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The structure of 2-[(4-chlorophenylazo) cyanomethyl] benzoxazole, C
15
H
9
ClN
4
O (I), has triclinic (𝑃1) symmetry. The structure

displays N–H ⋅ ⋅ ⋅N hydrogen bonding. The structure of 2-[(arylidene) cyanomethyl] benzoxazoles, C
17
H
10
N
2
O
3
(II), has triclinic

(𝑃1) symmetry. The structure displays C–H ⋅ ⋅ ⋅N, C–H ⋅ ⋅ ⋅C hydrogen bonding. In (I), the chlorophenyl and benzoxazole groups
adopt a trans configuration with respect to the central cyanomethyle hydrazone moiety. Compound (II) crystallized with two
molecules in the asymmetric unit shows cisoid conformation between cyano group and benzoxazole nitrogen, contrary to (I).
In (II) the benzodioxole has an envelope conformation (the C17 atom is the flap atom). The molecular geometry obtained using
molecular mechanics (MM) calculations has been discussed along with the results of single crystal analysis.

1. Introduction

Benzoxazole derivatives are one of the most important
bioactive heterocyclic organic compounds in pharmaceutical
chemistry. They have been used as a starting material for
synthesis of bioactive structures of pharmaceutical drugs,
such as the antibiotic Calcimycin that includes a 2-substituted
benzoxazole ring in its molecular structure [1, 2]. Previous
studies revealed that substituted benzoxazoles possess diverse
chemotherapeutic activities including antibiotic, antimicro-
bial, antiviral, topoisomerase inhibitors, and antitumor activ-
ities [3–6]. Benzoxazoles possess the structural isosteres of
natural nucleotides (such as adenine and guanine) which
allows them to interact easily with the biopolymers of living
systems [7]. Also benzoxazole derivatives have been entered
in the synthesis of new classes of antibacterial drug, which has
showed activity against bacterial infections [8]. Benzoxazoles
are also widely used in industry, such as a photostable highly
efficient UV dyes, a dopant in organic light-emitting diodes,
chromophores, and chemosensors [9, 10].

It was reported that knowing the crystal structure and
conformation of 2-substituted benzoxazole derivatives sup-
ports important information for predicting their mode of
orientation on the receptor [3]. Then, more bioactive drugs
in the pharmaceutical industry could be designed.

In view of the aforementioned literature survey and to
support the pharmaceutical and organic chemistry scientists
with structural aspects that may be of value in designing
new derivatives and potent drugs, we present the geomet-
rical, stereochemical features of two bioactive 2-substituted
benzoxazole derivatives comparing their structures with each
other and related structures, using X-ray single crystal analy-
sis and molecular mechanics (MM) calculations. The chosen
derivatives are 2-[(4-chlorophenylazo) cyanomethyl] ben-
zoxazole, C

15
H
9
ClN
4
O (I) and 2-[(arylidene) cyanomethyl]

benzoxazole, C
17
H
10
N
2
O
3
(II).

2. Materials and Methods

2.1. Synthesis. The target compounds have been prepared
according to the reported procedure [3] (Scheme 1). They
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Scheme 1: Chemical diagram of the target compounds.

were obtainedmainly from diazocoupling of 2-cyanomethyl-
benzoxazole with appropriate diazonium acetate to attach
hydrazone, cyano, or thiazole, which reported as the function
groups of the bioactivity. Melting points were determined
in open-glass capillaries on a Gallenkamp melting point
apparatus and are uncorrected.The IR spectra were recorded
using KBr discs on a Perkin-Elmer 1430 spectrophotometer.

Compound (I). An ice-cooled solution of the diazonium
acetate [prepared by the addition of solution of sodiumnitrite
(1 g, 15mmole) in water (5mL) to the required arylamine
(10mmole) in acetic acid (10mL)] was added dropwise with
stirring to a solution of 2-cyanomethylbenzoxazole (1.58 g,
10mmole) in acetic acid (5mL). Stirring was maintained for
30 minutes after which water was added and the precipitated
product was filtered, washed with water, dried, and crystal-
lized by slow evaporation from ethanol. IR of compound (I)
(𝜐 cm−1) is as follows: 3171–3066 (NH); 2226–2223 (C≡N);
1611–1599, 1551-1550, 1502–1481 (C=N, NH bending, C=C);
1278–1266, 1097–1087 (C–O–C).

Compound (II).Triethylamine (5 drops) and the aldehyde
(4mmole) were added to a stirred solution of 2-cyanometh-
ylbenzoxazole (0.63 g, 4mmole) in absolute ethanol (10mL).
The reaction mixture was stirred at room temperature for
3 hours during which yellow crystals separated out. The
crystalline product was filtered, washed with ethanol, dried,
and crystallized by evaporation from dioxane solvent. IR
of compound (II) (𝜐 cm−1) is as follows: 2230–2223 (C≡N);
1588–1574, 1513–1502 (C=N, C=C); 1271–1240, 1180–1150,
1040–1022 (C–O–C).

2.2. X-Ray Single Crystal Measurements. Crystals were
selected and checked for imperfections such as cracks,
bubbles, twining, or voids and mounted onto thin glass
fibers and glued with epoxy glue. X-ray diffraction data were
collected at room temperature on anEnraf-Nonius 590Kappa
CCD single crystal diffractometer with graphite monochro-
matedMo-K𝛼 (𝜆= 0.71073 Å) radiation, at National Research
Center of Egypt [11, 12]. Crystal data, data collection, and
structure refinement details are summarized in Table 1. The
relatively large ratio of minimum to maximum corrections
applied in the multiscan process (1 nnn) reflects changes in
the illuminated volume of the crystal. Changes in illuminated
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Figure 1: The 50% probability displacement ellipsoids representa-
tion of compound (I).

volume were kept to aminimum and were taken into account
[13] by the multiscan interframe scaling [14].

The crystal structures were solved using Superflip [15],
which revealed the positions of all nonhydrogen atoms and
refined by the fullmatrix least squares refinement based on F2
using CRYSTALS package [16].The anisotropic displacement
parameters of all nonhydrogen atoms were refined, and then
the hydrogen atoms were all located in a difference map, but
those attached to carbon atoms were repositioned geometri-
cally. The H atoms were initially refined with soft restraints
on the bond lengths and angles to regularise their geometry
(C–H in the range 0.93–0.98, N–H in the range 0.86–0.89
N–H to 0.86 O–H=0.82 Å) and Uiso(H) (in the range 1.2–
1.5 times Ueq of the parent atom). Then, the positions were
refined with riding mode (95 Å) [17]. The molecular graphics
were prepared using Diamond [18] program.

The crystal data is listed in Table 1. The full crystallo-
graphic information can be obtained free of charge using
deposit numbers CCDC 675940 and CCDC 692455 for (I)
and (II), respectively, via http://www.ccdc.cam.ac.uk/conts/
retrieving.html or from the Cambridge Crystallographic
Data Centre, Cambridge, UK.

2.3. Molecular Mechanics Computations. Molecular mechan-
ics in vacuo computationswere carried out usingHyperChem
package [19]. The molecular mechanics (MM+) force field
was used as it is developed principally for organic molecules
[20–22]. The process of energy minimization was carried out
by Steepest Descents method. The conformational energy of
themolecule was calculated.The lowest energy conformation
is shown and compared to the crystal structures.

3. Results and Discussions

3.1. Crystal Structure Description. Structures of compounds
(I) and (II) consist mainly of benzoxazole connected with
different chemical moieties at C7 (Figures 1 and 2). Two
independent molecules in the asymmetric unit cell have been
found in the second compound, IIa and IIb.
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Table 1: Crystal data of the studied compounds.

(I) (II)
Crystal data

Chemical formula C15H9ClN4O C17H10N2O3

𝑀
𝑟

296.72 290.28
Crystal system, space group Triclinic, 𝑃1 Triclinic, 𝑃1
Temperature (K) 298 298
𝑎, 𝑏, 𝑐 (Å) 7.5050 (7), 7.4836 (10), 13.4301 (17) 7.4919 (5), 13.0828 (9), 14.1914 (14)
𝛼, 𝛽, 𝛾 (∘) 106.488 (6), 90.485 (7), 102.759 (8) 94.355 (3), 101.180 (3), 102.504 (6)
𝑉 (Å3) 703.37 (15) 1322.07 (19)
𝑍 2 4
Radiation type Mo Κ𝛼 Mo Κ𝛼
𝜇 (mm−1) 0.28 0.10
Crystal size (mm) 0.12 × 0.10 × 0.09 0.12 × 0.11 × 0.08

Data collection
Absorption correction Multiscan Multiscan
𝑇min, 𝑇max 0.97, 0.98 0.99, 0.99
Number of measured,
independent and observed
[𝐼 > 2.0𝜎(𝐼)] reflections

4166, 3007, 1543 7240, 4861, 2163

𝑅int 0.031 0.084
(sin 𝜃/𝜆)max (Å

−1

) 0.655 0.617
Refinement

𝑅[𝐹
2
> 2𝜎(𝐹

2
)], 𝑤𝑅(𝐹2), 𝑆 0.071, 0.070, 1.13 0.089, 0.155, 0.97

Number of reflections,
parameters, and restraints 1309, 64, 0 1738, 133, 0

Δ𝜌max, Δ𝜌min (𝑒 Å
−3

) 0.25, −0.26 0.33, −0.25
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Figure 2: The 50% probability displacement ellipsoids representa-
tion of compound (II).

Benzoxazole is almost planar, where themaximumdevia-
tion from themean plane corresponds to the atomC2, −0.013
(3) Å in (I) and the atoms C6, 0.008 (6) Å and O4, −0.012
(4) Å, in (IIa) and (IIb), respectively. This is comparable
with the reported structures which have the same moiety,

such as 2-(4-aminophenyl)-1, 3-benzoxazole [23], 2-amino-
5-chloro-1, 3-benzoxazole [24], and 5-(2-chlorobenzoyl)-
1,3-benzoxazol-2(3H)-one [25], also the related structures
reported in [26]. The phenyl ring in (I) has planer config-
uration where the maximum deviation corresponds to the
atom C12, 0.010 (3) Å. Benzoxazole group and the phenyl
ring adopt a trans configuration with respect to the cen-
tral cyanomethyle hydrazone moiety, with dihedral angle
between the two mean ring planes 180∘.

In compound (II), the benzoxazole group is linked to
benzodioxol via acrylonitrile moiety. Planar configuration of
benzodioxole moiety in (IIb) is confirmed by the deviation of
the benzodioxole atoms from their best plane, withmaximum
deviation at O6, −0.026 (4) Å. However, in (IIa), the dioxole
ring adopts the envelope conformation with C17 deviating
from the plane defined by the rest of the atoms of the ring
(O2- C17) by −0.069 (7) Å. The puckering parameters [27] of
this ring are Q= 0.109 (6) Å and 𝜑= 329 (3)∘.

Conformational investigation of the structures reveals
that there is cisoid conformation between the cyano group
and benzoxazole nitrogen in compound (II) (Figure 2),
which in agreement with the reported cisoid conformation
of 2-[(3-hydroxy-4-methoxybenzylidene)-cyanomethyl]-
benzoxazole [3]. In contrary in compound (I) (Figure 1)
the cyano group and benzoxazole nitrogen shows transoid
conformation, as reported before such information would
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Figure 3: The molecular packing of (I).

Table 2: Hydrogen-bond geometry (Å, ∘) for (I).

𝐷–H⋅ ⋅ ⋅ 𝐴 𝐷–H H⋅ ⋅ ⋅ 𝐴 𝐷 ⋅ ⋅ ⋅ 𝐴 𝐷–H⋅ ⋅ ⋅ 𝐴
N1–H11⋅ ⋅ ⋅N4 0.950 1.975 2.710 (4) 133

Table 3: Hydrogen-bond geometry (Å, ∘) for (II).

𝐷–H⋅ ⋅ ⋅ 𝐴 𝐷–H H⋅ ⋅ ⋅ 𝐴 𝐷 ⋅ ⋅ ⋅ 𝐴 𝐷–H⋅ ⋅ ⋅ 𝐴
C13–H131⋅ ⋅ ⋅N4i 0.950 2.519 3.431 (8) 161
C16–H161⋅ ⋅ ⋅N2 0.950 2.600 3.450 (8) 149
C16–H161⋅ ⋅ ⋅C9 0.950 2.433 3.063 (8) 124
C30–H301⋅ ⋅ ⋅N2 0.950 2.574 3.464 (8) 156
C33–H331⋅ ⋅ ⋅C26 0.950 2.426 3.052 (8) 123
Symmetry code: i𝑥 − 1, 𝑦 − 1, 𝑧.

add an important way for predicting the geometry of the
drug-receptor interaction [3].

The structures are stabilized by the intermolecular inter-
actions and a network of hydrogen bond contacts conformed
parallel layers, N-H⋅ ⋅ ⋅N in compound (I), Table 2, and C–
H⋅ ⋅ ⋅N and C–H⋅ ⋅ ⋅C in compound (II), Table 3.The packing
diagrams of the compounds are shown in Figures 3 and 4.

3.2. Molecular Mechanics Computations. The minimum
energy structure obtained by molecular mechanics of the
investigated compounds did not match well the crystal
structures obtained experimentally, Figures 5 and 6.However,
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Figure 4: The molecular packing of (II) with the intermolecular
interactions shown as dashed line.
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Figure 5: Superimposition view of the calculated structure (black)
on the X-ray structure (gray) for the compound (I).
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Table 4: Selected geometrical values of molecular mechanics and experimentally obtained structures of compound (I).

Bond length (Å) Exp. MM Bond angles (∘) Exp. MM
N1–N2 1.317 (3) 1.354 C1–C2–C3 117.1 (3) 117.07
N2–C8 1.307 (4) 1.3485 C3–C4–C5 121.6 (3) 121.17
C8–C9 1.434 (4) 1.31 O1–C7–N4 115.7 (3) 115.84
C1–C2 1.381 (4) 1.390 Cl1–C13–C14 119.6 (3) 119.9
C6–C1 1.387 (4) 1.384 C6–O1–C7–C8 179.5 (4) 180
Cl1–C13 1.737 (3) 1.726 C10–N1–N2–C8 179.1 (5) 179.99
C10–C11 1.375 (4) 1.398 C7–C8–C9–N3 130 (2) 180
C11–C12 1.395 (4) 1.398 C5–C6–C1–N4 179.6 (5) 180
C13–C12 1.369 (5) 1.396 N2–N1–C10–C15 179.9 (5) 0
C13–C14 1.389 (5) 1.396 H1–N1–C10–C11 177.5 (8) 0
N4–C1 1.400 (4) 1.348 H1–N1–C10–C15 1.0 (8) 180
N4–C7 1.294 (4) 1.358 C10–N1–H1–N4 179.7 (13) 180

Table 5: Selected geometrical values of molecular mechanics and experimentally obtained structures of compound (II).

Bond length (Å) Exp. MM Bond angles (∘) Exp. MM
N1–C6 1.403 (5) 1.348 C1–C6–C5 120.7 (4) 121.59
N1–C7 1.279 (5) 1.363 C9–C8–C7 112.1 (4) 112.90
C6–C5 1.366 (5) 1.390 C8–C10–C11 131.3 (4) 221.59
C6–C1 1.378 (5) 1.381 C13–C14–C15 123.1 (5) 122.58
C1–C2 1.372 (6) 1.390 O2–C17–O3 107.6 (3) 105.35
C5–C4 1.373 (6) 1.399 C13–C12–C11 117.6 (4) 116.18
C4–C3 1.395 (6) 1.403 C7–O1–C1–C2 179.8 (9) 180
N2–C9 1.132 (1) 1.15 O1–C1–C2–C3 179.8 (11) 180
C9–C8 1.423 (6) 1.321 C7–N1–C6–C5 179.0 (10) 180
C7–C8 1.460 (5) 1.345 N1–C7–C8–C9 4.2 (6) 0
C11–C12 1.419 (5) 1.417 C11–C10–C8–C7 178.1 (11) 0
C10–C11 1.446 (5) 1.353 C13–C12–C11–C10 −179.2 (10) 179.99

trans configuration between benzoxazole group and the ben-
zene ring with respect to the central cyanomethyle hydrazone
moiety appears also in the theoretical structure. The global
energy minimum conformations as calculated by molecular
mechanics in vacuo in agreement with the above-mentioned
crystallographically observed conformations, where cisoid
conformation has noticed only in (II).

Tables 4 and 5 show selected geometrical values of experi-
mentally obtained structure usingX-ray (Exp.) andmolecular
mechanics (MM) for (I) and (II), respectively. The bonds of
the benzoxazole ring obtained theoretically in (I) and (II)
almost agree with those obtained experimentally with X-
ray diffraction. On the other hand, in (I) the deference is
180∘ degree in N2–N1–C10–C15 andH11–N1–C10–C11 torsion
angles. Also, there is considerable variation of C11–C10–C8–
C7 torsion angle in (II). It was found that benzodioxole ring
has orientation in the experimental structure different from
the orientation of the same group in the theoretical structure.

However, the energy of the experimental structures was
higher than the energy of the structure obtained usingmolec-
ular mechanics by the values 5.8 kcal⋅mol−1 in compound
(I) and 1.9 kcal⋅mol−1 in compound (II). This variation may
be due to the fact that the experimental structure of the

investigated compounds in crystal conditions (i.e., the neigh-
bouringmolecules, hydrogen bonding, and other nonbonded
interactions in the crystal lattice environment) is taken into
account. This is in agreement with what was reported in
the literature showing that the effects of hydrogen-bonding
and van der Waals interactions in the crystal structure cause
the molecules to adopt higher-energy conformations, which
correspond to localminima in themolecular potential energy
surface [28].This result in consentwith the reported notation,
which states that the crystallographically observedmolecular
architecture is a local energy minimum in the absence of its
crystal lattice environment [29].

4. Conclusions

Crystallographic and stereochemical study of 2-
substituted benzoxazole derivatives, 2-[(4-chlorophenylazo)
cyanomethyl] benzoxazole and 2-[(arylidene) cyanomethyl]
benzoxazole, has been introduced using X-ray single crystal
and MM. The study has reported that the crystal structures
of the two compounds have a triclinic (P1) space group. The
study showed in (II) that cisoid conformation between the
cyano group and benzoxazole nitrogen and the benzodioxole
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has an envelope conformation. The features of the whole
molecules obtained using MM do not match well those
obtained by X-ray; however, the results have supported the
conformation discussion.
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