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Lateral and longitudinal channels are two closely related channels whose control stability influences flight performance of small-
scale unmanned helicopters directly. This paper presents a robust control approach for lateral and longitudinal channels in the
presence of parameter uncertainties and exogenous disturbances. The proposed control approach is performed by two steps. First,
by performing system identification in frequency domain, system model of lateral and longitudinal channels can be accurately
identified. Then, a robust 𝐻

∞
state feedback controller is designed to stabilize the helicopter in lateral and longitudinal channels

simultaneously under extraneous disturbances situation. The proposed approach takes advantages that it reduces order of the
controller by preestimating some parameters (like flapping angles) without sacrificing control accuracy. Numerical results show
the reliability and effectiveness of the proposed method.

1. Introduction

Recently, research on unmanned small-scale helicopters has
gained great attention in various fields such asmilitary, indus-
try, and aerial mapping. A striking feature of such unmanned
helicopters is the fact that they need to perform different
tasks, such as hovering, flying forward, and circular flying,
under various complicated situations. Thus, it is necessary to
design a robust controller which can stabilize the helicopter
in different directions [1–3].

Recently, research on control methods of unmanned heli-
copters under exogenous disturbances (e.g., wind gust) has
received great attention [4–7]. Such kind of classical methods
includes PID based control methods [8, 9], model predictive
control method [10, 11], and nonlinear feedforward controller
[12–14]. PID control is one of the most classical control
approaches whose performance closely depended on the
accuracy of the model. In practice, models of control system
change with variation of flight conditions.Thus, performance
of PID control based methods may be greatly influenced
when helicopters perform some difficult movements.

Model predictive control methods are advanced control
strategies based on predictions of linear convolution models.
Therefore, the model predictive control (MPC) is not a spe-
cific control strategy but it is a wide class of optimal control
based algorithms that use an explicit processmodel to predict
the behavior of a linear plant. Nonlinear controller can be
viewed as ideal, gain-scheduled controller designed at every
point on the trajectory. It usually combines with feedback
and feedforward technologies to attenuate disturbance of
exogenous disturbances.

In this paper, to keep the stability and performance
of autonomous helicopter in the presence of parameter
uncertainties and exogenous disturbances, a two-step robust
control approach based on frequency domain model identi-
fication and improved𝐻

∞
controller is proposed.

First, we built a simple model for lateral and longitudinal
dynamics of a helicopter. Based on the proposed model,
a frequency domain method, Comprehensive Identification
from Frequency Responses (CIFER) [15, 16], is used to
identify the system model. By performing model identifica-
tion in frequency domain, the proposed method obtained
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robustness against parameter uncertainties and exogenous
disturbances.

Based on the identification and modeling of the heli-
copter, we then designed 𝐻

∞
state feedback controller to

stabilize the helicopter under disturbances situation. A key
problem for designing the state feedback control is the fact
that the flapping angles are undetectable, which results in
the fact that the order of controller is too high to achieve
in practice. To overcome this problem, we have estimated
the flapping angles by simplifying the speed derivatives in
hovering condition beforehand. By this way, order of the
controller can be greatly simplified. Thus, the proposed
method can efficiently be implemented in practice.

This paper is organized as follows. In Section 2, the lateral
and longitudinal channels of a small-scale helicopter are
presented and the parameters of the physical structure and
model of the helicopter are either identified or estimated in a
reliable range. In Section 3, a robust 𝐻

∞
state feedback con-

trol is introduced and designed. In Section 4, the efficiency of
the controller designed above is evaluated by analyzing and
comparing the results of simulation and real flight. At last,
the conclusion lies in Section 5.

2. Identification of Lateral and
Longitudinal Models

2.1. Lateral and Longitudinal Fuselage Dynamic Model. Con-
sidering the hovering flight condition and the Newton-Euler
equations [17], the system model for lateral and longitudinal
channels can be simplified and linearized as follows:

𝑢̇ = 𝑋
𝑢
𝑢 + (−𝑤

0
𝑞 + V
0
𝑟) − 𝑔 (𝜃 + 𝑎

1
) , (1)

V̇ = 𝑌VV + (−𝑢0𝑟 + 𝑤0𝑝) + 𝑔 (𝜙 + 𝑏1) , (2)

𝑝̇ = 𝐿
𝑢
𝑢 + 𝐿VV + 𝐿𝑏𝑏1, (3)

̇𝑞 = 𝑀
𝑢
𝑢 +𝑀VV +𝑀𝑎𝑎1, (4)

where the constant 𝑔 is the acceleration of gravity; the vectors
𝑢, V, and 𝑤 and 𝑝, 𝑞, and 𝑟 are the fuselage velocities and
angular rates in the body coordinate system, respectively; 𝜃
and𝜙 are the roll and pitch attitude angles;𝑋

𝑢
,𝑌V, 𝐿𝑢, 𝐿V,𝑀𝑢,

and𝑀V represent the speed derivatives; the variables 𝑎
1
and

𝑏
1
are the longitudinal and lateral main rotor flapping angles;

𝐿
𝑏
and𝑀

𝑎
are the flapping spring-derivatives; and 𝑢

0
, V
0
, and

𝑤
0
are the constant values under the trim condition.
Moreover, the main rotor dynamics of such small-scale

helicopters can be modeled as

𝜏
𝑒
̇𝑎
1
= −𝑎
1
− 𝜏
𝑒
𝑞 + 𝐴 lon𝛿lon + 𝐴 lat𝛿lat, (5)

𝜏
𝑒

̇𝑏
1
= −𝑏
1
− 𝜏
𝑒
𝑝 + 𝐵lon𝛿lon + 𝐵lat𝛿lat, (6)

where 𝜏
𝑒
is the rotor time constant. 𝛿lon and 𝛿lat are the

longitudinal cyclic and lateral cyclic inputs, respectively.
Based on (1) and (5), we can find that lateral and longitu-

dinal channels are coupled, which increases the difficulty of

identification [18, 19].Themain state and control variables for
lateral and longitudinal models can be represented by

𝑥⃗ = [𝑢 V 𝜙 𝜃 𝑝 𝑞 𝑎
1
𝑏
1
]
𝑇

,

𝑢⃗ = [𝛿lat 𝛿lon]
𝑇

.

(7)

Under hovering condition, we can get the matrix of
dynamic structure inwhich the procedure is applied to obtain
the system parameters. The linearized matrix is illustrated:
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(8)

2.2. Flight Tests and Collection of Time-History Data. The
first step in system identification is the collection of a
well-suited time-history database. The final quality of the
identification results mainly depends on the executed flight
tests of the helicopter.The recommended input for frequency
domain identification is a frequency sweep which provides a
frequency range of interest for good identification.
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Figure 1: The I/O data of lateral channel.
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Figure 2: The I/O data of longitudinal channel.

The maneuver in flight tests being used for identification
of frequency responses is a frequency sweep. It is the maneu-
ver that can be performed by either a pilot or automated
sweeps. In this paper, all the frequency sweeps are generated
automatically, but the pilot still can add his control to the
helicopter in case of emergency. The pilot provided a trim
record of at least 3 s before starting the maneuver, and it
started with a low frequency sinusoidal shape input with
a frequency which would slowly increase. Like [20], the
whole process of the maneuver was typically 80–120 seconds.
Figures 1 and 2 show the collection of I/O data of lateral and
longitudinal channels, respectively.

2.3. Identification and Estimation of Parameters of Dynamic
Model. Around the state of hovering, both the lateral and
longitudinal channels transfer functions between the actuator

Table 1: The result of identification.

Parameter Value Parameter Value
𝜔
𝑛

27.35 𝑋
𝑢

0.278

𝜁 0.565 𝑌V 0.149

1/𝜏
𝑒

9.91 𝐿
𝑢

−0.148

𝑔 9.77 𝐿V −0.237

𝑀
𝑎

426.84 𝑀
𝑢

−0.329

𝐿
𝑏

1338.83 𝑀V −0.135

𝐴 lat 0.179 𝐴 lon 6.568

𝐵lat 9.487 𝐵lon 0.246

inputs and the angular rates can be approximately presented
as

𝑞 (𝑠)

𝛿
󸀠

lon (𝑠)
=

𝜔
2

𝑛
𝐴 lon𝑀𝑎

(𝑠2 + 2𝜁𝜔
𝑛
𝑠 + 𝜔2
𝑛
) (𝑠2 + 𝑠/𝜏

𝑒
+𝑀
𝑎
)
, (9)

𝑝 (𝑠)

𝛿
󸀠

lat (𝑠)
=

𝜔
2

𝑛
𝐵lat𝐿𝑏

(𝑠2 + 2𝜁𝜔
𝑛
𝑠 + 𝜔2
𝑛
) (𝑠2 + 𝑠/𝜏

𝑒
+ 𝐿
𝑏
)
. (10)

Note that the transfer function (9) mainly contains two
parts: one for actuator dynamics and the other for helicopter
dynamics.Thus, transfer function of the actuator can be given
as [21]

𝐺 (𝑠) =
𝜔
2

𝑛

𝑠2 + 2𝜁𝜔
𝑛
𝑠 + 𝜔2
𝑛

. (11)

Generally, it is difficult to identify the speed damping
derivatives (𝑋

𝑢
and 𝑌V), because 𝑋𝑢 and 𝑌V only have sig-

nificant effect at low frequency when the frequency response
precision is usually weak.However, in the actual experiments,
we find that these parameters can be estimated as follows:

𝑢̇ ≈ 𝑋
𝑢
𝑢 − 𝑔𝜃,

V̇ ≈ 𝑌VV + 𝑔𝜙.
(12)

Hence, by performing a Laplace transform, we can derive
the equations and calculate the coefficients𝑋

𝑢
and 𝑌V:

𝑢̇

𝑞
≈

−𝑔

𝑠 − 𝑋
𝑢

,

V̇
𝑝
≈

𝑔

𝑠 − 𝑌V
.

(13)

Thebasic parameters in (9), (10), and (13) can be identified
by using the transfer function modeling, while others in the
state-space model identification can be identified by CIFER.
The results are shown in Table 1.
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The state and the input matrices𝐴 and 𝐵 of the linearized
model are given as follows:

𝐴
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]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]
]

]

.

(14)

For verifying the state-space model, it is conducted with
flight data not used in any identification process and the fit
ratio indicates the output variation is given as [22]

fit = (1 −
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩2
󵄩󵄩󵄩󵄩𝑦 − 𝑦

󵄩󵄩󵄩󵄩2

) × 100%, (15)

where the variables 𝑦, 𝑦, and 𝑦 represent the real data,
predicted data, and the mean of the real data, respectively.
The fit ratio indicates how effectively the model predicts the
actual output data. Figures 3 and 4 illustrate the comparisons
between the actual flight data and the lateral and longitudinal
model output data. In Figures 3 and 4, it can be found that
both fit ratios are more than 70%, which implies that the
model is highly reliable.

3. Robust 𝐻
∞

State Feedback Control

3.1. The Preliminaries of 𝐻
∞

State Feedback Control. After
the system identification and the modeling, the main goal
in developing a controller is to ensure that it can stabilize
the helicopter in a real environment with uncertainties
like uncertain dynamics and extraneous disturbances. It is
undeniable that 𝐻

∞
methodology could not only meet the

basic control demands but also minimize the influence of
disturbances to the helicopter.

Like the methods mentioned in [22, 23], instead of
designing a state feedback controller, traditional approach is
to use an output feedback controller for the helicopter due
to the fact that flapping angles 𝑎

1
and 𝑏
1
cannot be detected.

However, the order of such output feedback controller is too
high and the structure is complicated, whichmakes it difficult
to use in a real application. To overcome this problem, we
use a simple way to estimate the values of the flapping angles,
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Figure 3: The roll rate response of the flight data and the model
output.
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neglecting the speed derivatives (in hovering condition); the
equations of flapping dynamics can be simplified as

̇𝑞 ≈ 𝑀
𝑎
𝑎
1
,

𝑝̇ ≈ 𝐿
𝑏
𝑏
1
.

(16)

Thus, from (16), we can approximately derive the flapping
angle as following transfer function:

𝑎
1
(𝑠) ≈

𝑞 (𝑠) 𝑠

(𝜏𝑠 + 1)𝑀
𝑎

,

𝑏
1
(𝑠) ≈

𝑝 (𝑠) 𝑠

(𝜏𝑠 + 1) 𝐿
𝑏

,

(17)
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Figure 5: The performance of speed tracking in lateral channel.

where 𝜏 is a very small time constant and both angular rates
𝑝 and 𝑞 are detectable. With these equations, it is feasible
to design 𝐻

∞
state feedback controller for the lateral and

longitudinal channels.

3.2.TheAlgorithmof𝐻
∞
Controller. Thedynamic systemcan

be described in a state-space form as follows:

𝑥̇ = 𝐴𝑥 + 𝐵
1
𝑤 + 𝐵

2
𝑢,

𝑧 = 𝐶
1
𝑥 + 𝐷

11
𝑤 + 𝐷

12
𝑢,

𝑦 = 𝐶
2
𝑥 + 𝐷

21
𝑤 + 𝐷

22
𝑢.

(18)

If the system satisfies the condition,

𝐷
11
= 𝐷
22
= 0,

𝐷
∗

12
[𝐶
1
𝐷
12
] = [0 𝐼] .

(19)

Then the close-loop transfer function from 𝑤 to 𝑧 can be
described as

𝑇
𝑧𝑤
(𝑠) = (𝐶

1
+ 𝐷
12
𝐹) (𝑠𝐼 − 𝐴 − 𝐵

2
𝐹)
−1

𝐵
1
. (20)

The formulation of 𝐻
∞

control problem is to find an
internally stabilizing controller to ensure the infinity norm
of the closed-loop transfer function 𝑇

𝑧𝑤
is less than a given

constant 𝛾. It is called the standard 𝐻
∞

control problem,
and 𝛾 can be obtained through binary search algorithm
iteration [22]. A state feedback 𝐻

∞
controller which meets

the requirement ‖𝑇
𝑧𝑤
‖
∞
< 𝛾 is given as

𝐹 = −𝐵
𝑇

2
𝑋, (21)

where variable 𝑋 is a positive solution of the following
algebraic Riccati equations [24]:

𝐴
𝑇

𝑋 + 𝑋𝐴 + 𝛾
−2

𝑋𝐵
2
𝐵
𝑇

2
𝑋 + 𝐶

1

1
𝐶 + 𝜀𝐼 = 0. (22)

𝜀 is a sufficiently small constant. And the controller can be
given as

𝑢 = −𝐹𝑥. (23)

Using the algorithm mentioned above, we select 𝛾
0
=

21.74, andwe can calculatematrix𝐹which is given as follows:

𝐹 = [

−0.0146 0.9634 2.3525 −0.0488

0.9178 0.0144 0.0322 2.8155

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

0.1069 −0.0039 −0.1136 5.8940

−0.0146 0.0007 5.3074 −0.0263

]

]

. (24)

4. Numerical Results

4.1. Performance Evaluation Using Simulated Data. In this
section, numerical experiments are carried out to evaluate the
performance of the proposed method using simulated and
real data sets.

In order to observe how well the controller can perform
for speed tracking, a square wave is used as a tracking
command. Figures 5 and 6 show the simulation results
revealing the performance of speed tracking in these two
channels. In Figures 5 and 6, the proposed method costs
less than 1 s to track the speed parameter with a very small
overshoot, which means that the responses of the speed
tracking based on the proposedmethod are fast and accurate.
Moreover, the performance of angles and angle rates on roll
and pitch channels can also be seen in Figures 7 and 8,

respectively. In Figure 7, the changes in roll rate and roll angle
last less than 1 s in a single control period. The results in
Figure 8 show that the proposed method can also control
the changes of pitch rate and pitch angles less than 1 s. Thus,
the proposed controller can stabilize the attitudes of the
helicopter in less than 1 s which demonstrates effectiveness
and stability of the controller.

4.2. Performance EvaluationUsing Flight Tests. After showing
the performance of the controller by analyzing the simulation
results, it is necessary for us to evaluate performance of the
proposed method in real flight tests under the condition of
hovering. Figures 9 and 10 show the actual output (including
velocities and attitudes) of lateral and longitudinal channels.
In Figures 9 and 10, we can find that the pitch angles
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Figure 6: The performance of speed tracking in longitudinal
channel.
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change little, while the roll angels change a little more,
which implies that the proposed controller can stabilize the
helicopter in a real application effectively. Moreover, after
careful observation, we found that the roll angle is not
equivalent to zero in Figure 9. This is mainly due to the fact
that, under the hovering condition, the main rotor needs to
tilt with a small angle to offset the force coming from tail
rotor.
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Figure 9: The lateral output of actual flight.

5. Conclusion

This paper first addressed the system identification and the
linearized modeling of lateral and longitudinal dynamics of
small-scale helicopter. To identify the system of helicopter
in a frequency domain method, we used a frequency sweep
signal to excite the helicopter around the frequency range of
interest. Then, the parameters of the model could be derived
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Figure 10: The longitudinal output of actual flight.

based on the data from the flight tests, and a verification
was conducted to indicate reliability of identification and
modeling.

With model of these two channels, 𝐻
∞

state feedback
controller was designed not only to simply stabilize the
helicopter in these two directions but also to diminish the
extraneous disturbances. The advantage of the state feedback
controller is statical and easy to fulfil in actual flight.

Finally, both of the simulation results and the actual flight
tests demonstrated a good performance. The other problem
that we should discuss next is mainly about how to design a
controller for helicopters under the condition of high speed
flying.
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