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ABSTRACT 

The current theory of the titled phenomenon is apparently based on an inconsistent use of 

concentration units, as employed in the derivation of the fundamental equations. Thus, 

manifestly, whilst the relation between extent of conversion and e.e. is derived with mole 

fractions, the succeeding kinetic equations employ units of molarity. This invalidates the 

derivation in the general case. Fortuitously, however, it is applicable in the majority of 

simple cases, wherein the total number of moles involved in the reaction remains 

constant. Herein is presented a rigorous approach which is generally valid.  

 

INTRODUCTION 

Of the many methods available for the separation of the enantiomeric constituents of a 

racemate, kinetic resolution offers distinct advantages, particularly when effected with a 

chiral catalyst.1,2 Primarily, kinetic resolution avoids the formation of diastereomeric 

derivatives, their tedious separation and their re-conversion to the resolved substrate 

enantiomers. Kinetic resolution involves the enantioselective modification of one of the 

enantiomers (Scheme 1), which can then be separated from the unreacted enantiomer by 
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achiral means (crystallization, chromatography, etc.). However, the process is 

complicated by the fact that the enantioselectivity is rarely total (kR/kS  ∞ or 0), so that 

both the enantiomers are modified concurrently, albeit at different rates.  

An enduring problem with kinetic resolution is that, even if the enantioselectivity is high 

(kR/kS is very large or very small), the concentration of the less reactive enantiomer 

gradually rises during the process; its reaction then competes with that of the other 

enantiomer at some stage, determined by the enantioselectivity factor (kR/kS). Despite 

this, intriguingly, the enantiomeric excess (e.e.) of the slow-reacting enantiomer increases 

during the process, essentially because the total concentration of the substrate ([R] + [S]) 

decreases. Thus, the success of the process hangs on a subtle balance between 

enantioselectivity and extent of conversion.  

In other words, the e.e. of the unreacted enantiomer is higher towards the end of the 

process, but at a cost in terms of yield (as both enantiomers have been largely converted 

to products); the difference in concentrations of the enantiomers (|[R] - [S]|) indeed 

‘peaks’ at an intermediate stage, but does not manifest as high e.e., as ([R] + [S]) is 

relatively large. Thus, kinetic resolution is best suited to obtaining chiral compounds in 

high e.e., but modest yields.  

 

Scheme 1. Reactions in a kinetic resolution of a racemate composed of R and S 

enantiomers by a chiral catalyst K*; kR and kS are the respective rate constants for the  

formation of products PR and PS   
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In view of the manifest advantages of kinetic resolution, and the need to maximize its 

efficiency in practical terms, its theoretical basis has been of much interest. In particular, 

the dependence of the e.e. obtained on the enantioselectivity factor (kR/kS) and the extent 

of conversion has been much sought after, as it indicates at what stage the process can be 

terminated for an appropriate balance between e.e. and yield.  

Although a qualitative view of kinetic resolution can be reached in straightforward 

fashion (vide supra), a rigorous quantitative theory would be essential to understanding 

its characteristic strengths and limitations. In fact, the current theory – although 

apparently applicable to the majority of cases – has several unexplained features which 

introduce an element of fortuitousness, as argued below. A complete rigorous derivation 

that is generally valid is also set out. 

RESULTS AND DISCUSSION 

 The key equations currently employed are set out below. Eqs. 1 and 2 relate the extent of 

conversion C and the e.e. of (residual) substrate to the concentration of the enantiomers 

([R] and [S]). It should be noted that this is based on the assumption that the initial 

concentrations of the enantiomers are equal to 0.5: [Ro] = [So] = 0.5. This clearly implies 

that the concentrations are expressed as mole fractions. This is further supported by the 

definition of the extent of conversion: 0<C<1 and ([R] + [S]) = (1-C). These relations 

imply that C is none other than the total yield of product expressed in mole fractions, [R] 

and [S] being also in mole fractions.  

[S] = [(1-C)(1 + e.e.)]/2                        (1) 

[R] = [(1-C)(1 - e.e.)]/2                        (2) 
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The mole fractions of R and S would be defined as in eqs. 3 and 4, wherein ∑[P] 

represents the total yield of all products, the subscript ‘mf’ indicating mole fractions 

henceforth. Thus, ∑[P] = ([PR] + [PS]), PR and PS being the products formed from R and 

S substrate enantiomers respectively. (Note that the reaction may or may not be 

stereospecific, i.e. it is irrelevant whether the same or different products are formed from 

the two substrate enantiomers, as ∑[P] refers to the sum total of products.)  

[S]mf = [S]/([S] + [R] + ∑[P])           (3) 

[R]mf = [R]/([S] + [R] + ∑[P])           (4) 

∑[P]mf = ∑[P]/([S] + [R] + ∑[P])     (5) 

Eq. 5 defines the mole fraction of all the products taken as a sum. As defined above, we 

now note that ∑[P]mf = C. Thus, ([S]mf + [R]mf + ∑[P]mf) = ([S]mf + [R]mf + C) = 1, so 

([S]mf + [R]mf) = (1-C). This justifies the above argument that ([R] + [S]) = (1-C) only 

when all the concentrations including C are in mole fractions. 

Also, in light of the above discussion, eqs. 1 and 2 would now need to be recast as eqs. 6 

and 7 respectively, with the concentrations expressed in mole fractions. 

         [S]mf = [(1-C)(1 + e.e.)]/2         (6) 

         [R]mf = [(1-C)(1 - e.e.)]/2          (7) 

The enantioselectivity factor (s = kR/kS) is derived from the ratio of the yields of product 

formed. This is obtained via the integrated rate equations for the pseudo first order 

reactions of the two enantiomers at time t, as in eqs. 8 and 9; these lead to the 

enantioselectivity factor in eq. 10.  

         [PR] = ln([R]/[Ro]) = -kRt            (8) 
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         [PS] = ln([S]/[So]) = -kSt                      (9) 

s = kR/kS =  {ln([R]/[Ro])}/{ln([S]/[So])}       (10) 

However, the problem now is that these would, generally, express the concentrations in 

units of molarity (M) rather than in mole fractions. For this reason, eq. 10 cannot – in 

general – be combined with eqs. 6 and 7. The relation between ([S]/[So]) and 

([S]mf/[So]mf), and between ([R]/[Ro]) and ([R]mf/[Ro]mf) can be derived as follows.  

t 

([Ro] + [So]).  

6. This relates the stereoselectivity factor s to the 

extent of conversion 

Eqs. 11 and 12 follow from eqs. 3 and 4 respectively, noting that [Ro]mf = [So]mf = 0.5. 

Eq. 13 derives from the fact that the starting mixture is a racemate (hence [Ro] = [So]), 

and the requirements of mass balance. Thus, the total number of moles of all species 

present, i.e. unreacted S, R and products (PR + PS) should sum up to the starting coun

([S]mf/[So]mf) = 2{[S]/([S] + [R] + ∑[P])}      (11) 

([R]mf/[Ro]mf) = 2{[R]/([S] + [R] + ∑[P])}    (12) 

        [Ro] = [So] = ([S] + [R] + ∑[P])/2          (13)  

Interestingly, combining eqs. 11, 12 and 13 apparently leads to eqs. 14 and 15, which 

with eqs. 6, 7 and 10 leads to eq. 1

C and the e.e.   

   ([S]mf/[So]mf) = ([S]/[So])          (14) 

   ([R]mf/[Ro]mf) = ([R]/[Ro])          (15) 

              s = {ln[(1-C)(1 - e.e.)]}/{ln[(1-C)(1 + e.e.)]}     (16)   
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However, the validity of eq. 13 cannot be assumed in the general case, as it depends on 

there being no change in the total number of moles in the reaction mixture. This condition 

will be met as long as a molecule of R produces a molecule of PR, and a molecule of S 

produces a molecule of PS. This indeed corresponds to the majority of known strategies 

two molecules of product (different or not) from one of R or S. Alternatively, 

. 17 and 18 

respectively, w gle molecule 

of R or S. Apparently, no simple approach to an analog of eq. 16 is possible. 

([S]mf/[So]mf) = 2[S]/{n([R]o + [S]o) – (n-1)([R] + [S])}     (17) 

([R]mf/[Ro]mf) = 2[R]/{n([R]o + [S]o) – (n-1)([R] + [S])}    (18) 

 

l case cannot be assumed. The theory 

employed in kinetic resolution, so the unstated assumption represented by eqs. 14 and 15 

is apparently justified. 

Interestingly, however, cases may be envisaged wherein there is a change in the number 

of moles present in the reaction mixture (without prejudice to the overall mass balance). 

This may happen, for instance, in the case of a fragmentation reaction, which would 

produce 

condensation reactions represent an example involving a decrease in the number of 

moles.  

In such cases, eq. 13 would not be valid, thus also invalidating eqs. 14-16. Eqs. 14 and 15 

would then be replaced by a complex relation of the type given by eqs

here n is the number of product molecules formed from a sin

CONCLUSION 

In conclusion, the current theory of kinetic resolution appears to be valid by 

happenstance, and its elaboration to the genera
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ith caution as it is apparently inapplicable in the case of processes that 

chem. 1988, 18, 249-329. 
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should be used w

occur with a change in the number of molecules. 
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