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This paper presents a computationally accurate technique used to determine the estimated average probability of a system cascading
collapse considering the effect of hidden failure on a protection system. This includes an accurate calculation of the probability of
hidden failure as it will give significant effect on the results of the estimated average probability of system cascading collapse. The
estimated average probability of a system cascading collapse is then used to determine the severe loading condition contributing to a
higher risk of a system cascading collapse.This information is important because it will assist the utility to determine themaximum
level of increase in the system loading condition before the occurrence of critical power system cascading collapse. Furthermore,
the initial tripping of sensitive transmission line contributing to a critical system cascading collapse can also be determined by
using the proposed method. Based on the results obtained from this study, it was found that selecting the accurate probability of
hidden failure is very important as it will affect the estimated average probability of a system cascading collapse. Comparative study
has been done with other techniques to verify the effectiveness of the proposed method used in the determination of sensitive
transmission lines.

1. Introduction

In recent years, many blackouts have occurred around the
world and the latest blackout had happened in India on the
30th and 31st of July 2012 that affected over 620 million
people throughout the country which is estimated to be 9%
of the world population [1]. According to the report of grid
disturbance in India [2], the major factors that lead to the
initiation of the grid disturbance on the 30th and the 31st of
July 2012 were due to weak interconnection between regions.
This system was undermined by a number of transmission
lines outages connecting the western and northern regions of
India.This condition also happened to the Arizona-Southern
California Outages on the 8th of September 2011 where the
disconnection of a single transmission line was the main
reason of the system disturbance that caused approximately

2.7 million populations without electrical power [3]. Other
major blackouts afflicted by the system cascading collapse
have been reported in [4, 5]. Normally, cascading outages of
transmission lines are the main reason that leads to a large
system blackout [6, 7]. Cascading outage is a sequence of
multiple dependent component outages that gradually hap-
pened in a power system. Cascading outage is usually caused
by an initial failure of a transmission line that propagates to a
widespread of system outage.

There are various techniques used to perform the analysis
of system cascading collapse. Dobson et al. [5] have applied
the branching process model to determine the distribution of
cascading outages for a given initial failure. Carreras et al. [7]
use the OPA model to identify the overloaded transmission
lines with high probability. By applying the OPA model, the
proposed technique is capable of recognizing the critical lines
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Figure 1: Probability of an exposed line incorrect tripping due to the
effect of hidden failure.

which contribute to a high probability of cascading collapse.
A hybrid approach was proposed by Chen et al. [8] in order
to study the structural vulnerability of power networks by
using the topological structure error and vulnerability of
networks caused by attack from system failure.This technique
takes into account the power flow equations and the effect of
hidden failure of a protection system. Shi et al. [9] perform
the analysis of cascading collapse by considering the hidden
failure effect of a protection relay. Wang et al. [10] use the
optimal power flow (OPF) technique to identify chains of
events occurred in a system cascading outage. The system
cascading collapse is performed by taking into account the
total power loss reduction which is obtained through the
optimum dispatch of active and reactive power generation.
Wang et al. [11] use the fault chain theory to perform a system
cascading collapse initiated by a transmission line failure. A
power flow at several lines is basically used to derive the
predictive index which will then be used to instigate subse-
quent tripping of transmission lines at nonfaulty or normal
condition. The process of system cascading collapse is halted
once the system instability occurs during the subsequent
tripping of transmission lines. Finally, the number of line
tripping is basically used to derive the vulnerability index for
identifying the sensitive initial line tripping leading to the
severity of system cascading collapse.

From the literature review that has been conducted, it
is important to study the effect of cascading collapse due
to its significant impact on a power system. The report of
blackout that has been explained earlier revealed that the
main factor that led to a system cascading collapse is due to
the initial tripping of transmission line. For that reason, it
is crucially important to identify the sensitive transmission
lines and also the severity of total loading condition that
could initiate systemdisturbances.Therefore, in the proposed
study of cascading collapse, the analysis is carried out to study
the impact of different values of hidden failure probability
on the estimated average probability of cascading collapse,
severity of total loading condition, and sensitive transmission
lines. Hidden failure is the main cause of the occurrence

of cascading outages which could lead to cascading collapse
of a power system. Hidden failure is defined as unobserved
deficiency of a protection system that remains hidden due to
the anticipation of an unusual system operating condition. In
this study, the determination of sensitive transmission lines
and severity of total loading condition is performed based
on the criticality of the system cascading collapse where the
overall procedure can be found in Section 3.The IEEE-RTS79
and IEEE-RTS96 are used as the case studies to validate
the effectiveness of the proposed approach considered in
the assessment on system cascading collapse. The assessment
of cascading events needs to be conducted regularly in the
power system operation and planning so that a power system
could be prevented from any kind of disastrous events.
Therefore, it is important for the utility and power system
planner to identify the severe total loading condition and the
sensitive transmission lines that will cause significant impact
of system cascading collapse.

2. Probability of Exposed Line Incorrect
Tripping Caused by the Hidden Failure

When a transmission line trips or disconnects from a system,
there is a significant probability that the lines connected
to either end of the disconnected transmission line might
incorrectly trip due to its misoperation of protection relay.
These further lines trippings are known as hidden failures as
they do not turn out to be noticeable until it appears at the
neighboring lines exposed by the initial line tripping.

Relay protection hidden failure is one of themain reasons
that led to a system cascading collapse. The probability of
exposed line tripping caused by hidden failure should be
calculated accurately due to its significant impact on the
assessment of system cascading collapse, severe total loading
condition, and sensitive transmission lines. As mentioned
in Section 1, the hidden failure caused by defective tripping
of an exposed line normally starts with an initial tripping
of overloaded or faulty line. An initial component tripping
may result in a cascading tripping by affecting the neigh-
boring components that will become a contributing factor
in spreading the disturbances and finally causing the whole
system to collapse. Hidden failures cannot be detected during
normal system operating condition. However, when a fault
or overloads occur, it will expose the neighboring lines and
causing unnecessary outages to the other equipment. The
hidden failure leading to an exposed line tripping is selected
according to the probability of an incorrect tripping curve,
𝑝HF, and this is shown in Figure 1 [12]. Each exposed line has
its own load-dependent probability of incorrect tripping,𝑝HF,
specifically modeled based on the escalating function of line
loading seen by the line protective relay. In Figure 1, the same
𝑝HF values are obtained for a line loading that is equivalent
to or lower than the line limit. At the same time, the 𝑝HF
increases linearly with regard to the increased in line loading,
which is based on the power flow results, until it reaches 1.4
of the line limit.

Based on the excerption taken from NERC report, there
were 400 events of cascading collapse caused by the hidden
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Figure 2: Determination of sensitive transmission lines and severe total loading conditions based on the critical cascading collapse which
occurred due to the effect of protection relay hidden failure.

failure of a line protective relay happened in the past 16
years that is from 1984 to 1999 [12]. This means that the
probability of occurrence for one exposed line tripping event
due to hidden failure is very small but cannot be neglected
due to its catastrophic effect on a power system condition.

The probability of one exposed line tripping event due to the
hidden failure can be calculated by using (1) as

𝑝HF =
𝐸

𝑦 × 𝑑 × ℎ × 𝑚 × 𝑠
. (1)
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For that reason, the probability of an exposed line tripping
event due to hidden failure according to the historical
information [8] is given by

𝑝HF

=
400 events

16 years × 365 days × 24 hour × 60 minutes × 60 second

= 8 × 10
−7

.

(2)

Then, the probability increases linearly until it reaches 𝑝HF
= 1, that is, 1.4 of its line limit. The probability remains
unchanged as 𝑝HF = 1 for line loading that is above 1.4 of
line limit [13], line tripping probability caused by the hidden
failure, 𝑝HF, since this will assist the utility in providing
accurate decision on a power system planning.

3. Determination of Sensitive Transmission
Lines and Severe Total Loading Condition
Based on the Critical Cascading Collapse

This section will discuss the procedures involved to ana-
lyze the probability of cascading collapse by taking into
consideration three different case studies of hidden failure
probability which are 𝑝HF = 8 × 10−7, 𝑝HF = 1 × 10−12,
and 𝑝HF = 1 × 10−2 [13]. For each case study, the results
of average probability of cascading collapse will be used to
further analyze the severe total loading condition and also
to identify the sensitive transmission lines that would cause
critical cascading collapse of a power system. The proposed
algorithm shown in Figure 2 begins with an initial tripping
event of a transmission line. Simultaneously, the power flow
solution is performed by taking into account 10% increase
of the total system loading condition. Then, calculate the
probability of incorrect tripping, 𝑝HF, for each exposed lines
connected adjacent to the tripping line.

Perform arbitrary tripping on the exposed lines with 𝑝HF
higher than the selected value of 𝑝HF = 8 × 10−7. In this case
study, 𝑝HF = 8 × 10−7 is obtained based on the historical data
of transmission line tripping events that caused by the effect
of hidden failure and this has been discussed elaborately in
Section 2. This will be used as a benchmark by comparing it
with the other case studies which are at the lower end of𝑝HF =
1 × 10−12 and higher end of 𝑝HF = 1 × 10−2 in order to observe
its significant impact on the probability of cascading collapse,
severe total loading condition, and sensitive transmission
lines.

Simultaneously, calculate the conditional probability of
tripping, 𝑃

𝑐𝑗

, [12] by using (3):

𝑃
𝑐𝑗

= ∏𝑝
𝐻𝑗
∏𝑞
𝐻𝑗
. (3)

This process is repeated until there is no exposed line to
perform the random tripping event. Then, (4) is used to

calculate the tripping events probability, 𝑃
𝑐𝑖

, by considering
all of the conditional probability of tripping, 𝑃

𝑐𝑗

, as

𝑃
𝑐𝑖

=

𝑁𝐽

∏

𝑗=1

𝑃
𝑐𝑗

. (4)

For the selected initial line tripping, the simulation is
repeated for 𝐾 = 1000 times in order to obtain the average
probability of cascading collapse, 𝑃̂

𝐶𝑖
, that can be calculated

using (5), as

𝑃̂
𝐶𝑖
=
1

𝐾

𝐾

∑

𝑘=1

𝑃
𝐶𝑖,𝑘
. (5)

Then, the entire simulation is repeated until the last
initial line tripping has been reached. Collect the average
probability of cascading collapse, 𝑃̂

𝐶𝑖
, for all of the initial

line tripping. Use (6) to calculate the estimated average
probability of cascading collapse 𝜇(𝑃̂

𝐶𝑖
) for identifying the

sensitive transmission lines contributing to a critical system
cascading collapse as

𝜇 (𝑃̂
𝐶𝑖
) =
1

𝐿

𝐿

∑

𝑙=1

𝑃̂
𝐶𝑖,𝑙
. (6)

Rank the 𝜇(𝑃̂
𝐶𝑖
) in descending order to identify the sensitive

transmission lines at initial tripping. The sensitive transmis-
sion lines are obtained by referring to the initial line tripping
that leads to a sudden increase of 𝜇(𝑃̂

𝐶𝑖
).

Then, calculate the estimated average probability of sys-
tem cascading collapse, 𝜇(𝑃̂

𝐶𝑙
), that is used to identify the

criticality of system cascading collapse prior to a severe total
loading condition using (7), as

𝜇 (𝑃̂
𝐶𝑙
) =
1

𝐼

𝐼

∑

𝑖=1

𝑃̂
𝐶𝑖,𝑙
. (7)

Arrange the 𝜇(𝑃̂
𝐶𝑙
) in descending order to identify the

severity of total loading condition that led to a critical system
cascading collapse. The severity of total loading conditions is
determined based on the changes of total loading condition
that leads to a significant increase of 𝜇(𝑃̂

𝐶𝑙
).

4. Results and Discussion

This section will discuss the estimated average probability
of system cascading collapse, 𝜇(𝑃̂

𝐶𝑖
) and 𝜇(𝑃̂

𝐶𝑙
), that takes

into account the consequence of hidden failure in a relay
protection system.The total loading condition is increased by
10% while maintaining a constant power factor at all buses.
An initial tripping event of a transmission line is performed
for every increase of total loading condition. The simulation
is repeated for 1000 times in order to obtain the 𝑃̂

𝐶𝑖
.

Further analysis was performed on the results of 𝜇(𝑃̂
𝐶𝑖
)

and 𝜇(𝑃̂
𝐶𝑙
) based on three different cases of hidden failure

which are 𝑝HF = 8 × 10−7, 𝑝HF = 1 × 10−12, and 𝑝HF = 1 × 10−2.



Mathematical Problems in Engineering 5

The 𝑝HF = 8 × 10−7 represents the value of probability of
hidden failure obtained in accordance with the historical
information of a line tripping event caused by the hidden
failure. Meanwhile, 𝑝HF = 1 × 10−2 used in this analysis
is obtained from [9]. Furthermore, the analysis is also
performed by considering the𝑝HF = 1× 10−12 as an additional
case study which is lower than the value of 𝑝HF = 8 × 10−7
obtained based on the real data. This analysis is performed
in order to observe its significant impact on the system
cascading collapse when 𝑝HF is smaller than the actual value
which is obtained on the historical information.

The IEEE-RTS79 and IEEE-RTS96 are used as the case
studies to verify the effectiveness and robustness of the
proposed approach considered in the cascading collapse
assessment.The data for each system can be found in [14, 15],
respectively.

4.1. Determination of Sensitive Transmission Lines due to the
Effect of Hidden Failure. The estimated average probability
of cascading collapse 𝜇(𝑃̂

𝐶𝑖
) is used to identify the sensitive

initial lines tripping which would have high tendency to
cause a critical system cascading collapse. By referring to the
three case studies of 𝑝HF conducted on the IEEE-RTS79 and
IEEE-RTS96, the sensitive transmission lines are obtained
by referring to a significantly large value of 𝜇(𝑃̂

𝐶𝑖
) which

indicates the criticality of a system cascading collapse. The
𝑝HF = 8 × 10−7, 𝑝HF = 1 × 10−12, and 𝑝HF = 1 × 10−2 are
the three case studies of probability of exposed line tripping
event due to the hidden failure. The results of the sensitive
transmission lines for the IEEE-RTS79 and IEEE-RTS96 are
shown in Tables 1 and 2, respectively.

Table 1 shows the results of the sensitive transmission
lines obtained based on the critical system cascading collapse
for the IEEE-RTS79. For the three case studies of 𝑝HF,
the 𝜇(𝑃̂

𝐶𝑖
) was ranked in descending order to identify the

sensitive transmission lines that will lead to a critical system
cascading collapse. From the results obtained, it was found
that the sensitive transmission line 12-13, line 14–16, and line
12–23 provide significantly large value of 𝜇(𝑃̂

𝐶𝑖
) compared to

other lines in the system and this can also be observed in
Figure 3.

In Figure 3, the initial tripping of sensitive transmission
line 12-13 and line 14–16 leading to a sudden increase of
𝜇(𝑃̂
𝐶𝑖
)which implies that the system is experiencing a critical

cascading collapse. Therefore, major precaution should be
given to circumvent from the disconnection of the three
sensitive transmission lineswhichwill lead to a critical system
cascading collapse. Besides that, the 𝑝HF = 8 × 10−7 yields the
highest value of 𝜇(𝑃̂

𝐶𝑖
) for all initial lines tripping compared

to the other two probabilities which are 𝑝HF = 1 × 10−12
and 𝑝HF = 1 × 10−2. This implies that the actual information
of cascading collapse events that caused by the protection
system hidden failure is important to be taken into account in
the 𝑝HF calculation because it will give a significant difference
and an accurate result of 𝜇(𝑃̂

𝐶𝑖
).

Table 2 represents the results of sensitive transmission
lines obtained from the analysis of cascading collapse for the

Table 1: Estimated average probability of cascading collapse 𝜇(𝑃̂
𝐶𝑖
)

of each initial line tripping due to the effect of hidden failure for
IEEE-RTS79.

𝑝HF = 1 × 10
−12

𝑝HF = 8 × 10
−7

𝑝HF = 1 × 10
−2

Initial line
tripping

𝜇(𝑃̂
𝐶𝑖
)

(per unit)
Initial line
tripping

𝜇(𝑃̂
𝐶𝑖
)

(per unit)
Initial line
tripping

𝜇(𝑃̂
𝐶𝑖
)

(per unit)
12-13 0.35740 12-13 0.35579 12-13 0.24756
14–16 0.22384 14–16 0.23058 14–16 0.16518
12–23 0.19249 12–23 0.19084 12–23 0.14123
1–5 0.13625 3–9 0.18691 1–5 0.13625
3–9 0.13611 2–4 0.18120 3–9 0.13611
2–4 0.13417 1–5 0.17969 2–4 0.13417
18–21 0.13296 17–22 0.17913 18–21 0.13296
17–22 0.13277 18–21 0.17856 17–22 0.13277

1–5 3–9 2–4 18–21 17–22
Sensitive transmission line

12-13
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Figure 3: Estimated average probability of cascading collapse 𝜇(𝑃̂
𝐶𝑖
)

of each initial line tripping for IEEE RTS-79.

IEEE-RTS96. For the case studies of 𝑝HF = 1 × 10−12 and
𝑝HF = 8 × 10−7, the initial tripping of sensitive transmission
line 318–223, line 112-113, and line 113–123 yields a significantly
high value of 𝜇(𝑃̂

𝐶𝑖
), compared to the initial tripping of other

transmission lines. The effect of 𝑝HF = 1 × 10−12, 𝑝HF = 8 ×
10−7, and 𝑝HF = 1 × 10−2 can also be observed in Figure 4
whereby critical cascading collapse may occur due to a rapid
increase of 𝜇(𝑃̂

𝐶𝑖
) caused by the initial tripping of the three

sensitive transmission lines.
In Figure 4, the initial tripping of sensitive transmission

line 318–223, line 112-113, and line 113–123 leads to a sudden
increase of 𝜇(𝑃̂

𝐶𝑖
) and these are referring to the three case
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Table 2: Estimated average probability of cascading collapse 𝜇(𝑃̂
𝐶𝑖
)

of each initial line tripping due to the effect of hidden failure for
IEEE-RTS96.

𝑝HF = 1 × 10
−12

𝑝HF = 8 × 10
−7

𝑝HF = 1 × 10
−2

Initial line
tripping

𝜇(𝑃̂
𝐶𝑖
)

(per unit)
Initial line
tripping

𝜇(𝑃̂
𝐶𝑖
)

(per unit)
Initial line
tripping

𝜇(𝑃̂
𝐶𝑖
)

(per unit)
318–223 0.08445 318–223 0.08359 112-113 0.05128
112-113 0.07736 112-113 0.07741 318–223 0.03932
113–123 0.03584 113–123 0.03558 113–123 0.02111
215-216 0.03110 123–217 0.03154 123–217 0.01473
123–217 0.03073 215-216 0.02996 215-216 0.01370
216-217 0.02585 216-217 0.02567 216-217 0.01235
203–209 0.01712 203–209 0.01742 109–112 0.00916
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Figure 4: Estimated average probability of cascading collapse𝜇(𝑃̂
𝐶𝑖
)

of each initial line tripping for IEEE RTS-96.

studies of 𝑝HF. For the case study of 𝑝HF = 1 × 10−2, even
though the three sensitive lines are not in a congenial
sequence compared to the case studies of 𝑝HF = 1 × 10−12
and 𝑝HF = 8 × 10−7, it still needs to be given more attention
because disconnection on any of the sensitive transmission
lines may cause critical cascading collapse of the system.

Based on the results of the sensitive transmission lines
obtained in this paper, the proposed approach of cascading
collapse is an important and useful method that can be used
by the utility which will facilitate them in providing the best
planning decision to prevent the critical cascading collapse
from happening.

Table 3: Estimated average probability of system cascading collapse,
𝜇(𝑃̂
𝐶𝑙
) for IEEE-RTS79.

Total loading
condition
(%)

Estimated average probability of system
cascading collapse, 𝜇(𝑃̂

𝐶𝑙
) (per unit)

𝑝HF = 1 × 10
−12

𝑝HF = 8 × 10
−7

𝑝HF = 1 × 10
−2

150 0.00723221 0.00713164 0.00460562
160 0.00534533 0.00537957 0.00332890
170 0.01705183 0.01715082 0.01068545
180 0.12649106 0.12658082 0.07700219
190 0.15640375 0.15650766 0.10102151
200 0.17128861 0.17108597 0.11174890
210 0.21116515 0.21003825 0.14113007
220 0.19935382 0.19852302 0.13679530
230 0.23980806 0.24100823 0.17056760
240 0.50190445 0.50233278 0.42771526

4.2. Criticality of System Cascading Collapse due to the Effect
of Hidden Failure and Severe Total Loading Condition. In
this section, the estimated average probability of cascading
collapse 𝜇(𝑃̂

𝐶𝑙
) is used in obtaining the severity of total load-

ing condition which may lead to a critical system cascading
collapse. From the three different case studies of hidden
failure which are 𝑝HF = 8 × 10−7, 𝑝HF = 1 × 10−12, and 𝑝HF =
1 × 10−2, the results for the 𝜇(𝑃̂

𝐶𝑙
) are calculated and it is

tabulated in Tables 3 and 4 corresponding to the IEEE-RTS79
and IEEE-RTS96, respectively. By referring to Table 3, the
𝜇(𝑃̂
𝐶𝑙
) is also obtained in accordance with the total loading

condition increased from 150% to 240% for the IEEE-RTS79.
The results shown in Table 3 are also depicted in Figure 5.

In conjunction to the three case studies of hidden failure,
the 𝜇(𝑃̂

𝐶𝑙
) varies as the total loading condition increased by

10%. In addition, an upward trend of𝜇(𝑃̂
𝐶𝑙
) is quite significant

for all the three case studies when the total loading condition
increased above 170%. Moreover, the highest value of 𝜇(𝑃̂

𝐶𝑙
)

is obtained when the total loading condition increased above
230%. This information can be useful to the utility for
estimating the maximum allowable level of total loading
condition before the system is afflicted with the highest risk
of cascading collapse. There are no significant difference
between the 𝜇(𝑃̂

𝐶𝑙
) obtained on the 𝑝HF = 8 × 10−7 and

𝑝HF = 1 × 10−12. For an example, the results of 𝜇(𝑃̂
𝐶𝑙
) =

0.50190445 and 𝜇(𝑃̂
𝐶𝑙
) = 0.50233278 are relatively similar and

these are referring to the 𝑝HF = 1 × 10−12 and 𝑝HF = 8 ×
10−7, respectively, obtained at 240% increase of total loading
condition.

Therefore, any𝑝HF value that is lower than𝑝HF = 1× 10−12

will produce similar result of 𝜇(𝑃̂
𝐶𝑙
) as in the case study of

𝑝HF = 8 × 10−7. However, the two 𝑝HF values are providing
the results of 𝜇(𝑃̂

𝐶𝑙
) with higher risk compared to the 𝜇(𝑃̂

𝐶𝑙
)

obtained based on 𝑝HF = 1 × 10−2. This indicates that it is
important to choose the correct value of 𝑝HF in order to
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Figure 5: Estimated average probability of cascading collapse 𝜇(𝑃̂
𝐶𝑙
)

at every increased of total loading condition for IEEE-RTS79.

Table 4: Estimated average probability of system cascading collapse,
𝜇(𝑃̂
𝐶𝑙
) for IEEE-RTS96.

Total loading
Condition (%)

Estimated average probability of system
cascading collapse, 𝜇(𝑃̂

𝐶𝑙
) (per unit)

𝑝HF = 1 × 10
−12

𝑝HF = 8 × 10
−7

𝑝HF = 1 × 10
−2

130 0.00019344 0.00019056 0.00000084
140 0.00025224 0.00025606 0.00000217
150 0.00008205 0.00008217 0.00000217
160 0.00010118 0.00010436 0.00002218
170 0.00003173 0.00003118 0.00000583
180 0.00001718 0.00001708 0.00000285
190 0.00005894 0.00005892 0.00000930
200 0.00271678 0.00271430 0.00069031
210 0.02335387 0.02333729 0.00923196
220 0.08822664 0.08820120 0.05050363

obtain an accurate estimated average probability of system
cascading collapse, 𝜇(𝑃̂

𝐶𝑙
).

Table 4 illustrates the result of 𝜇(𝑃̂
𝐶𝑙
) that is obtained by

increasing the total loading condition from 130% to 220% for
IEEE-RTS96. For this case study, the analysis of cascading
collapse was performed based on the probability of hidden
failure that is 𝑝HF = 8 × 10−7, 𝑝HF = 1 × 10−12, and 𝑝HF =
1 × 10−2. The results tabulated in Table 4 are also illustrated
in Figure 6. It is obvious that the results of 𝜇(𝑃̂

𝐶𝑙
) are rather

small possibly due to a stable system condition assisted by a
large number of generating units and transmission lines. Even
though the 𝜇(𝑃̂

𝐶𝑙
) is relatively small, it cannot not be ignored

because its impact to the power system could be disastrous.
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Figure 6: Estimated average probability of cascading collapse 𝜇(𝑃̂
𝐶𝑙
)

at every increased of total loading condition for IEEE-RTS96.

A rapid increase of 𝜇(𝑃̂
𝐶𝑙
) can be seen for all the three

case studies when the total loading condition is increased
beyond 200%. It will continue to increase significantly until
it reaches to the highest 𝜇(𝑃̂

𝐶𝑙
) due to the 220% of total

loading condition. This information is useful to identify
which total loading condition agitates to the criticality of
a system cascading collapse. From the three different case
studies of 𝑝HF, 𝑝HF = 8 × 10−7 and 𝑝HF = 1 × 10−12 provide
higher risk compared to the 𝜇(𝑃̂

𝐶𝑙
) obtained based on 𝑝HF =

1 × 10−2. This points out that it is significant to select the
accurate value of 𝑝HF in order to obtain an accurate estimated
average probability of system cascading collapse, 𝜇(𝑃̂

𝐶𝑙
).

A detailed analysis of cascading collapse has been carried
out on the IEEE-RTS79 and IEEE-RTS96 by taking into
consideration the three different values of probability of
hidden failure which are 𝑝HF = 8 × 10−7, 𝑝HF = 1 × 10−12, and
𝑝HF = 1 × 10−2. From the results obtained, it is important to
determine the accurate value of probability of hidden failure,
𝑝HF, since this will significantly affect the results of estimated
average probability of cascading collapse, 𝜇(𝑃̂

𝐶𝑙
), and the

criticality of system cascading collapse prior to a severe total
loading condition.

4.3. Performance Comparison between the Cascading Col-
lapse Methods. Comparative study was performed on the
results of sensitive transmission lines determined by using
the proposed method and fault chain theory discussed in
[11]. It is worthwhile to mention that an initial tripping of
sensitive transmission line will instigate to a critical system
cascading collapse. The robustness of both methods in the
sensitive transmission line determination is tested on the
IEEE 14-bus system which comprised of 20 transmission
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Table 5: Results of each initial line tripping for IEEE 14-bus system
using the proposed method and fault chain theory.

Proposed method Fault chain theory [11]
Initial line
tripping 𝜇(𝑃̂

𝐶𝑖
)

Initial line
tripping

Vulnerability
index

4-5 0.9587 1-2 0.1838
2-3 0.6274 2–4 0.1838
2–4 0.5546 4–7 0.1134
1-2 0.5322 6–13 0.0644
9–14 0.5068 1–5 0.0570
9-10 0.5021 9–14 0.0550
4–9 0.4867 6–11 0.0515
2–5 0.4577 3-4 0.0478
7–9 0.4266 2-3 0.0447
7-8 0.3905 6–12 0.0344
1–5 0.3536 4-5 0.0275
10-11 0.3371 12-13 0.0275
4–7 0.3295 9-10 0.0206
3-4 0.3287 2–5 0.0172
12-13 0.3193 4–9 0.0172
6–11 0.3101 5-6 0.0172
6–12 0.2873 10-11 0.0172
6–13 0.2598 13-14 0.0172
5-6 0.2080 7-8 0.0129
13-14 0.1590 7–9 0.0103

lines, 5 generating units, and 11 load buses. The total load
for the system is 259MW and the total generation capacity
is 272MW. The process involved in the proposed method
is comparatively similar with the fault chain theory wherein
the subsequent tripping of transmission line is executed until
the system instability occurs. Eventually, major tripping of
transmission line may lead to an inadequate amount of total
generation capacity required by the total load demand and
this will agitate to system instability.The disadvantage of fault
chain theory is that it does not consider the incorrect line
tripping caused by protection relay hidden failure. This may
yield to an inaccurate result of sensitive transmission lines.

Table 5 and Figure 7 present the results of initial line
tripping ranked in descending order according to 𝜇(𝑃̂

𝐶𝑙
)

and vulnerability index determined by using the proposed
method and fault chain theory [11], respectively. It is obvi-
ous that the initial transmission line tripping was ranked
differently by both methods. Hence, the obtained sensitive
transmission lines will be different for both methods. The
proposed method with hidden failure provides the most sen-
sitive transmission line 4-5 which is not similar to the most
sensitive transmission line 1-2 and line 2–4 determined by
the fault chain theory. From the results, it is obvious that the
proposed method provides the most sensitive transmission
line 4-5 based on the largest value of𝜇(𝑃̂

𝐶𝑖
) compared to other

lines in the system. On the other hand, the fault chain theory
provides the most sensitive transmission line 1-2 and line 2–4
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Figure 7: Comparative results of the sensitive transmission lines for
IEEE 14-bus system.

based on the largest value of vulnerability index compared to
the rest of the transmission lines.

However, the proposed method with hidden failure
accentuates to a clearer picture on the results of 𝜇(𝑃̂

𝐶𝑖
) which

is larger and explicit compared to the results of vulnerability
index determined by the fault chain theory. The proposed
method with hidden failure will assist the researcher to a
much easier way in determining the sensitive transmission
lines which is based on the 𝜇(𝑃̂

𝐶𝑖
) ≥ 50% and vice versa.

Therefore, the transmission line 4-5, line 2-3, line 2–4, line
1-2, and line 9–14 are considered sensitive determined by the
proposed method with hidden failure.

This implies that the inclusion of hidden failure in the
proposed method provides more accurate results of sensitive
transmission lines compared to the fault chain theory which
does not consider the hidden failure. In particular, the
historical information of incorrect line tripping caused by
hidden failure is represented by 𝑝HF wherein it is the main
contribution which improves the performance of the pro-
posed method in providing more accurate result of sensitive
transmission lines. According to [16], cascaded tripping of
transmission lines is the main cause to a system blackout
which may disrupt the economic and social life of nation in
a country. As a result, it is crucially important for the utility
and power system planner to identify the accurate sensitive
transmission lines in order to circumvent from disastrous
impact of system cascading collapse.

5. Conclusions

The escalating number of critical cascading collapse
happened recently has revealed that there is an urgent need
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for new techniques required by the system planning and
operation. The critical system cascading collapse usually can
happen just by an initial tripping event of a transmission line.
This paper has discussed the estimated average probability
of cascading collapse, evaluated by assuming that each
transmission line has a different load-dependent probability
of incorrect tripping due to hidden failure. In this paper,
the estimated average probability of cascading collapse
was determined based on three different case studies of
hidden failure probability. The results have shown that it
is imperative to select an accurate probability of hidden
failure as it has a significant effect on the result of estimated
average probability of cascading collapse. The evaluation
of critical cascading events due to hidden failure should
be carried out periodically in the power system operation
and planning in order to avert the power system from
any kind of catastrophic events. The estimated average
probability of cascading collapse was also analyzed to
determine the sensitive initial transmission lines tripping
and also the severity of total loading condition. For that
reason, precaution and necessary actions should be made by
the utility and power system planner to ensure that severe
total loading condition does not occur and that sensitive
transmission lines are well preserved or maintained in
order to avoid catastrophic impact on system cascading
collapse. Comparison with fault chain theory has proven
that the proposed method with hidden failure provides more
accurate result of sensitive transmission lines.

Acronym

OPF: Optimal power flow.

Notation
𝑝HF: Probability of exposed line incorrect tripping

caused by hidden failure
𝐸: Total number of cascading collapse events

due to hidden failure
𝑦: Total number of years when the events of

cascading collapse occur
𝑑: Total number of days in a year, that is, 365

days
ℎ: Total number of hours in a day, that is, 24

hours
𝑚: Total number of minutes in an hour, that is,

60 minutes
𝑠: Total number of seconds in a minute, that is,

60 seconds
𝑃
𝑐𝑗

: Conditional probability of tripping in state 𝑗
𝑃
𝑐𝑖

: Product of tripping events probability
𝑝
𝐻𝑗
: Probability of exposed transmission line
encountering the random tripping event in
state 𝑗

𝑞
𝐻𝑗
: Probability of the exposed transmission line
not encountering the random tripping event
in state 𝑗

𝑁𝐽: Total number of system state at initial
tripping, 𝑖

𝐾: Total number of iterations to perform the
random tripping

𝐿: Total number of steps for the increase of total
loading condition

𝐼: Total number of transmission line in the
system

𝜇(𝑃̂
𝐶𝑖
): Estimated average probability of cascading
collapse used to identify the sensitive
transmission line contributing to a critical
system cascading collapse

𝜇(𝑃̂
𝐶𝑙
): Estimated average probability of system
cascading collapse used to identify the
criticality of system cascading collapse prior
to a severe total loading condition.
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