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A prime objective in constructing data streamingminingmodels is to achieve good accuracy, fast learning, and robustness to noise.
Although many techniques have been proposed in the past, efforts to improve the accuracy of classification models have been
somewhat disparate. These techniques include, but are not limited to, feature selection, dimensionality reduction, and the removal
of noise from training data. One limitation common to all of these techniques is the assumption that the full training dataset must
be applied. Although this has been effective for traditional batch training, it may not be practical for incremental classifier learning,
also known as data stream mining, where only a single pass of the data stream is seen at a time. Because data streams can amount
to infinity and the so-called big data phenomenon, the data preprocessing time must be kept to a minimum.This paper introduces
a new data preprocessing strategy suitable for the progressive purging of noisy data from the training dataset without the need to
process the whole dataset at one time.This strategy is shown via a computer simulation to provide the significant benefit of allowing
for the dynamic removal of bad records from the incremental classifier learning process.

1. Introduction

Data preprocessing has traditionally referred to cleaning up
the training dataset prior to sending it to the classifier con-
struction learning process. Many researchers advocate it as
an indispensable step in the data mining process because it
helps to get rid of “bad” data and/or attributes (features),
thus supporting a compact degree of dimensionality and
enhancing the accuracy of the learned model. While fea-
ture selection is undertaken to prune redundant attributes
(from the columns of a 2D dataset matrix), removing
records that do not contribute to model learning is another
common approach taken to maintain the quality of the
learned model in terms of classification accuracy. Though it
is known that the so-called “bad” records in the training data-
set will subsequently affect the performance of the learned
model, it is sometimes impossible to tell which records
contain “bad” data until they are later reflected by a decline
in the performance of the learned model, which will clearly
become apparent at too late a stage, especially in critical
applications.

Most engineering applications nowadays require har-
vesting useful insights from the so-called big data which
are not only large in volume but fresh data are generated
and accumulated continuously. Some typical engineering
applications are vital health signs monitoring, genes analysis
in biomedical engineering, real-time traffic monitoring in
civil engineering, real-time fraud detection in security and
data engineering, and so forth. A learnt data mining model
needs to be continuously updated and refreshed whenever
new records arrive. Typically, data stream mining methods
that demand for both accuracy and speed in quick model
induction would be useful in these applications. Although
many papers can be found in literature about the learning
mechanisms of incremental learning in various data stream
miningmodels, the preprocessing techniques for incremental
learning are relatively less explored. This paper aims at
shedding some light on a lightweight preprocessing method
for incremental classifier learning.

In data preprocessing with an objective of cleaning the
training data from noise prior to model induction, it is not
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easy to identify data instances as bad or good without any
external judgment or intervention. This is analogous to the
paradox that arises when a majority of data is wrong: the
classifier model will take them as “normal.” A pressing chal-
lenge facing the data mining community is how to pinpoint
such noisy data when they are part of a normal statistical
distribution and do not clearly fall into the categories of
extreme values or outliers. In comparison, handling missing
values is a relatively trivial preprocessing issue as the rows that
contain any data on blank fields can be deleted or blank field
scan can be filled artificially with guessed data [1].

Tagging data as noisy is a challenge when a priori knowl-
edge is unavailable. One way of doing so is to compare a
given dataset with the normal distribution of values for such
data to determine whether it is normal or rare. This may not
be a favorable approach: as it normalizes all of the data, the
learning model resulting from the training process will lose
the ability to make specific predictions and will be blunted
by generality. The other technique commonly applied is to
conduct a trial classification/test on data taken from the
training dataset and check whether they lead to a satisfactory
level of classification accuracy. If not, the data are deemed
to be bad as they have failed the trait test; retaining them
in the training dataset would only lead to a subsequent
deterioration in training accuracy. Hence, the data should
be purged, based on the principle that good data contribute
to constructing a reliable classifier, whereas bad data only
confuse the underlying cognition of the classifier model as
themodel is learnt in amanner similar to pattern recognition
among samples from the training dataset.

In Weka, a popular collection of machine learning
algorithms used for data mining with open source machine
learning software, a filter function called RemoveMisclassi-
fied() (http://weka.wikispaces.com/Removing+misclassified+
instances+from+dataset) has been made available to preemp-
tively remove from the training dataset a subset of data that
could reduce the accuracy of the trainingmodel.The function
however has been developed years ago by the Weka research
team andmade into a standard function. Recently, it has been
used by a data filtering model called PRISM (preprocessing
instances that should be misclassified) [2], which eliminates
certain instances from the original dataset. They are called
“should be misclassified” because the filter function predicts
in advance that these instances will likely be misclassified
by inducing a preliminary classification model prior to the
actual model induction. However, the function doubles the
total model learning time at worst (involving a test run of
one round of classification to filter out instances that have
been misclassified + the actual building of the model based
only on correctly classified instances). Therefore, it may not
be an elegant solution if a user opts for a lightweight data
preprocessing step that does not have to take as much time
as building one dummy classifier in advance to distinguish
between good and bad data. This may work for batch type
data mining, but not for incremental data mining.

Section 2 outlines the contributions other researchers
have made for the detection of noise in training data;
few techniques have been put forward to distinguish bad
data from good data. However, those techniques are all

principle-based solutions, and they are likely to share the
same shortcoming when it comes to data stream mining. All
of these techniques need a reference model to distinguish
between two groups of data; the first comprises instances
useful for building a good model, and the second consists of
noisy data that would not contribute to the construction of a
sound model. The problem common to all of these proposed
techniques is the need to use the full dataset to establish such
a reference model. The decoyed classifier generated by the
RemoveMisclassified() function, which requires the full data
cache and enough time to divide up the samples, is exactly
this type of reference model.

This paper proposes a novel lightweight preprocessing
strategy that takes the optimal amount of time to produce a
trimmed/cleansed training dataset enabling the training
model to yield the highest possible degree of accuracy.

Holistically, this preprocessing strategy allows a training
model to achieve a good level of accuracy with a short pre-
processing time and a compact decision tree (or the minimal
rules that are sufficiently significant). In practical terms, these
benefits translate into a very fast process for filtering noisy
instances and training a relatively accurate model at the same
time. This is important in enabling incremental learning
where the preprocessing component is quick and effective.
The compact decision tree means that only useful classifica-
tion rules are generated; technically, this means that stringent
memory constraints could be met in real-time applications.

The rest of the paper is structured as follows. Section 2
highlights some commonly adopted techniques that other
researchers have proposed for the detection and removal of
noise from training datasets. Section 3 describes our new
lightweight methodology, which includes a workflow, a cal-
ibration function for finding the optimal settings, and the
details of the “contradiction analysis” mechanism used for
removing misclassified instances. Section 4 reports an exper-
iment conducted to validate our strategy. Section 5 concludes
the paper.

2. Related Work

Numerous researchers have attempted to apply different
techniques in detecting and removing noisy data, which are
generally referred to as incorrect or erroneous data instances.
These techniques all center on the common observation of
how such data instances disrupt training data and thwart
the pursuit of classification accuracy. In other words, they
generally focus on the observation of data irregularities, how
each data instance relates to the others (the majority), and
how such data instances relate to classification performance.
Most of these techniques can be grouped into the follow-
ing three categories: statistics-based, similarity-based, and
classification-based methods.

2.1. Statistics-Based Noise Detection Methods. Outliers, or
data with extraordinary values, are interpreted as noise in
this kind of method. Detection techniques proposed in the
literature range from finding extreme values beyond a certain
number of standard deviations to complex normality tests.
Comprehensive surveys of outlier detection methods used
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to identify noise in preprocessing can be found in [3, 4]. In
[5], the authors adopted a special outlier detection approach
in which the behavior projected by the dataset is checked. If
a point is sparse in a lower low-dimensional projection, the
data it represents are deemed abnormal and are removed.
Brute force, or, at best, some form of heuristics, is used to
determine the projections.

A similar method outlined by [6] builds a height-bal-
anced tree containing clustering features on nonleaf nodes
and leaf nodes. Leaf nodes with a low density are then con-
sidered outliers and are filtered out.

Recently, there are some new developments founded on
sophisticated statistics models too, such as outlier detec-
tion in adaptive functional-coefficient autoregressive models
based on Extreme Value Theory [7]. Extending from such
statistics computation, the outlier detection evolves into
detecting outliers in time-series of univariate data. It has a
wide range of applications like detecting outliers from astro-
nautical time series data [8], recovering outliers from traffic
volume data using Tensor model [9], and finding outliers
from a time series records of available parking spaces [10].

2.2. Similarity-Based Noise Detection Methods. This group of
methods generally requires a reference by which data are
compared to measure how similar or dissimilar they are to
the reference.

In [11], the researchers first divided data intomany subsets
before searching for the subset that would cause the greatest
reduction in dissimilarity within the training dataset if
removed. The dissimilarity function can be any function
returning a low value between similar elements and a high
value between dissimilar elements, such as variance. How-
ever, the authors remarked that it is difficult to find a universal
dissimilarity function.

Xiong et al. [12] proposed the Hcleaner technique applied
through a hyperclique-based data cleaner. Every pair of
objects in a hyperclique pattern has a high level of similarity
related to the strength of the relationship between two
instances. The Hcleaner filters out instances excluded from
any hyperclique pattern as noise.

Another team of researchers [13] applied a k-NN algo-
rithm, which essentially compares test data with neighboring
data to determine whether they are outliers by reference to
their neighbors. By using their nearest neighbors as ref-
erences, different data are treated as incorrectly classified
instances and are removed. The authors studied patterns of
behavior among data to formulateWilson’s editing approach,
a set of rules that automatically select the data to be purged.

This group of methods that are based on similarity
measure is sometimes known as distance-based approach.
They are also sometimes known as noise reduction algo-
rithms [14] as they aim at detecting outliers from normal
data. There are several classical contributions such as local
outlier factor (LOF) [15]; a recent work on using LOF for
detecting outliers in data stream mining is presented in [16].
Some variants of outlier distance based algorithm are called
Enhanced Class Outlier Distance Based Algorithm (ECODB)
[17] and repeated edited nearest neighbor (RENN) [18]. Some
latest works reported in 2014 include angle based outlier

detection method in preprocessing [19], automatic outlier
detection using inter-quartile-range [20], and a deviation-
based approach for real-time wireless sensor network data
[21], just to name a few.

2.3. Classification-Based Noise DetectionMethods. Classifica-
tion-based methods are those that rely on one or more pre-
liminary classifiers built as references for deciding which data
instances are incorrectly classified and should be removed.

In [22], the authors used an 𝑛-fold cross-validation
approach to identify mislabeled instances. In this technique,
the dataset is partitioned into 𝑛 subsets. For each of the 𝑛
subsets,𝑚 classifiers are trained on the instances in the other
𝑛 − 1 subsets and the instances in the excluded subset are
classified. Each classifier tags an instance as misclassified if
it is classified incorrectly. Majority voting or a consensus
approach can be used in the filtering process.

Another team of researchers [23] presented a robust deci-
sion tree method for the removal of outliers. In this method,
a pruning tree is built on the training dataset and is used to
classify the training data. Instances the pruned tree classi-
fies incorrectly are removed from the training dataset. These
processes are repeated until the pruned tree correctly classi-
fies all instances in the training dataset.

In the study reported in [24], the researchers innovatively
used a genetic algorithm (GA) to create a set of suspicious
noisy instances and select a prototype to identify the set of
actual noisy instances. The fitness function of the GA is a
generic classifier built in advance, and theGAuses it to search
heuristically for misclassified instances.

There are recently other similar contributions which
centered on the idea of building a preliminary classifier in
advance; from the performance of the early model, the user
judges which data instances are deemed to be removed prior
to constructing themain classificationmodel.Thesemethods
have this principle in common, though the underlying algo-
rithms that they use may vary, such as [2, 25]. Nevertheless,
they were designed for traditional data mining where a full
dataset needs to be loaded in for batch learning, rather than
for incremental learning.

3. Our Proposed Incremental
Preprocessing Model (IPPM)

All of the techniques reviewed above were designed for
preprocessing in batch mode, which requires a full set of data
to determine which instances are to be deleted.

We argue that, for real-time data stream mining, tradi-
tional preprocessing approaches may cause a reduction in
performance simply due to the different nature of operations
and the requirements of a lightweight mechanism. The
unique data preprocessing andmodel learning approach pro-
posed here are different from all those outlined in Section 2.

Preprocessing has traditionally been seen as a standalone
step which takes place before model learning starts. The
dataset is fully screened at least once to determine which
instances should be removed because they would cause
misclassification at a later stage. The enhanced training set,
which is usually a subset of the original dataset, is then fed
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Figure 1: Illustration of how the IPPM works.

into the learning process in the hope that it will facilitate
noise-free learning.

In contrast, our incremental preprocessingmodel (IPPM)
is embedded in the incremental learning process, and all of
the steps—noise detection, misclassified data removal, and
learning—occur within the same timeframe. In this dual
approach, preprocessing and training are followed by testing
work as the data stream flows in. By way of illustration, Fig-
ure 1 shows a window of size𝑊 rolling along the data stream.
Within the window, the data are first subject to contradiction
analysis (for noise detection), then to misclassified data
removal and training (model building).

After the model is duly trained, incoming instances are
tested. Because this allows for intermediate performance
results to be obtained, the average performance level can also
be calculated at the end of the process based on the overall
performance results.

3.1. Workflow of the Preprocessing and Incremental Learning
Model. The full operational workflow of the IPPM is shown
in Figure 2.

Both preprocessing and training occur within the same
window, which slides along the data stream from the begin-
ning and is unlikely to require all available data. In data min-
ing jargon, this is an anytimemethod,whichmeans themodel
is ready to use (for testing) at any time. Whenever new data
come in, the window progressively covers the new instances
and fades out the old (outdated) instances, and as the analysis
kicks in again, the model is updated incrementally in real
time.
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Figure 2: Workflow of the incremental learning strategy.

Through this approach, there is no need to assume the
dataset is static and bounded, and the advantages of removing
misclassified instances persist. Each time the window moves
on to fresh data, the training dataset framed in the window
𝑊 is enhanced and the model incrementally learns from
the inclusion of fresh data within𝑊. Another benefit of the
proposed approach is that the statistics retained by the rolling
window 𝑊 can be cumulative. By accumulating statistics
on the contradiction analysis undertaken within each frame
of the window as it rolls forward, the characteristics of the
data are subtly captured from a long-run global perspective.
Contradiction analysis can be improved by employing such
global information, and it can possibly becomemore accurate
in recognizing noisy data. In other words, the noise detection
function becomes more experienced (by tapping into cumu-
lative statistics) and refined in picking up noise. Noise is, of
course, a relative concept, the identification of which requires
an established reference.
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3.2. Calibration for Optimal Settings. Crucial factors for the
IPPM to work well include the choice of window size𝑊 and
the algorithms used for contradiction analysis and incremen-
tal model learning.

There are more than a dozen choices of algorithms, and
there is no universal algorithm that fits datasets of all sizes
and natures and the theme of the application. For example,
a support vector machine, which is relatively fast and has a
lower false alarm rate, would be recommended or the rapid
detection of malicious attacks in cyber security. For appli-
cations where accuracy is more important than speed and
relations between attributes and classes are of a complex
nonlinear nature, a neural network would be ideal.

For the choice of 𝑊, there is always a compromise
between time taken and accuracy. In general, the larger the
window, the greater the amount of data included in the
contradiction analysis and for subsequent enhancement of
the training data used for model learning. Hence, accuracy
is slightly increased because sufficient data are available.
However, what degree of sufficiency is required? How large
should thewindowbe to ensure an optimumbalance between
accuracy and time taken, which is proportional to the amount
of data included in𝑊?

Therefore, it is suggested that, before the actual work
begins, IPPM operations be initialized with respect to dif-
ferent data and applications. This is why a calibration step is
advocated, an exercise that could be used to find the optimal
𝑊 that produces the performance variables desired. Different
algorithms can also be test driven in this step so that the
user can gauge the goodness or suitability of each candidate
algorithm. Figure 3 shows an example of the optimal point
that projects the right𝑊 size where all performance variables
can be maximized.

The curves 𝐹1, 𝐹2, . . ., and 𝐹3 represent factors that influ-
ence the values of 𝑝∗ and 𝑦∗ simultaneously.The intersection
of these curves is an optimum balance by which the corre-
sponding values on the 𝑥-axis and 𝑦-axis could be mutually
maximized without jeopardizing one from another. In our
case here, 𝑝∗ may represent the percentage of performance
that could be achieved by our learning model given 𝑦∗ which
is the percentage of the amount of training data. Intuitively,
the more the data available for model training, the better

the performance that can be yielded. Two factors, time and
accuracy, however, are often in opposition—high accuracy
usually comes with more data and longer processing time.

In this paper, we adopt a theory of economic order
quantity (EOQ), which is also known as the Barabas EOQ
model [26], for finding the optimal point that produces a
good balance of accuracy and time such that 𝑦∗ can be
deduced from the intersect; hence, the optimal𝑊 is obtained.

Given that 𝑊 is the window size that holds a certain
quantity of training samples at a time,𝑊∗ is the optimal win-
dow size we want to find. 𝑁 is the total number of samples
or instances in the whole dataset. The efficiency gain, 𝐸, is
defined as the degree of efficiency which is the inverse of
the required processing time for processing each instance in
average. 𝐴, then, is the accuracy cost (loss) that drops per
piece of instance that is left out from the training set. Hence,
we want to optimize the following:

Total cost (TC) = Data size cost + time consumption cost

+ accuracy cost,
(1)

where data size cost is the variable cost of data which is the
data unit cost × the total quantity in the dataset. Time con-
sumption cost is the cost of preprocessing the data; each data
has an assumed fixed cost 𝐸, and we need to spend 𝑁/𝑊
rounds of iteration; the time consumption cost is then 𝐸 ×
𝑁/𝑊. For the averagewindow size is about𝑊/2, the accuracy
cost is thus 𝐴 × 𝑁/𝑊. Consider

Hence TC = 𝑁 × 𝐷 + 𝑁 × 𝐸
𝑊
2

+

𝐴 ×𝑊

2

𝐷 = −

𝑁 × 𝐸

𝑊
2

+

𝐴

2

.

(2)

Solving for𝑊 gives𝑊∗ which is the optimal amount of
sample in the window. One has

𝑊
2

=

2 × 𝑁 × 𝐸

𝐴

; therefore 𝑊∗ = √2 × 𝑁 × 𝐸
𝐴

. (3)

The optimization is not limited to two factors; the equa-
tion can be extended to multiple factors such as ROC, pre-
cision and recall, 𝐹1measure, Kappa’s statistic, tree size, and
model complexity for a multidimensional optimization.

3.3. Contradiction Analysis. For contradiction analysis, a
modified pair-wise based classifier (PWC) is used that is
based on the dependencies of the attribute values and the
class labels. PWC is similar to instance-based classifier or lazy
classifier which only gets activated for testing an instance and
incrementally trains at most in one round a classifier when
the instance arrives. PWC has several incentives over other
methods despite the fact that it is very fast in processingwhich
is a prerequisite for lightweight preprocessing. The advan-
tages include simplicity in merely computing the support
and confidence values for estimating which target label one
instance should be classified into, no persistent tree structure
or trained model needs to be retained except small registers
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Figure 4: Illustration of a rolling window from which contradiction analysis takes place.

for statistics, and the samples (reference) required for noise
detection can scale flexibly to any amount (≤𝑊).

One example that is inspired by [27] about a weighted
PWC is shown in Figure 4.

In each time, where current position is 𝑖, the sliding
window contains 𝑊 potential training samples over three
attributes (𝐴, 𝐵, and 𝐶) and one target class. 𝑋 is the new
instance at the position 𝑖 + 1 which is just ahead of the
preceding end of the window, and it has a vector of values
{𝑎
1
, 𝑏
2
, 𝑐
2
} as an example. Assuming 𝑘 = 𝑊/2 which rounds

up to 2, the neighborhood sets for each attribute value of 𝑋
are shown in the upper-right area of the figure. For example,
𝑁(𝑎
1
) = {𝑎

1
, 𝑏
1
} because conf(𝑎

1
, 𝑎
1
) = 1 and conf(𝑎

1
, 𝑏
1
) =

0.75 are the highest two for 𝑎
1
. The resulting 𝑈(𝑋) set is

found below. For instance, associated with 𝑎
1
in 𝑈(𝑋) is

only 𝑎
1
itself, forming the pair (𝑎

1
, 𝑎
1
). It does not belong

to 𝑋 and will be excluded from 𝑈(𝑥) although 𝑏
1
∈ 𝑁(𝑎

1
).

The same applies to 𝑐
1
with respect to 𝑁(𝑏

2
), whereas both

𝑐
2
and 𝑎

1
, which belong to 𝑁(𝑐

2
), are included in 𝑈(𝑋)

associated with 𝑐
1
. For eachmember of𝑈(𝑋), PWC examines

the confidence values against the two target classes 𝑙
1
and

𝑙
2
. For instance, for (𝑎

1
, 𝑙
1
), we calculate a conf(𝑎

1
, 𝑙
1
) =

support({𝑎
1
, 𝑙
1
})/support(𝑎

1
) = 3/4 = 0.75, which checks a

first-order dependency between 𝑎
1
and 𝑙
1
. In contrast, for pair

(𝑐
2
, 𝑎
1
), we examine a second-order dependency by calculat-

ing conf({𝑐
2
, 𝑎
1
}, 𝑙
1
) = support({𝑎

1
, 𝑐
2
, 𝑙
1
})/support(𝑎

1
, 𝑐
2
) =

2/2 = 1. Taking the sum of confidence values for each
class, we obtain Sum(𝑙

1
) = 2.75 and Sum(𝑙

2
) = 1.25;

therefore, the new instance should belong to class 𝑙
1
. In this

way, contradiction is determined by observing whether the
calculated class membership matches the actual class label of
each new instance. If the new instance is in agreement with
the PWC calculation, no contradiction is assumed and the

window proceeds forward by one row, leaving out the last
row and including the new instance in the training set. If the
class label of the new instance contradicts the result of the
calculated class label, the new instance is purged.

One modification we made in our process is the use of
the other version of neighbour sets. The current neighbor
sets store only the most updated confidence values of the
pairs within the current window frame, which are called
local sets. The information in the local sets gets replaced
(recomputed) by the new results every timewhen thewindow
moves to a new position with inclusion of a new instance. In
our design, a similar buffer called global sets is used that do
not replace but accumulate the newly computed confidence
values corresponding to each pair in the window frame.

Of course, the contradiction analysis can be implemented
by similar algorithms. It can be seen that, by using PWC, the
required information and calculation are kept as minimal as
possible, which implies fast operation.

4. Experiment

The objective of the experiment is to verify the efficacy of
the proposed IPPM preprocessing strategy. In particular, we
want to see how IPPM works when coupled with different
classification algorithms which we briefly divided into two
groups—those that were founded on greedy search method
and instance-based method. A total of eight algorithms
were put under test of IPPM preprocessing strategy. For
greedy search, representative algorithms include decision
tree (J48), naive Bayesian (NB), neural network (NN), and
support vector machine (SVM). Instance-based classifiers
include K∗—an instance-based learner using an entropic
distance measure (KStar), K-nearest neighbours classifier
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Figure 5: Visualization of the electricity dataset.

(IBK), locally weighted learning (LWL), and decision table
(DT). The experiment is conducted in a Java-based open
source platform called Weka which is a popular software
tool for machine learning experiments from University of
Waikato. All the aforementioned algorithms are available
as either standard or plug-in functions on Weka which
have been well documented in the Weka documentation file
(which is available at http://www.cs.waikato.ac.nz/ml/weka).
Hence, their details are not repeated here.The hardware used
is Lenovo laptop with Intel PentiumDual-Core T3200 2GHz
processor, 8 Gb RAM and 64-bits Windows 7.

The test dataset used is called electricity (http://moa.cs
.waikato.ac.nz/datasets) which is popularly used for testing
data stream mining algorithms. The data was collected from
the Australian New South Wales Electricity Market. In this
market, prices are not fixed and are affected by demand and
supply of the market. They are set every five minutes. The
dataset contains 45,312 instances in 7 attributes. The class
label identifies the change of the price relative to a moving
average of the last 24 hours, whether it goes up or down as
class label. Besides, it was widely used in data streammining;
this particular dataset has a property of slight concept drift. It
means the statistical properties of the target class the model
is trying to predict change over time without any prior clue.
This usually deters the accuracy of a classification model;
the predictions that are based on previously trained data
become less accurate as time passes. This feature is useful for
testing the two modes of the local memory and the global
memory in our contradiction analysis. A visualization of the
electricity dataset is shown in Figure 5; one can see that the
variables vicprice and vicdemand suddenly vary their range
and dominate the data distribution at approximately instance
17,000 onwards. To make the problem more challenging for
stress testing the efficiency of the preprocessing method,
additional randomnoises are perturbed at 30% of the dataset.

To start the experiment, the dataset is first subject to
a collection of eight algorithms in the calibration stage for
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Figure 6: Performance curves for J48.
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Figure 7: Performance curves for NB.

testing out the optimal size of𝑊. In practice, only a relatively
small sample will be used, and calibration could repeat
periodically or whenever the performance of the incremental
learning drops, for fine-tuning the window size.

For each of the eight algorithms, the accuracy curve is
plotted versus the time efficiency, in the same range between
0 and 100, as described in Section 3.2. It is assumed that
the optimal point between accuracy that is defined as the
percentage of correctly classified instances and time efficiency
is wanted. An averaged trend line is regressed on each curve
in order to rectify the fluctuations. The line in blue is for
accuracy, and the one in red is for time efficiency. They
are obtained from running the algorithm over a sample of
training data, which is being scaled down from 100% to
5% with a decrement of 5% each time. Reservoir sampling
technique is applied here in extracting a certain percentage of
the sample so that the selection of data for exclusion would be
fair among the data. Being on the same scale at the 𝑦-axis, the
lines may intersect at a Pareto optimum (Pareto optimal) that
reveals the appropriate training size on the 𝑥-axis that will
just be enough for producing an optimal level of accuracy at
the minimal cost of time efficiency. The optimization charts
are shown in Figures 6, 7, 8, 9, 10, 11, 12, and 13, respectively,
for the eight algorithms.

It can be observed that, interestingly, optimization of
the two performance characters (accuracy versus time) over
some algorithms produces a cross-point. For instance, the
intersection points for J48 and DT fall at the range between
20% and 30%of sampling data. IBK interests at approximately
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Figure 8: Performance curves for NN.
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Figure 9: Performance curves for SVM.
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Figure 10: Performance curves for KStar.
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Figure 11: Performance curves for IBK.
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Figure 12: Performance curves for LWL.
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Figure 13: Performance curves for DT.

60%. That means commonly J48 and DT algorithms require
about 25% of sampling data in order to achieve an optimal
balance or compromise between good accuracy and time
efficiency. IBK needs 2.4 times larger the size of the sample.
All the achievable accuracies rest on approximately 90%
which is not too bad. In contrast, the rest of the algorithms
like neural network, SVM, KStar, and LWL require almost the
full set of data for reaching an acceptable level of accuracy and
speed. This can be explained by the fact that they generally
require hundreds times longer the time than those others
(e.g., LWL trains and tests for 5052 seconds; compared to IBK
that only needs 72 seconds for processing 100% amount of the
data). NB is an outlier which is executed extremely fast, but
the accuracy fluctuates to the greatest extent among all.

After all, the choice of 𝑊 and the algorithm could be
subjective by the users. From the results, it seems like 25% of
window size𝑊 is a logical choice. One may argue that if the
data stream is potential infinite, how do we know relatively
the ideal percentage of the required window size? In such a
case, an absolute number of instances would be used in lieu
of a relative percentage. The number of training instances
would be reduced graduallywhile observing the degeneration
of accuracy, and it will stop when the accuracy falls onto an
acceptable minimum threshold.

Next, the whole dataset is subject to the dual process
of IPPM preprocessing and incremental learning, after an
appropriate 𝑊 is derived. The dataset now serves a data
stream that is being tested and model-trained segment by
segment via a sliding window. Again, the eight algorithms
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Table 1: Performance comparison of algorithms under batch learning mode.

Algorithm
Batch learning

No preprocessing Preprocessing
Accuracy Time Gain ratio Accuracy Time Gain ratio

J48 62.5110 33.0000 1.8943 99.7983 9.0000 11.0887
NB 55.0207 3.0000 18.3402 88.0629 4.0000 22.0157
NN 60.0702 1083.0000 0.0555 93.2245 613.0000 0.1521
SVM 58.1060 3607.0000 0.0161 88.0324 803.0000 0.1096
Kstar 91.7483 7970.0000 0.0115 99.6041 7860.0000 0.0127
IBK 100.0000 258.0000 0.3876 100.0000 72.0000 1.3889
LWL 60.5204 16858.0000 0.0036 91.1804 5082.0000 0.0179
DT 61.5731 37.0000 1.6641 100.0000 42.0000 2.3810

Table 2: Performance comparison of algorithms under incremental learning mode.

Algorithm
Incremental learning

No preprocessing PP. with respect to local reference PP. with respect to global reference
Accuracy Time Gain ratio Accuracy Time Gain ratio Accuracy Time Gain ratio

J48 56.7105 12.0000 4.7259 71.6697 5.3333 13.4381 69.2177 12.5000 5.5374
NB 55.7100 2.6667 20.8913 68.5534 4.6667 14.6900 84.5540 2.0000 42.2770
NN 53.7179 834.0000 0.0644 66.2704 521.3333 0.1271 73.4672 984.0000 0.0747
SVM 55.8189 844.0000 0.0661 69.6478 238.6667 0.2918 76.5615 1040.0000 0.0736
Kstar 55.9808 3485.3333 0.0161 74.2809 1300.6667 0.0571 78.4271 3262.5000 0.0240
IBK 52.8808 63.3333 0.8350 69.1130 24.0000 2.8797 66.2719 61.5000 1.0776
LWL 59.5147 2562.6667 0.0232 73.4821 911.3333 0.0806 83.6198 4102.0000 0.0204
DT 56.9724 9.3333 6.1042 71.4792 4.6667 15.3170 69.0701 9.0000 7.6745

are used in enabling the model learning. The models by the
eight algorithms are updated and refreshed every time when
the window progresses by one instance. Specifically, the two
modes of contradiction analysis, local reference and global
reference, are tested with the given data stream. In data
streaming, a significant difference is that the temporal pattern
(a.k.a. data evolution pattern or concept drift) can be taken
into effect.That is contrary to batch training where the whole
data is lumped up and the overall data distributions could
only be observed—the change of data distribution in time
cannot be seen.

The batch mode learning is still conducted as a com-
parison benchmark to the incremental learning. Supposedly,
the batch mode learning has the luxury of accessing the full
set of data; thereby, accuracy can be possibly made to the
highest with the full provision. The ultimate objective of this
experiment is to compare and judge if incremental learning
can be on par with traditional batch learning. In both cases,
they are done with and without preprocessing for all the eight
algorithms. In batch mode, the training and testing of the
data by a learning model are done over the full length of
data; the testing results are validated by 10-fold validation;
in incremental mode, the process is carried out according to
IPPM as specified in Section 3.1.

The performance results in terms of accuracy and total
processing time in seconds are shown in Tables 1 and 2
for batch learning and incremental learning, respectively. A
gain ratio is added that is simply the accuracy value divided

by the time taken value, for easy comparison. The higher
the accuracy, the shorter the time taken, and the better the
gain ratio. The value of gain ratio, if close to zero, means
this algorithm under this configuration of learning mode
and preprocessing method is not favorable. Otherwise, it is
a good candidate for the combo of algorithm and learning
environment when the gain ratio is large.

In the batch learning plus no preprocessing, in Table 1, the
gain ratios for those algorithms (NN, SVM, KStar, IBK, and
LWL) are consistent with the optimization results in Figures
6 to 13 carry a small gain ratio. Those algorithms that require
long training are unfavorable and their accuracies are poor
(with exceptions of KStar and IBK). NB has the highest gain
ratio; J48 and DT achieve a gain ratio of greater than 1. With
preprocessing in batch mode, the trend persists but the gain
ratio scaled up significantly. The same PWC was used in all
preprocessing methods for consistency.

Some interesting phenomenon is observed when com-
paring batch learning with no preprocessing and incremental
learning with no preprocessing.While the gain ratios of most
of the algorithms remain about the same, the gain ratios for
J48 and DT increased severalfold in the incremental learning
mode. The gain ratios increase even more remarkably when
preprocessing applies in incremental learning. The gain
ratio for J48 increases from 4.7 (no preprocessing) to 13.4
(preprocessingwith local reference) and to 5.5 (preprocessing
with global reference). The gain ratio for DT escalates from
6.1 (no preprocessing) to 15.3 which is more than double
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Figure 14: Performance comparison of groups of learning and
preprocessing modes at a glance.

the gain (preprocessing with local reference) and to 7.7
(preprocessing with global reference). The other algorithms
have their share of increase in gain ratio in varying degrees
too, when preprocessing applies in incremental learning.

In general, it can be shown that incremental learning for
the eight popular algorithms has an edge over batch learn-
ing especially when the lightweight preprocessing methods
applied. It may provide an alternative methodology of data
mining over the traditional preprocessing and then training
followed by testing approach, in batch mode.

In incremental learning, almost all the algorithms per-
form better in preprocessing with local reference than global
preprocessing with local reference, except only NB. In fact,
the gain ratio of NB in preprocessing with local reference is
even worse than no preprocessing in incremental learning.
The increase in local reference over global reference in pre-
processing attributes to the effect of concept drift experienced
from the given dataset. Keeping check of the information in
local context can effectively adapt to the newdata distribution
caused by the concept drift. New (local) data are more
relevant than the aged data, somaking use ofwhichmaintains
good accuracy. NB in opposite, works well in preprocessing
with global reference as NB is purely probability-based and
it is known to provide accurate result by digesting all the
instances of data and enumerating all the probabilities of
outcomes and variables. Constraining NB by a local window
may thwart its pursuit of counting sufficient instances for
probabilities estimation, hence it may result in poor accuracy.

The performance of all the algorithms in terms of
accuracy and time is visualized in several groups. They are
visualized in Figure 14. The time efficiency is scaled into a
range of 0% to 100%. The best performance is at the upper-
right corner of the chart. We can easily see a general pattern
that the performance of batch learning is leading. Incre-
mental learning without preprocessing ranks at the bottom.
However, incremental learning equipped with preprocessing
methods follows the performance of batch learning. Out of
the two preprocessing methods, the one with local reference
is superior to global reference except for the case of NB.

5. Conclusion

Noise is known to be a cause of confusion in the construction
of classification models and thus as a factor leading to a
deterioration in accuracy.We regard noise as simply a contra-
dicting instance that does not agree with the majority of data;
this disagreement causes the establishment of erroneous rules
in classification models and disrupts homogenous meta-
knowledge or statistical patterns by distorting the training
dataset. Other authors refer to noise as outliers, misclassified
instances, ormisfits, all of which are data types, the removal of
which will improve the accuracy of the classification model.
Though this research topic has been studied for over two
decades, techniques previously proposed for removing such
noise assume batch operations requiring the full dataset to be
used in noise detection.

To the best of our knowledge, this paper is the first to
propose the novel preprocessing strategy incorporated into
our model, the IPPM, which is of particular relevance to
incremental classification learning. The chief advantage of
the IPPM lies in its lightweight mechanism, which provides
optimal speed and accuracy. Its design is also suitable for
mining moving data streams. The IPPM is extremely simple
to use in comparison with other more complex techniques
such as those outlined in Section 2. Our experiment validates
its benefits in terms of its very high speed and its efficacy
in providing a noise-free streamlined training dataset for
incremental learning. In future work, the IPPM will be
tested with datasets that have different types and numbers of
attributes. More importantly, sample datasets with concept-
drift characteristics will be used to test our model. Concept
drift is a phenomenon whereby the underlying meaning of
the dataset changes over time. Because the contradiction
analysis statistics retained by the model are of two types—
those obtained from awindow frame only and those obtained
by accumulating the values calculated during the run as
a whole—they represent local optima and global optima,
respectively.Whereas local statistics are akin to localmemory,
global statistics are like global memory. It would be inter-
esting to see whether the latter adapt better to the evolving
dataset than local see-and-forget statistics. With its unique
lightweight capability of empowering incremental learning
with the benefit of fast data preprocessing, it is anticipated
that the IPPM will contribute to a wide range of data stream
applications [28] in which speed and accuracy are equally
important.
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