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By employing a nonlinear alternative for contractive maps, we investigate the existence of solutions for a boundary value problem
of fractional 𝑞-difference inclusions with nonlocal substrip type boundary conditions. The main result is illustrated with the aid of
an example.

1. Introduction

In this paper, we consider the following boundary value prob-
lem of fractional 𝑞-difference inclusions with nonlocal and
substrip type boundary conditions:

𝑐

𝐷
𝜐

𝑞
𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] , 1 < 𝜐 ≤ 2, 0 < 𝑞 < 1,

𝑥 (0) = 𝑔 (𝑥) , 𝑥 (𝜔) = 𝑏∫

1

𝛿

𝑥 (𝑠) 𝑑
𝑞
𝑠, 0 < 𝜔 < 𝛿 < 1,

(1)

where 𝑐𝐷𝜐
𝑞
denotes the Caputo fractional 𝑞-derivative of

order 𝜐,𝐹 : [0, 1]×R → P(R) is amultivaluedmap,P(R) is
the family of all nonempty subsets ofR,𝑔 : 𝐶([0, 1],R) → R

is a given continuous function, and 𝑏 is a real constant. Here,
we emphasize that the nonlocal conditions are regarded as
more plausible than the standard initial conditions for the
description of some physical phenomena. In (1), 𝑔(𝑥)may be
understood as𝑔(𝑥) = ∑𝑝

𝑗=1
𝛼
𝑗
𝑥(𝑡
𝑗
), where𝛼

𝑗
, 𝑗 = 1, . . . , 𝑝, are

given constants and 0 < 𝑡
1
< ⋅ ⋅ ⋅ < 𝑡

𝑝
≤ 1. For more details,

we refer to thework byByszewski andLakshmikantham [1, 2].
Boundary value problems with integral boundary con-

ditions constitute an important class of problems and arise
in the mathematical modeling of various phenomena such
as heat conduction, wave propagation, gravitation, chemi-
cal engineering, underground water flow, thermoelasticity,

and plasma physics. They include two-point, three-point,
multipoint, and nonlocal boundary value problems.

The topic of fractional differential equations has been of
great interest for many researchers in view of its theoretical
development and widespread applications in various fields
of science and engineering such as control, porous media,
electromagnetic, and other fields [3, 4]. For some recent
results and applications, we refer the reader to a series of
papers ([5–13]) and the references cited therein.

Fractional 𝑞-difference (𝑞-fractional) equations are re-
garded as fractional analogue of 𝑞-difference equations.Moti-
vated by recent interest in the study of fractional-order dif-
ferential equations, the topic of 𝑞-fractional equations has
attracted the attention of many researchers. The details of
some recent work on the topic can be found in ([14–20]). For
notions and basic concepts of 𝑞-fractional calculus, we refer
to a recent text [21].

The present work is motivated by a recent paper of the
authors [22], where the problem (1) was considered for a
single valued case. To the best of our knowledge, this is the
first paper dealing with fractional 𝑞-difference inclusions in
the given framework. Moreover, the main result of our paper
can be regarded as an improvement and extension of some
known results; see, for instance, [18, 19].

Thepaper is organized as follows. Section 2 contains some
fundamental concepts of fractional 𝑞-calculus. In Section 3,
we show the existence of solutions for the problem (1) by
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means of the nonlinear alternative for contractive mappings.
Finally, an example illustrating the applicability of our result
is presented.

2. Preliminaries

First of all, we recall the notations and terminology for 𝑞-
fractional calculus [21, 23, 24].

For a real parameter 𝑞 ∈ R+\{1}, a 𝑞-real number denoted
by [𝑎]

𝑞
is defined by

[𝑎]
𝑞
=
1 − 𝑞
𝑎

1 − 𝑞
, 𝑎 ∈ R. (2)

The 𝑞-analogue of the Pochhammer symbol (𝑞-shifted
factorial) is defined as

(𝑎; 𝑞)
0
= 1, (𝑎; 𝑞)

𝑘
=

𝑘−1

∏

𝑖=0

(1 − 𝑎𝑞
𝑖

) , 𝑘 ∈ N ∪ {∞} . (3)

The 𝑞-analogue of the exponent (𝑥 − 𝑦)𝑘 is

(𝑥 − 𝑦)
(0)

= 1, (𝑥 − 𝑦)
(𝑘)

=

𝑘−1

∏

𝑗=0

(𝑥 − 𝑦𝑞
𝑗

) ,

𝑘 ∈ N, 𝑥, 𝑦 ∈ R.

(4)

The 𝑞-gamma function Γ
𝑞
(𝑦) is defined as

Γ
𝑞
(𝑦) =

(1 − 𝑞)
(𝑦−1)

(1 − 𝑞)
𝑦−1
, (5)

where 𝑦 ∈ R \ {0, −1, −2, . . .}. Observe that Γ
𝑞
(𝑦 + 1) =

[𝑦]
𝑞
Γ
𝑞
(𝑦).

Definition 1 (see [23]). Let 𝑓 be a function defined on [0, 1].
The fractional 𝑞-integral of the Riemann-Liouville type of
order 𝛽 ≥ 0 is (𝐼0

𝑞
𝑓)(𝑡) = 𝑓(𝑡) and

𝐼
𝛽

𝑞
𝑓 (𝑡) := ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝛽−1)

Γ
𝑞
(𝛽)

𝑓 (𝑠) 𝑑
𝑞
𝑠

= 𝑡
𝛽

(1 − 𝑞)
𝛽

∞

∑

𝑘=0

𝑞
𝑘

(𝑞
𝛽

; 𝑞)
𝑘

(𝑞; 𝑞)
𝑘

𝑓 (𝑡𝑞
𝑘

) ,

𝛽 > 0, 𝑡 ∈ [0, 1] .

(6)

Observe that 𝛽 = 1 in Definition 1 yields 𝑞-integral:

𝐼
𝑞
𝑓 (𝑡) := ∫

𝑡

0

𝑓 (𝑠) 𝑑
𝑞
𝑠 = 𝑡 (1 − 𝑞)

∞

∑

𝑘=0

𝑞
𝑘

𝑓 (𝑡𝑞
𝑘

) . (7)

For more details on 𝑞-integrals and fractional 𝑞-integrals, see
Sections 1.3 and 4.2, respectively, in [21].

Remark 2. The 𝑞-fractional integration possesses the semi-
group property ([21, Proposition 4.3]):

𝐼
𝛾

𝑞
𝐼
𝛽

𝑞
𝑓 (𝑡) = 𝐼

𝛽+𝛾

𝑞
𝑓 (𝑡) ; 𝛾, 𝛽 ∈ R

+

. (8)

Further, it has been shown in Lemma 6 of [24] that

𝐼
𝛽

𝑞
((𝑥)
(𝜎)

) =
Γ
𝑞
(𝜎 + 1)

Γ
𝑞
(𝛽 + 𝜎 + 1)

(𝑥)
(𝛽+𝜎)

,

0 < 𝑥 < 𝑎, 𝛽 ∈ R
+

, 𝜎 ∈ (−1,∞) .

(9)

Before giving the definition of fractional 𝑞-derivative, we
recall the concept of 𝑞-derivative.

Weknow that the 𝑞-derivative of a function𝑓(𝑡) is defined
as

(𝐷
𝑞
𝑓) (𝑡) =

𝑓 (𝑡) − 𝑓 (𝑞𝑡)

𝑡 − 𝑞𝑡
, 𝑡 ̸= 0,

(𝐷
𝑞
𝑓) (0) = lim

𝑡→0

(𝐷
𝑞
𝑓) (𝑡) .

(10)

Furthermore,

𝐷
0

𝑞
𝑓 = 𝑓, 𝐷

𝑛

𝑞
𝑓 = 𝐷

𝑞
(𝐷
𝑛−1

𝑞
𝑓) , 𝑛 = 1, 2, 3, . . . . (11)

Definition 3 (see [21]). The Caputo fractional 𝑞-derivative of
order 𝛽 > 0 is defined by

𝑐

𝐷
𝛽

𝑞
𝑓 (𝑡) = 𝐼

⌈𝛽⌉−𝛽

𝑞
𝐷
⌈𝛽⌉

𝑞
𝑓 (𝑡) , (12)

where ⌈𝛽⌉ is the smallest integer greater than or equal to 𝛽.

Next, we recall some properties involving Riemann-Liou-
ville 𝑞-fractional integral and Caputo fractional 𝑞-derivative
([21, Theorem 5.2]):

𝐼
𝛽

𝑞

𝑐

𝐷
𝛽

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) −

⌈𝛽⌉−1

∑

𝑘=0

𝑡
𝑘

Γ
𝑞
(𝑘 + 1)

(𝐷
𝑘

𝑞
𝑓) (0
+

) ,

∀𝑡 ∈ (0, 𝑎] , 𝛽 > 0;

𝑐

𝐷
𝛽

𝑞
𝐼
𝛽

𝑞
𝑓 (𝑡) = 𝑓 (𝑡) , ∀𝑡 ∈ (0, 𝑎] , 𝛽 > 0.

(13)

Lemma 4 (see [22]). Let 𝑦 ∈ 𝐶([0, 1],R). Then, the following
problem

𝑐

𝐷
𝜐

𝑞
𝑥 (𝑡) = 𝑦 (𝑡) , 1 < 𝜐 ≤ 2,

𝑥 (0) = 𝑦
0
, 𝑥 (𝜔) = 𝑏∫

1

𝛿

𝑥 (𝑠) 𝑑
𝑞
𝑠, 𝑦

0
∈ R, 𝑡 ∈ [0, 1] ,

(14)

is equivalent to an integral equation:

𝑥 (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑦 (𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑦 (𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑦 (𝑠) 𝑑
𝑞
𝑠}

+ 𝑦
0
[1 +

𝑡

𝜗
(𝑏 (1 − 𝛿) − 1)] ,

(15)



The Scientific World Journal 3

where

𝜗 = 𝜔 −
𝑏 (1 − 𝛿

2

)

1 + 𝑞
̸= 0. (16)

3. Existence Results

First of all, we outline some basic definitions and results for
multivalued maps [25, 26].

For a normed space (𝑋, ‖ ⋅ ‖), letP
𝑐𝑙
(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌

is closed}, P
𝑏
(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌 is bounded}, P

𝑐𝑝
(𝑋) =

{𝑌 ∈ P(𝑋) : 𝑌 is compact}, andP
𝑐𝑝,𝑐
(𝑋) = {𝑌 ∈ P(𝑋) : 𝑌

is compact and convex}. A multivalued map 𝐺 : 𝑋 → P(𝑋)

(i) is convex (closed) valued if𝐺(𝑥) is convex (closed) for
all 𝑥 ∈ 𝑋;

(ii) is bounded on bounded sets if 𝐺(B) = ∪
𝑥∈B𝐺(𝑥) is

bounded in𝑋 for allB ∈ P
𝑏
(𝑋) (i.e., sup

𝑥∈B{sup{|𝑦| :
𝑦 ∈ 𝐺(𝑥)}} < ∞);

(iii) is called upper semicontinuous (u.s.c.) on 𝑋 if, for
each𝑥

0
∈ 𝑋, the set𝐺(𝑥

0
) is a nonempty closed subset

of𝑋 and if, for each open set𝑁 of𝑋 containing𝐺(𝑥
0
),

there exists an open neighborhoodN
0
of 𝑥
0
such that

𝐺(N
0
) ⊆ 𝑁;

(iv) is said to be completely continuous if𝐺(B) is relatively
compact for every B ∈ P

𝑏
(𝑋);

(v) is said to be measurable if, for every 𝑦 ∈ R, the
function

𝑡 󳨃󳨀→ 𝑑 (𝑦, 𝐺 (𝑡)) = inf {󵄨󵄨󵄨󵄨𝑦 − 𝑧
󵄨󵄨󵄨󵄨 : 𝑧 ∈ 𝐺 (𝑡)} (17)

is measurable;
(vi) has a fixed point if there is 𝑥 ∈ 𝑋 such that 𝑥 ∈ 𝐺(𝑥).

The fixed point set of the multivalued operator 𝐺 will
be denoted by Fix𝐺.

For each 𝑥 ∈ 𝐶([0, 1],R), define the set of selections of 𝐹
by

𝑆
𝐹,𝑥

:= {V ∈ 𝐿1 ([0, 1] ,R) : V (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) for a.e. 𝑡 ∈ [0, 1]} .
(18)

Definition 5. A multivalued map 𝐹 : [0, 1] × R → P(R) is
said to be a Carathéodory function if

(i) 𝑡 󳨃→ 𝐹(𝑡, 𝑥) is measurable for each 𝑥 ∈ R;
(ii) 𝑥 󳨃→ 𝐹(𝑡, 𝑥) is upper semicontinuous for almost all
𝑡 ∈ [0, 1].

Further, a Carathéodory function 𝐹 is called 𝐿1-Carathéo-
dory if

(iii) for each 𝛼 > 0, there exists 𝜑
𝛼
∈ 𝐿
1

([0, 1],R+) such
that

‖𝐹 (𝑡, 𝑥)‖ = sup {|V| : V ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝜑
𝛼
(𝑡) (19)

for all ‖𝑥‖ ≤ 𝛼 and for a.e. 𝑡 ∈ [0, 1].

We define the graph of 𝐺 to be the set 𝐺𝑟(𝐺) = {(𝑥, 𝑦) ∈
𝑋 × 𝑌, 𝑦 ∈ 𝐺(𝑥)} and recall two results for closed graphs and
upper-semicontinuity.

Lemma 6 (see [25, Proposition 1.2]). If 𝐺 : 𝑋 → P
𝑐𝑙
(𝑌) is

u.s.c., then 𝐺𝑟(𝐺) is a closed subset of 𝑋 × 𝑌, that is, for every
sequence {𝑥

𝑛
}
𝑛∈N ⊂ 𝑋 and {𝑦

𝑛
}
𝑛∈N ⊂ 𝑌, if 𝑛 → ∞, 𝑥

𝑛
→ 𝑥
∗
,

𝑦
𝑛
→ 𝑦
∗
, and 𝑦

𝑛
∈ 𝐺(𝑥

𝑛
), then 𝑦

∗
∈ 𝐺(𝑥

∗
). Conversely, if 𝐺

is completely continuous and has a closed graph, then it is upper
semicontinuous.

Lemma 7 (see [27]). Let 𝑋 be a separable Banach space. Let
𝐹 : [0, 1] × 𝑋 → P

𝑐𝑝,𝑐
(𝑋) be an 𝐿1-Carathéodory function.

Then, the operator

Θ ∘ 𝑆
𝐹
: 𝐶 ([0, 1] , 𝑋) 󳨀→ P

𝑐𝑝,𝑐
(𝐶 ([0, 1] , 𝑋)) ,

𝑥 󳨃󳨀→ (Θ ∘ 𝑆
𝐹
) (𝑥) = Θ (𝑆

𝐹,𝑥,𝑦
)

(20)

is a closed graph operator in 𝐶([0, 1], 𝑋) × 𝐶([0, 1], 𝑋).

Definition 8. A function 𝑥 ∈ 𝐴𝐶1([0, 1],R) is called a solu-
tion of problem (1) if there exists a function 𝑓 ∈ 𝐿1([0, 1],R)
with 𝑓(𝑡) ∈ 𝐹(𝑡, 𝑥(𝑡)), a.e. on [0, 1] such that 𝐷𝜐

𝑞
𝑥(𝑡) = 𝑓(𝑡),

a.e. on [0, 1] and 𝑥(0) = 𝑔(𝑥) and 𝑥(𝜔) = 𝑏 ∫1
𝛿

𝑥(𝑠)𝑑
𝑞
𝑠.

To prove our main result in this section we will use the
following form of the nonlinear alternative for contractive
maps [28, Corollary 3.8].

Theorem 9. Let 𝑋 be a Banach space and let 𝐷 be a bounded
neighborhood of 0 ∈ 𝑋. Let 𝜒

1
: 𝑋 → P

𝑐𝑝,𝑐
(𝑋) and 𝜒

2
:

𝐷 → P
𝑐𝑝,𝑐
(𝑋) be two multivalued operators such that

(a) 𝜒
1
is contraction,

(b) 𝜒
2
is u.s.c and compact.

Then, if 𝜒 = 𝜒
1
+ 𝜒
2
, either

(i) 𝜒 has a fixed point in𝐷 or
(ii) there is a point 𝑢 ∈ 𝜕𝐷 and 𝜆 ∈ (0, 1) with 𝑢 ∈ 𝜆𝜒(𝑢).

Theorem 10. Assume that

(H
1
) 𝐹 : [0, 1] × R → P

𝑐𝑝,𝑐
(R) is 𝐿1-Carathéodory multi-

valued map;
(H
2
) there exists a continuous nondecreasing function 𝜓 :
[0,∞) → (0,∞) and a function 𝑝 ∈ 𝐶([0, 1],R+)
such that

‖𝐹(𝑡, 𝑥)‖P := sup {
󵄨󵄨󵄨󵄨𝑦
󵄨󵄨󵄨󵄨 : 𝑦 ∈ 𝐹 (𝑡, 𝑥)} ≤ 𝑝 (𝑡) 𝜓 (‖𝑥‖)

𝑓𝑜𝑟 𝑒𝑎𝑐ℎ (𝑡, 𝑥) ∈ [0, 1] ×R;
(21)

(H
3
) 𝑔 : 𝐶([0, 1],R) → R is a continuous function satisfy-
ing the condition

󵄨󵄨󵄨󵄨𝑔 (𝑢) − 𝑔 (V)
󵄨󵄨󵄨󵄨 ≤ ℓ ‖𝑢 − V‖ ∀𝑢, V ∈ 𝐶 ([0, 1] ,R) , ℓ > 0;

(22)
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(H
4
) there exists a number𝑀 > 0 such that

(1 − ℓ𝑘
0
)𝑀

‖𝑝‖𝜓 (𝑀) 𝜇
0

> 1, (23)

with ℓ𝑘
0
< 1, where

𝜇
0
:=

1

Γ
𝑞
(𝜐 + 1)

+
1

|𝜗|
{
|𝑏| (1 − 𝛿

𝜐+1

)

Γ
𝑞
(𝜐 + 2)

+
𝜔
𝜐

Γ
𝑞
(𝜐 + 1)

} ,

𝑘
0
:= 1 +

1

|𝜗|
|𝑏 (1 − 𝛿) − 1| .

(24)

Then, the problem (1) has at least one solution on [0, 1].

Proof. To transform the problem (1) into a fixed point prob-
lem, we define an operator F : 𝐶([0, 1],R) → P(𝐶([0, 1],
R)) as

F (𝑥) = {ℎ ∈ 𝐶 ([0, 1] ,R) : ℎ (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠}

+ [1 +
𝑡

𝜗
(𝑏 (1 − 𝛿) − 1)] 𝑔 (𝑥) ,

𝑡 ∈ [0, 1] , 𝑓 ∈ 𝑆
𝐹,𝑥
} .

(25)

Next, we introduce two operatorsF
1
: 𝐶([0, 1],R) → 𝐶([0,

1],R) andF
2
: 𝐶([0, 1],R) → P(𝐶([0, 1],R)) as follows:

F
1
𝑥 (𝑡) = [1 +

𝑡

𝜗
(𝑏 (1 − 𝛿) − 1)] 𝑔 (𝑥) , 𝑡 ∈ [0, 1] ,

F
2
(𝑥) = {ℎ ∈ 𝐶 ([0, 1] ,R) : ℎ (𝑡)

= ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠} ,

𝑡 ∈ [0, 1] , 𝑓 ∈ 𝑆
𝐹,𝑥
} .

(26)

Observe thatF = F
1
+F
2
. We will show that the operators

F
1
and F

2
satisfy all the conditions of Theorem 9 on [0, 1].

For the sake of clarity, we split the proof into a number of steps
and claims.

Step 1. F
1
is a contraction on 𝐶([0, 1],R). This is a conse-

quence of (H
3
). Indeed, we have

󵄨󵄨󵄨󵄨F1𝑥 (𝑡) −F1𝑦 (𝑡)
󵄨󵄨󵄨󵄨 = [1 +

𝑡

𝜗
(𝑏 (1 − 𝛿) − 1)]

󵄨󵄨󵄨󵄨𝑔 (𝑥) − 𝑔 (𝑦)
󵄨󵄨󵄨󵄨

≤ [1 +
1

|𝜗|
|𝑏 (1 − 𝛿) − 1|] ℓ

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩

≤ 𝑘
0
ℓ
󵄩󵄩󵄩󵄩𝑥 − 𝑦

󵄩󵄩󵄩󵄩 .

(27)

Taking supremum over 𝑡 ∈ [0, 1], we have

󵄩󵄩󵄩󵄩F1𝑥 −F1𝑦
󵄩󵄩󵄩󵄩 ≤ 𝑘0ℓ

󵄩󵄩󵄩󵄩𝑥 − 𝑦
󵄩󵄩󵄩󵄩 , ℓ𝑘0 < 1. (28)

Step 2.F
2
is compact, convex valued, and completely contin-

uous. This will be established in several claims.

Claim 1. F
2
maps bounded sets into bounded sets in 𝐶([0,

1],R). For that, let 𝐵
𝜌
= {𝑥 ∈ 𝐶([0, 1],R) : ‖𝑥‖ ≤ 𝜌} be a

bounded set in𝐶([0, 1],R).Then, for each ℎ ∈ F
2
(𝑥),𝑥 ∈ 𝐵

𝜌
,

we have

|ℎ (𝑡)| ≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑠

+
1

|𝜗|
{|𝑏| ∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑢)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑢)𝑑𝑞𝑠

+ ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑠}

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝜌) [

1

Γ
𝑞
(𝜐 + 1)

+
1

|𝜗|
{
|𝑏| (1 − 𝛿

𝜐+1

)

Γ
𝑞
(𝜐 + 2)

+
𝜔
𝜐

Γ
𝑞
(𝜐 + 1)

}]

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝜌) 𝜇0,

(29)

and consequently, for each ℎ ∈ F
2
(𝐵
𝜌
), we have

‖ℎ‖ ≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝜌) 𝜇0. (30)

Claim 2.F
2
maps bounded sets into equicontinuous sets. As

before, let 𝐵
𝜌
be a bounded set and let ℎ ∈ F

2
(𝑥) for 𝑥 ∈ 𝐵

𝜌
.
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Let 𝑡
1
, 𝑡
2
∈ [0, 1] with 𝑡

1
< 𝑡
2
and 𝑥 ∈ 𝐵

𝜌
. Then, for each

ℎ ∈ F
2
(𝑥), we obtain

󵄨󵄨󵄨󵄨(F1𝑥) (𝑡2) − (F1𝑥) (𝑡1)
󵄨󵄨󵄨󵄨

≤
1

Γ
𝑞
(𝜐)
∫

𝑡
1

0

[(𝑡
2
− 𝑞𝑠)
(𝜐−1)

− (𝑡
1
− 𝑞𝑠)
(𝜐−1)

]
󵄨󵄨󵄨󵄨𝑓 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑞𝑠

+
1

Γ
𝑞
(𝜐)
∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑠)
(𝜐−1) 󵄨󵄨󵄨󵄨𝑓 (𝑠)

󵄨󵄨󵄨󵄨 𝑑𝑞𝑠

+

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨

|𝜗|
{|𝑏| ∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ (𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑢)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑢)𝑑𝑞𝑠

+ ∫

𝜔

0

(𝜔 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑠}

≤

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝜌)

Γ
𝑞
(𝜐)

∫

𝑡
1

0

[(𝑡
2
− 𝑞𝑠)
(𝜐−1)

− (𝑡
1
− 𝑞𝑠)
(𝜐−1)

] 𝑑
𝑞
𝑠

+

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝜌)

Γ
𝑞
(𝜐)

∫

𝑡
2

𝑡
1

(𝑡
2
− 𝑞𝑠)
(𝜐−1)

𝑑
𝑞
𝑠

+

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝜌)

󵄨󵄨󵄨󵄨𝑡2 − 𝑡1
󵄨󵄨󵄨󵄨

|𝜗|
{|𝑏| ∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

+ ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑑
𝑞
𝑠} ,

(31)

which is independent of 𝑥 and tends to zero as 𝑡
2
− 𝑡
1
→ 0.

Therefore, it follows by the Arzelá-Ascoli theorem that F
2
:

𝐶([0, 1],R) → P(𝐶[0, 1],R) is completely continuous.

Claim 3.F
2
has a closed graph. Let 𝑥

𝑛
→ 𝑥
∗
, ℎ
𝑛
∈ F
2
(𝑥
𝑛
),

and ℎ
𝑛
→ ℎ
∗
. Then, we need to show that ℎ

∗
∈ F
2
(𝑥
∗
).

Associated with ℎ
𝑛
∈ F
2
(𝑥
𝑛
), there exists 𝑓

𝑛
∈ 𝑆
𝐹,𝑥
𝑛

such
that, for each 𝑡 ∈ [0, 1],

ℎ
𝑛
(𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
𝑛
(𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
𝑛
(𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
𝑛
(𝑠) 𝑑
𝑞
𝑠} .

(32)

Then, we have to show that there exists 𝑓
∗
∈ 𝑆
𝐹,𝑥
∗

such that,
for each 𝑡 ∈ [0, 1],

ℎ
∗
(𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
∗
(𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
∗
(𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
∗
(𝑠) 𝑑
𝑞
𝑠} .

(33)

Let us consider the continuous linear operator Θ : 𝐿1([0,
1],R) → 𝐶([0, 1],R) defined by

𝑓 󳨃󳨀→ Θ (𝑓) (𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠} .

(34)

Observe that
󵄨󵄨󵄨󵄨ℎ𝑛 (𝑡) − ℎ∗ (𝑡)

󵄨󵄨󵄨󵄨

=

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

(𝑓
𝑛
(𝑠) − 𝑓

∗
(𝑠)) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

(𝑓
𝑛
(𝑢) − 𝑓

∗
(𝑢)) 𝑑

𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

(𝑓
𝑛
(𝑠) − 𝑓

∗
(𝑠)) 𝑑
𝑞
𝑠}

󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨󵄨

󳨀→ 0,

(35)

as 𝑛 → ∞.Thus, it follows by Lemma 7 thatΘ∘𝑆
𝐹
is a closed

graph operator. Further, we haveℎ
𝑛
(𝑡) ∈ Θ(𝑆

𝐹,𝑥
𝑛

). Since𝑥
𝑛
→

𝑥
∗
, therefore, we have

ℎ
∗
(𝑡) = ∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
∗
(𝑠) 𝑑
𝑞
𝑠

+
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
∗
(𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓
∗
(𝑠) 𝑑
𝑞
𝑠} ,

(36)

for some 𝑓
∗
∈ 𝑆
𝐹,𝑥
∗

. Hence, F
2
has a closed graph (and

therefore has closed values). In consequence, the operatorF
2

is compact valued.
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Thus, the operators F
1
and F

2
satisfy hypotheses of

Theorem 9 and hence, by its application, it follows that either
condition (i) or condition (ii) holds. We show that the
conclusion (ii) is not possible. If 𝑥 ∈ 𝜆F

1
(𝑥) + 𝜆F

2
(𝑥) for

𝜆 ∈ (0, 1), then there exists 𝑓 ∈ 𝑆
𝐹,𝑥

such that 𝑥 = 𝜆F(𝑥),
that is,

𝑥 (𝑡) = 𝜆∫

𝑡

0

(𝑡 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠

+ 𝜆
𝑡

𝜗
{𝑏∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑢) 𝑑
𝑞
𝑢)𝑑
𝑞
𝑠

− ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

𝑓 (𝑠) 𝑑
𝑞
𝑠}

+ 𝜆 [1 +
𝑡

𝜗
(𝑏 (1 − 𝛿) − 1)] 𝑔 (𝑥) ; 𝑡 ∈ [0, 1] .

(37)

In consequence, we have

|𝑥 (𝑡)| ≤ ∫

𝑡

0

(𝑡 − 𝑞𝑠)
( 𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑠

+
1

|𝜗|
{|𝑏| ∫

1

𝛿

(∫

𝑠

0

(𝑠 − 𝑞𝑢)
(𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑢)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑢)𝑑𝑞𝑠

+ ∫

𝜔

0

(𝜔 − 𝑞𝑠)
(𝜐−1)

Γ
𝑞
(𝜐)

󵄨󵄨󵄨󵄨𝑓 (𝑠)
󵄨󵄨󵄨󵄨 𝑑𝑞𝑠}

+ [1 +
1

|𝜗|
|𝑏 (1 − 𝛿) − 1|] ℓ ‖𝑥‖

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖) [

1

Γ
𝑞
(𝜐 + 1)

+
1

|𝜗|
{
|𝑏| (1 − 𝛿

𝜐+1

)

Γ
𝑞
(𝜐 + 2)

+
𝜔
𝜐

Γ
𝑞
(𝜐 + 1)

}]

+ [1 +
1

|𝜗|
|𝑏 (1 − 𝛿) − 1|] ℓ ‖𝑥‖

≤
󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (‖𝑥‖) 𝜇0 + 𝑘0ℓ ‖𝑥‖ .

(38)

If condition (ii) of Theorem 9 holds, then there exist 𝜆 ∈
(0, 1) and 𝑥 ∈ 𝜕𝐵

𝑀
with 𝑥 = 𝜆F(𝑥), where 𝐵

𝑀
= {𝑥 ∈

𝐶([0, 1],R) : ‖𝑥‖ ≤ 𝑀}. Then, 𝑥 is a solution of 𝑥 = 𝜆F(𝑥)
with ‖𝑥‖ = 𝑀. Now, by the last inequality, we get

(1 − ℓ𝑘
0
)𝑀

󵄩󵄩󵄩󵄩𝑝
󵄩󵄩󵄩󵄩 𝜓 (𝑀) 𝜇0

≤ 1, (39)

which contradicts (23).Hence,Fhas a fixed point on [0, 1] by
Theorem 9, and consequently the problem (1) has a solution.
This completes the proof.

Example 11. Consider the following 𝑞-fractional boundary
value problem:

𝑐

𝐷
3/2

𝑞
𝑥 (𝑡) ∈ 𝐹 (𝑡, 𝑥 (𝑡)) , 𝑡 ∈ [0, 1] ,

𝑥 (0) =
1

2
+
1

5
tan−1 (𝑥(1

4
)) , 𝑥 (

1

4
) =
1

5
∫

1

3/4

𝑥 (𝑠) 𝑑
𝑞
𝑠.

(40)

Here, 𝜐 = 3/2, 𝑞 = 1/2, 𝑏 = 1/5, 𝜔 = 1/4, 𝛿 = 3/4,
ℓ = 1/15, and

𝐹 (𝑡, 𝑥) = [
3

(3 + 𝑡)
2

|𝑥|

1 + |𝑥|
+

cos𝑥
(4 + 𝑡)

2
+
1

2
, −
1

10
] . (41)

Obviously,

sup {|𝑢| : 𝑢 ∈ 𝐹 (𝑡, 𝑥)} ≤ 3

(3 + 𝑡)
2
+

1

(4 + 𝑡)
2
+
1

2

= 𝑝 (𝑡) 𝜓 (‖𝑥‖) .

(42)

With the given values, it is found that 𝜗 = 0.191667, 𝜇
0
≈

1.3990, 𝑘
0
= 3.9564, ‖𝑝‖ = 43/48, 𝜓(‖𝑥‖) = 1, and 𝑀 >

1.7026 by (H
3
). Thus, all the conditions of Theorem 10 hold.

In consequence, the conclusion of Theorem 10 applies to the
boundary value problem (40).
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