 17𝑥

2

212

+ 0𝑥

2

213

+ 10.5𝑥

2

221

+ 11.75𝑥

2

222

+ 0𝑥

2

223

+ 15𝑥

2

231

+ 14.5𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

Minimize 𝑍

2

= 6𝑥

1

111

+ 7.5𝑥

1

112

+ 0𝑥

1

113

+ 5.5𝑥

1

121

+ 6.5𝑥

1

122

+ 0𝑥

1

123

+ 9.5𝑥

1

131

+ 8𝑥

1

132

+ 0𝑥

1

133

+ 8.5𝑥

1

211

+ 7𝑥

1

212

+ 0𝑥

1

213

+ 6.5𝑥

1

221

+ 10𝑥

1

222

+ 0𝑥

1

223

+ 8𝑥

1

231

+ 10.5𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

311

+ 0𝑥

1

312

+ 0𝑥

1

313

+ 0𝑥

1

321

+ 0𝑥

1

322

+ 0𝑥

1

323

+ 0𝑥

1

331

+ 0𝑥

1

332

+ 0𝑥

1

333

+ 7.75𝑥

2

111

+ 8.5𝑥

2

112

+ 0𝑥

2

113

+ 6.5𝑥

2

121

+ 6𝑥

2

122

+ 0𝑥

2

123

+ 11.25𝑥

2

131

+ 10.25𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 12𝑥

2

211

+ 9𝑥

2

212

+ 0𝑥

2

213

+ 7.5𝑥

2

221

+ 8𝑥

2

222

+ 0𝑥

2

223

+ 9.75𝑥

2

231

+ 11.25𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

subject to 𝑥

1

111

+ 𝑥

1

112

+ 𝑥

1

113

+ 𝑥

1

121

+ 𝑥

1

122

+ 𝑥

1

123

+ 𝑥

1

131

+ 𝑥

1

132

+ 𝑥

1

133

= 20.5

𝑥

2

111

+ 𝑥

2

112

+ 𝑥

2

113

+ 𝑥

2

121

+ 𝑥

2

122

+ 𝑥

2

123

+ 𝑥

2

131

+ 𝑥

2

132

+ 𝑥

2

133

+ 𝑥

2

141

+ 𝑥

2

142

+ 𝑥

2

143

= 35.5

𝑥

1

211

+ 𝑥

1

212

+ 𝑥

1

213

+ 𝑥

1

221

+ 𝑥

1

222

+ 𝑥

1

223

+ 𝑥

1

231

+ 𝑥

1

232

+ 𝑥

1

233

= 26.5

𝑥

2

211

+ 𝑥

2

212

+ 𝑥

2

213

+ 𝑥

2

221

+ 𝑥

2

222

+ 𝑥

2

223

+ 𝑥

2

231

+ 𝑥

2

232

+ 𝑥

2

233

+ 𝑥

2

241

+ 𝑥

2

242

+ 𝑥

2

243

= 29.0

𝑥

1

311

+ 𝑥

1

312

+ 𝑥

1

313

+ 𝑥

1

321

+ 𝑥

1

322

+ 𝑥

1

323

+ 𝑥

1

331

+ 𝑥

1

332

+ 𝑥

1

333

= 8.25

𝑥

1

111

+ 𝑥

1

112

+ 𝑥

1

113

+ 𝑥

1

211

+ 𝑥

1

212

+ 𝑥

1

213

+ 𝑥

1

311

+ 𝑥

1

312

+ 𝑥

1

313

= 17.75

𝑥

2

111

+ 𝑥

2

112

+ 𝑥

2

113

+ 𝑥

2

211

+ 𝑥

2

212

+ 𝑥

2

213

= 24.0
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𝑥

1

121

+ 𝑥

1

122

+ 𝑥

1

123

+ 𝑥

1

221

+ 𝑥

1

222

+ 𝑥

1

223

+ 𝑥

1

321

+ 𝑥

1

322

+ 𝑥

1

323

= 21.0

𝑥

2

121

+ 𝑥

2

122

+ 𝑥

2

123

+ 𝑥

2

221

+ 𝑥

2

222

+ 𝑥

2

223

= 18.75

𝑥

1

131

+ 𝑥

1

132

+ 𝑥

1

133

+ 𝑥

1

231

+ 𝑥

1

232

+ 𝑥

1

233

+ 𝑥

1

331

+ 𝑥

1

332

+ 𝑥

1

333

= 16.5

𝑥

2

131

+ 𝑥

2

132

+ 𝑥

2

133

+ 𝑥

2

231

+ 𝑥

2

232

+ 𝑥

2

233

= 18.0

𝑥

2

141

+ 𝑥

2

142

+ 𝑥

2

143

+ 𝑥

2

241

+ 𝑥

2

242

+ 𝑥

2

243

= 3.75

𝑥

1

111

+ 𝑥

1

121

+ 𝑥

1

131

+ 𝑥

1

211

+ 𝑥

1

221

+ 𝑥

1

231

+ 𝑥

1

311

+ 𝑥

1

321

+ 𝑥

1

331

+ 𝑥

2

111

+ 𝑥

2

121

+ 𝑥

2

131

+ 𝑥

2

141

+ 𝑥

2

211

+ 𝑥

2

221

+ 𝑥

2

231

+ 𝑥

2

241

= 49.75

𝑥

1

112

+ 𝑥

1

122

+ 𝑥

1

132

+ 𝑥

1

212

+ 𝑥

1

222

+ 𝑥

1

232

+ 𝑥

1

312

+ 𝑥

1

322

+ 𝑥

1

332

+ 𝑥

2

112

+ 𝑥

2

122

+ 𝑥

2

132

+ 𝑥

2

142

+ 𝑥

2

212

+ 𝑥

2

222

+ 𝑥

2

232

+ 𝑥

2

242

= 54.75

𝑥

1

113

+ 𝑥

1

123

+ 𝑥

1

133

+ 𝑥

1

213

+ 𝑥

1

223

+ 𝑥

1

233

+ 𝑥

1

313

+ 𝑥

1

323

+ 𝑥

1

333

+ 𝑥

2

113

+ 𝑥

2

123

+ 𝑥

2

133

+ 𝑥

2

143

+ 𝑥

2

213

+ 𝑥

2

223

+ 𝑥

2

233

+ 𝑥

2

243

= 11.5.

(23)

Applying the fuzzy programming technique, we obtain

𝐿

1

= 872.81, 𝑈

1

= 993.875,

𝐿

2

= 640.63, 𝑈

2

= 728.125.

(24)

The optimal compromise solution is

𝜆 = 0.74, 𝑥

1

111

= 12.25, 𝑥

1

132

= 8.25,

𝑥

1

212

= 5.5, 𝑥

1

221

= 21, 𝑥

1

332

= 8.25,

𝑥

2

111

= 16.5, 𝑥

2

122

= 18.75, 𝑥

2

132

= 0.25,

𝑥

2

212

= 3.03, 𝑥

2

213

= 4.47, 𝑥

2

232

= 6.97,

𝑥

2

233

= 10.78, 𝑥

2

242

= 3.75, 𝑍

1

= 903.95,

𝑍

2

= 663.12.

(25)

Converting the same problem to crisp problem using the
concept of minimum of fuzzy number, the model obtained
is as follows.

Problem (P4)

Minimize 𝑍

1

= 2.9𝑥

1

111

+ 4.4𝑥

1

112

+ 0𝑥

1

113

+ 2.5𝑥

1

121

+ 3.2𝑥

1

122

+ 0𝑥

1

123

+ 4.8𝑥

1

131

+ 3.7𝑥

1

132

+ 0𝑥

1

133

+ 4.1𝑥

1

211

+ 4.6𝑥

1

212

+ 0𝑥

1

213

+ 2.8𝑥

1

221

+ 3.2𝑥

1

222

+ 0𝑥

1

223

+ 5.2𝑥

1

231

+ 6.4𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

311

+ 0𝑥

1

312

+ 0𝑥

1

313

+ 0𝑥

1

321

+ 0𝑥

1

322

+ 0𝑥

1

323

+ 0𝑥

1

331

+ 0𝑥

1

332

+ 0𝑥

1

333

+ 4.1𝑥

2

111

+ 5𝑥

2

112

+ 0𝑥

2

113

+ 3𝑥

2

121

+ 3𝑥

2

122

+ 0𝑥

2

123

+ 4.4𝑥

2

131

+ 3.9𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 5.1𝑥

2

211

+ 6.4𝑥

2

212

+ 0𝑥

2

213

+ 3.7𝑥

2

221

+ 4.3𝑥

2

222

+ 0𝑥

2

223

+ 5.6𝑥

2

231

+ 5.6𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

+ 200

Minimize 𝑍

1

= 2.1𝑥

1

111

+ 2.8𝑥

1

112

+ 0𝑥

1

113

+ 1.9𝑥

1

121

+ 2.3𝑥

1

122

+ 0𝑥

1

123

+ 3.5𝑥

1

131

+ 2.8𝑥

1

132

+ 0𝑥

1

133

+ 3.1𝑥

1

211

+ 2.4𝑥

1

212

+ 0𝑥

1

213

+ 2.4𝑥

1

221

+ 3.6𝑥

1

222

+ 0𝑥

1

223

+ 2.9𝑥

1

231

+ 4𝑥

1

232

+ 0𝑥

1

233

+ 0𝑥

1

311

+ 0𝑥

1

312

+ 0𝑥

1

313

+ 0𝑥

1

321

+ 0𝑥

1

322

+ 0𝑥

1

323

+ 0𝑥

1

331

+ 0𝑥

1

332

+ 0𝑥

1

333

+ 2.7𝑥

2

111

+ 3.2𝑥

2

112

+ 0𝑥

2

113

+ 2.3𝑥

2

121

+ 2.1𝑥

2

122

+ 0𝑥

2

123

+ 4.2𝑥

2

131

+ 3.8𝑥

2

132

+ 0𝑥

2

133

+ 0𝑥

2

141

+ 0𝑥

2

142

+ 0𝑥

2

143

+ 4.5𝑥

2

211

+ 3.2𝑥

2

212

+ 0𝑥

2

213

+ 2.8𝑥

2

221

+ 2.8𝑥

2

222

+ 0𝑥

2

223

+ 3.5𝑥

2

231

+ 4.2𝑥

2

232

+ 0𝑥

2

233

+ 0𝑥

2

241

+ 0𝑥

2

242

+ 0𝑥

2

243

+ 200

(26)

subject to the constraints as in Problem (P3).
Solving this problem using fuzzy programming tech-

nique, the obtained results are as follows:

𝐿

1

(min (𝑍
1

)) = 519.05, 𝐴

𝐿

(𝑍

1

) = 150.375,

𝐶 (𝑍

1

) = 871.75, 𝐴

𝑅

(𝑍

1

) = 152.5
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𝑈

1

(min (𝑍
1

)) = 563.925, 𝐴

𝐿

(𝑍

1

) = 168.125,

𝐶 (𝑍

1

) = 984.75, 𝐴

𝑅

(𝑍

1

) = 186.375

𝐿

2

(min (𝑍
2

)) = 424.10, 𝐴

𝐿

(𝑍

2

) = 160.75,

𝐶 (𝑍

2

) = 645.5, 𝐴

𝑅

(𝑍

2

) = 151

𝑈

2

(min (𝑍
2

)) = 463.20, 𝐴

𝐿

(𝑍

2

) = 131.75,

𝐶 (𝑍

2

) = 728.625, 𝐴

𝑅

(𝑍

2

) = 122.25.

(27)

The optimal compromise solution is found to be

𝑥

1

111

= 12.25, 𝑥

1

132

= 8.25, 𝑥

1

212

= 5.5,

𝑥

1

221

= 21.0, 𝑥

1

332

= 8.25, 𝑥

2

111

= 16.5,

𝑥

2

122

= 13.55, 𝑥

2

132

= 5.45, 𝑥

2

212

= 4.8,

𝑥

2

213

= 2.7, 𝑥

2

222

= 5.2, 𝑥

2

233

= 12.55,

𝑥

2

242

= 3.75.

(28)

𝑍

1

= 532.785, 𝐴
𝐿

(𝑍

1

) = 147.625, 𝐶(𝑍
1

) = 905.375, 𝐴
𝑅

(𝑍

1

)

= 148.425, and [828.1, 982.65] is the core of the objective
function 𝑍

1

.
𝑍

2

= 436.06, 𝐴
𝐿

(𝑍

2

) = 148.375, 𝐶(𝑍
2

) = 669.825,
𝐴

𝑅

(𝑍

1

) = 137.4, and [590.55, 749.1] is the core of the objective
function 𝑍

2

.
Similarly, other problems, in which availability of all

the items is less/more than its demand and/or the total
conveyance capacity is less/more than the total availability or
total demand, can be solved by the proposed method.

7. Results

The above models are solved with the help of MAPPLE
software. Kundu et al. [19] obtained the solution of the
MOMISTP considered in Section 6.1 using the defuzzifica-
tion technique given by Kikuchi [24]. The results for both
problems are shown in Tables 7 and 8 and are interpreted in
Section 8.

8. Interpretation of Results

The objective values found using the concept of minimum of
fuzzy numbers for Example 1 (Section 6.1) can be shown by
Figures 2 and 3.

From the membership function of the objective function
𝑍

1

shown in Figure 2, the following information about the
minimum transportation cost for the objective function 𝑍

1

may be interpreted.

(i) According to the decision maker minimum trans-
portation cost for the transportation will be greater
than 731.18 units and will be less than 1202.49 units.

(ii) The maximum chances are that the minimum trans-
portation cost will lie in the range 872.37–1053.68
units.

731.18 872.37 1053.68 1202.49
0

1

Figure 2: Optimal value of 𝑍
1

.

469.57 624.26 797.32 929.07
0

1

Figure 3: Optimal value of 𝑍
2

.

(iii) The overall level of satisfaction for other values of the
minimum transportation cost (say 𝑥) is 𝜇

̃

𝑍

1

(𝑥) × 100,
where

𝜇
̃

𝑍

1

(𝑥) =

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

{

(𝑥 − 731.18)

141.19

, 731.18 ≤ 𝑥 < 872.37

1, 872.37 ≤ 𝑥 ≤ 1053.68

(1202.49 − 𝑥)

148.81

, 1053.68 < 𝑥 ≤ 1202.49

0, otherwise.

(29)

Similarly, the results about the minimum transportation cost
for the objective function𝑍

2

can be interpreted.The decision
maker has more information about the objective function
using this concept. It has been found that the objective values
obtained using the rank of fuzzy numbers𝑍

1

= 945.3425 and
𝑍

2

= 703.46 lie within the cores [872.37, 1053.68] and [624.26,
797.32] of the objective functions𝑍

1

and𝑍
2

, respectively, and
are close to their centre of cores.

The results of Example 2 (Section 6.2) can also be inter-
preted similarly.

9. Conclusions

Our results show that, unlike [19], the expected value model
gives the feasible and hence the optimal solution of Example 1
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Table 7: Results using the existing method [19].

Example Optimal compromise solution 𝑍

1

𝑍

2

Ranking method

1
𝑥

1

111

= 3.1686, 𝑥1
121

= 5.8313, 𝑥1
221

= 13.8686, 𝑥1
132

= 14.7,
𝑥

1

212

= 12.6314, 𝑥2
111

= 22.7, 𝑥2
221

= 5.6314, 𝑥2
122

= 11.1,
𝑥

2

222

= 1.0686, 𝑥2
232

= 16.8, 𝜆 = 0.6989
1139.536 837.4808

2 Infeasible solution — —
Minimum of fuzzy number

1
𝑥

1

111

= 9, 𝑥1
221

= 19.7, 𝑥1
132

= 14.7, 𝑥1
212

= 6.8,
𝑥

2

111

= 18.3839, 𝑥2
231

= 4.1160, 𝑥2
122

= 2.7321,
𝑥

2

132

= 12.68394, 𝑥2
212

= 4.3160, 𝑥2
222

= 15.0678, 𝜆 = 0.753

𝑍

1

= 615.4325

core of 𝑍
1

=

[1039.232, 1227.548]

𝑍

2

= 497.6407

core of 𝑍
2

=

[753.1357, 935.7518]

2 Infeasible solution — —

Table 8: Results using the proposed method.

Example Optimal compromise solution 𝑍

1

𝑍

2

Ranking method

1
𝑥

1

111

= 8.25, 𝑥1
132

= 16.5, 𝑥1
212

= 9.5, 𝑥1
221

= 21.0, 𝑥1
242

= 2.5,
𝑥

2

111

= 18.63, 𝑥2
122

= 16.88, 𝑥2
212

= 1.79, 𝑥2
213

= 3.58,
𝑥

1

221

= 1.88, 𝑥2
232

= 3.83, 𝑥2
233

= 14.17, 𝑥2
242

= 3.75, 𝜆 = 0.78
945.34 703.46

2
𝑥

1

111

= 12.25, 𝑥1
132

= 8.25, 𝑥1
212

= 5.5, 𝑥1
221

= 21, 𝑥1
332

= 8.25,
𝑥

2

111

= 16.5, 𝑥2
122

= 18.75, 𝑥2
132

= 0.25, 𝑥2
212

= 3.03,
𝑥

2

213

= 4.47, 𝑥2
232

= 6.97, 𝑥2
233

= 10.78, 𝑥2
242

= 3.75, 𝜆 = 0.74
903.95 663.12

Minimum of fuzzy number

1
𝑥

1

111

= 8.25, 𝑥1
132

= 16.5, 𝑥1
212

= 9.5, 𝑥1
221

= 21.0, 𝑥1
242

= 2.5,
𝑥

2

111

= 20.5, 𝑥2
122

= 12.56, 𝑥2
132

= 2.44, 𝑥2
212

= 1.31,
𝑥

2

213

= 2.19, 𝑥2
222

= 6.19, 𝑥2
233

= 15.56, 𝑥2
242

= 3.75, 𝜆 = 0.73

𝑍

1

= 553.722

core of 𝑍
1

= [872.37, 1053.68]

𝑍

2

= 449.247

core of 𝑍
2

= [624.26, 797.32]

2
𝑥

1

111

= 12.25, 𝑥1
132

= 8.25, 𝑥1
212

= 5.5, 𝑥1
221

= 21.0,
𝑥

1

332

= 8.25, 𝑥2
111

= 16.5, 𝑥2
122

= 13.55, 𝑥2
132

= 5.45,
𝑥

2

212

= 4.8, 𝑥2
213

= 2.7, 𝑥2
222

= 5.2, 𝑥2
233

= 12.55, 𝑥2
242

= 3.75

𝑍

1

= 532.785

core of 𝑍
1

= [828.1, 982.65]

𝑍

2

= 436.06

core of 𝑍
2

= [590.55, 749.1]

(Section 6.1). It has been found that the obtained optimal
compromise solution is better than that obtained by Kundu
et al. [19] using different ranking approach for the objective
function and the constraints (Subsections 5.1 and 5.2, pp.
2032-2033). Also, to solve the problem we do not require
any condition on availability or on total conveyance capacity.
Since the proposed method is for fuzzy MOMISTP, it is also
applicable for multiobjective transportation problems, solid
transportation problems, multiobjective solid transportation
problem, multi-item transportation problems, and multiob-
jective solid transportation problems in fuzzy environment.
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