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The paper studies a kind of deteriorating seasonal product whose deterioration rate can be controlled by investing on the
preservation efforts. In contrast to previous studies, the paper considers the seasonal and deteriorating properties simultaneously.
A deteriorating inventory model is developed for this problem. We also provide a solution procedure to find the optimal decisions
about the preservation technology investment, the market price, and the ordering frequency. Then a case study is used to illustrate
the model and the solution procedure. Finally, sensitive analysis of the optimal solution with respect to major parameters is carried
out.

1. Introduction

The research on deteriorating items has begun from 1963.
A model with exponentially decaying inventory was initially
proposed by Ghare [1]. In recent years, many researchers
have done a lot of work on inventory problems about
deteriorating products. Deterioration is defined as decay,
change, or spoilage such that the items are not in a condition
of being used for their original purpose [2]. Electronic goods,
radioactive substances, grains, alcohol, and gasoline are
examples of deteriorating products. Also, for some products,
the demand may exist for just a limited time horizon.
We call such products as seasonal products, for example,
Christmas trees or fireworks. Now, more and more products
become deteriorating and seasonal simultaneously because
of the competition and technology development, such as
seasonal fashion goods (clothes, sweaters, shoes, etc.), high-
tech electronics products (e.g., laptops, computers, mobiles,
and cameras), and some seasonal food products (such as
Chinese moon cake).

Hence, this will become a very difficult problem to
decide the inventory if the product is both deteriorating
and seasonal. In this paper, we mainly study the optimal
inventory decision of the seasonal deteriorating products.

Some researchers have studied such deteriorating inventory
model, but they do not consider that the deterioration rate
can be controlled.

In reality, the deterioration rate can be controlled through
preservation technology investment. For example, the fruit
retailer can reduce the rate of product deterioration by
adopting the cool supply chain. But the preservation tech-
nology investment will lead to additional cost. Hence, a key
inventory problem is to find the optimal replenishment and
preservation technology investment policy which maximizes
the unit time profit.

This paper is the first paper to study both the preservation
technology investment and pricing strategies of deteriorating
seasonal products. In this paper, a model for deteriorating
seasonal products is built, in which deterioration rate can be
controlled by preservation technology investment. The deci-
sion variables are the market demand, the preservation tech-
nology investment parameter, and the ordering frequency.
To get the optimal solution, an algorithm is designed. To
foster additional managerial insights, we perform extensive
sensitivity analyses and illustrate our results with a case study.

The rest of the paper is organized as follows. Section 2 is
the review of the related papers. Section 3 is the notations and
assumptions. Section 4 is the description of model. Section 5
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is the algorithm and numerical examples. The last section
provides concluding remarks and describes future research.

2. Literature Review

The property of the deterioration rate is very important in
the research of deteriorating inventory. In most literatures
till now, it is assumed that deterioration rate is a constant
[3–8] or an exogenous variable [2, 9]. But in many practi-
cal situations, the deterioration rate can be controlled and
reduced through various efforts such as procedural changes
and specialized equipment acquisition. Especially for these
products with high deterioration rate such as refrigerated
food, fruit and vegetable, and fresh seafood, the firm has
strong willingness to adopt the preservation technology to
decrease the deterioration rate. Recently, some papers started
to study the deteriorating inventory with preservation tech-
nology investment. Blackburn and Scudder [10] studied the
optimal control of warehouse temperature under warehouse
capacity constraints. They also proved that it is beneficial to
share the inventory between supply chain members. Kouki
et al. [11] found that when warehouse temperature can be
controlled, a continuous temperature control policy can be
very efficient. Musa and Sani [12] studied the model when
the deterioration rate is noninstantaneous and deterioration
rate can be controlled by preservation technology investment.
Hsu et al. [13] proposed that the cost of preservation and the
deterioration rate satisfy the equation 𝜆 = 𝑘 − 𝑀(𝜀). 𝑀(𝜀) is
the reduced deterioration rate after investing on preservation
technology. The first derivative of 𝑀(𝜀) is positive, while the
second derivative is negative. Similar to Hsu et al. [13], Dye
and Hsieh [14] proposed that the cost of preservation and the
deterioration rate satisfy the equation 𝜆(𝑡) = 𝜆

0
(𝑡)(1 − 𝑀(𝜀)).

In addition to the deterioration rate, market demand is
another very important factor considered in this paper. In
some situations, the demand rate is assumed to be a constant
(see [15]). But in real life, demand can hardly be a constant.
It may change with time (see [16–18]), or it can be influenced
by inventory level [19, 20] and marketing efforts [2]. At the
same time, market price is highly related to demand. It is an
important decision variable in many literatures. For example,
in the papers of Shah et al. [2], Dye et al. [17], and Liang and
Zhou [7], they also regarded price as a decision variable.

For some seasonal deteriorating products, the demand
can only exist for a limited time horizon. Since the time
horizon is fixed, it is necessary to decide the ordering
frequency in a limited time horizon instead of the ordering
period length. Some people have considered such situation,
such as Sana et al. [3] and Yang et al. [21]. But they did not
consider that the deterioration rate can be controlled.

3. Notation and Assumptions

3.1. Notation. The notation in this paper is listed below.

Decision Variables
𝑛 : Ordering frequency
𝛼: Cost of preservation technology investment per unit

time

𝑝: Market price
𝑞: Ordering quantity.

Constant Parameters

𝑐: Buying cost per unit
ℎ: Inventory holding cost per unit per time

𝐼(𝑡): Inventory level of a time point
𝐴: Ordering cost per order

𝐷(𝑝): Market demand, 𝐷(𝑝) = 𝑏 − 𝑎𝑝

𝑏: Demand scale
𝑎: Price sensitive parameter

TP: Total profit of the selling season.

3.2. Assumptions. Themodel in this paper is built on the base
of the following assumptions.

(1) Market demand is linear related to market price.
(2) Market demand only exists in a limited time horizon

𝑇.
(3) Demand cannot be backlogged.
(4) Ordering lead time is zero.
(5) Deteriorated products have no value, and there is no

cost to dispose or store them.
(6) The relationship of deterioration rate and the preser-

vation technology investment parameter satisfies
𝜕𝜆(𝛼)/𝜕𝛼 < 0, 𝜕

2
𝜆(𝛼)/𝜕𝛼

2
> 0. Hence, in this

paper we assume that 𝜆(𝛼) = 𝜆
0
𝑒
−𝛿𝛼. Here, 𝜆(𝛼)

is the deterioration rate after investing on preserva-
tion technology, 𝜆

0
is the deterioration rate without

preservation technology investment, and 𝛿 is the
sensitive parameter of investment to the deterioration
rate.

(7) The cost of preservation technology investment per
unit time is restricted to 𝛼 ∈ [0, 𝛼].

4. Model

This study considers a single retailer’s inventory policy in
which the deterioration rate is affected by the preservation
technology investment. For seasonal products, the decision
variables are the market price, the ordering frequency, and
the preservation technology investment parameter.

In this model, there are two tradeoffs. The first one
is the tradeoff between the ordering frequency and the
ordering cost per order. By increasing ordering frequency,
we can decrease the deteriorating cost. But the ordering
cost increases. The second tradeoff is the preservation tech-
nology investment and the deteriorating cost. By increasing
the preservation technology investment, deteriorating cost
decreases.

According to the assumption, the time length is equal in
all the ordering periods. So, we only study the first period.
In the first period, according to the modeling of exponential
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Figure 1: The inventory system.

deteriorating inventory in Ghare [1], the inventory level 𝐼(𝑡)

can be depicted as Figure 1 and formulated as

𝜕𝐼 (𝑡)

𝜕𝑡
= −𝜆 (𝛼) 𝐼 (𝑡) − 𝐷 (𝑝) (𝑡 ∈ [0,

𝑇

𝑛
]) . (1)

The boundary condition is

𝐼 (
𝑇

𝑛
) = 0. (2)

By solving (1), we have

𝐼 (𝑡) =
𝐷 (𝑝)

𝜆 (𝛼)
(𝑒
𝜆(𝛼)(𝑇/𝑛−𝑡)

− 1) . (3)

The total profit of the season can be formulated as

TP = Sales revenue − Buying cost − Ordering cost

− Inventory cost − Preservation cost.
(4)

(1) Sales revenue: The total revenue in time 𝑇can be
formulated as

𝑅 = 𝑝 ⋅ 𝐷 (𝑝) ⋅ 𝑇. (5)

(2) Buying cost: According to (3), we can know the order-
ing quantity. The total buying cost can be formulated
as

𝐶
𝑝

= 𝑛 ⋅ 𝑐 ⋅ 𝑞 = 𝑛 ⋅ 𝑐 ⋅
𝐷 (𝑝)

𝜆 (𝛼)
(𝑒
𝜆(𝛼)𝑇/𝑛

− 1) . (6)

(3) Inventory cost: The total inventory quantity

Inv = 𝑛 ⋅ 𝐷 (𝑝) ⋅ ∫

𝑇/𝑛

0

𝐼 (𝑡) 𝑑𝑡

= 𝑛 ⋅
𝐷 (𝑝) (𝑒

𝜆(𝛼)(𝑇/𝑛)
− 𝜆 (𝛼) (𝑇/𝑛) − 1)

𝜆2 (𝛼)
.

(7)

The formulation of the total inventory cost is

𝐶
ℎ

= ℎ ⋅ Inv. (8)

(4) Ordering cost: Ordering cost is a constant in every
period. The total cost can be formulated as

𝐶
𝑜

= 𝑛 ⋅ 𝐴. (9)

(5) Preservation cost:

𝐼
0

= 𝛼𝑇. (10)

Hence, the profit function is

TP (𝑛, 𝛼, 𝑝) = 𝑝 ⋅ 𝐷 (𝑝) ⋅ 𝑇 − 𝑛 ⋅ 𝑐 ⋅ 𝑞

− ℎ ⋅ Inv − 𝑛 ⋅ 𝐴 − 𝐼
0
.

(11)

The problem is to solve the next program

min TP (𝑛, 𝛼, 𝑝)

s.t. 𝐷 (𝑝) > 0

𝑝 > 0

0 ≤ 𝛼 ≤ 𝛼.

(12)

According to the Taylor series theory, for small 𝜆 and 𝑇/𝑛

values, the exponential function can have an approximation
of 𝑒
𝜆𝑇/𝑛

≈ 1 + 𝜆𝑇/𝑛 + (𝜆𝑇/𝑛)
2
/2. This assumption is very

common inmany other papers, such as Lo et al. [22] andWee
et al. [23]. Substituting the equation into the target function,
we have

TP (𝑛, 𝛼, 𝑝) = 𝑝𝐷 (𝑝) 𝑇 − 𝑐𝐷 (𝑝) (𝑇 +
𝑇
2

2𝑛
𝜆 (𝛼))

− ℎ𝐷 (𝑝) ⋅
𝑇
2

2𝑛
− 𝛼𝑇 − 𝑛𝐴.

(13)

Proposition 1. When market price 𝑝 and preservation cost 𝛼

are fixed, the profit function 𝑇𝑃(𝑛, 𝛼, 𝑝) is concave in ordering
frequency 𝑛.

Proof. The first and second partial derivatives of the target
function TP(𝑛, 𝛼, 𝑝)with respect to 𝑛 are as follows:

𝜕TP (𝑛, 𝛼, 𝑝)

𝜕𝑛

=
(𝑐𝐷 (𝑝) 𝜆 (𝛼) 𝑇

2
/2 + ℎ𝐷 (𝑝) 𝑇

2
/2)

𝑛2
− 𝐴,

(14)

𝜕
2TP (𝑛, 𝛼, 𝑝)

𝜕𝑛2
= −

(𝑐𝐷 (𝑝) 𝜆 (𝛼) 𝑇
2

+ ℎ𝐷 (𝑝) 𝑇
2
)

𝑛3
< 0.

(15)

According to (15), we can know that the profit function
is concave in 𝑛. The ordering frequency is an integer. So, the
search for the optimal ordering frequency is reduced to find
a local optimal solution.

Proposition 2. For known 𝑛 and fixed 𝑝, we have the
following.

(1) If Δ
1
(𝑛, 𝑝) ≤ 0, TP(𝑛, 𝛼, 𝑝) has a maximum value at

𝛼
∗

= 0.
(2) If Δ

2
(𝑛, 𝑝) ≥ 0, TP(𝑛, 𝛼, 𝑝) has a maximum value at

𝛼
∗

= 𝛼.
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(3) If Δ
1
(𝑛, 𝑝) > 0 and Δ

2
(𝑛, 𝑝) < 0, 𝑇𝑃(𝑛, 𝛼, 𝑝) is

concave and reaches its global maximum at point 𝛼
∗

∈

(0, 𝛼) to set 𝜕TP(𝑛, 𝛼, 𝑝)/𝜕𝛼 = 0.

(Δ
1
(𝑛, 𝑝) andΔ

2
(𝑛, 𝑝) are defined in the following proof.)

Proof. The first and second partial derivatives of the target
function TP(𝑛, 𝛼, 𝑝) with respect to 𝛼 give

𝜕TP (𝑛, 𝛼, 𝑝)

𝜕𝛼
=

𝑐𝐷 (𝑝) 𝑇
2
𝛿𝜆 (𝛼)

2𝑛
− 𝑇, (16)

𝜕
2TP (𝑛, 𝛼, 𝑝)

𝜕𝛼2
= −

𝑐𝐷 (𝑝) 𝑇
2
𝛿
2
𝜆 (𝛼)

2𝑛
< 0. (17)

For simplicity, we set 𝐺(𝛼) = 𝑐𝐷(𝑝)𝑇
2
𝛿𝜆(𝛼)/2𝑛 − 𝑇.

We define Δ
1
(𝑛, 𝑝) = 𝐺(𝛼)|

𝛼=0
= 𝑐𝐷(𝑝)𝑇

2
𝛿𝜆
0
/2𝑛 − 𝑇,

Δ
2
(𝑛, 𝑝) = 𝐺(𝛼)|

𝛼=𝛼
= 𝑐𝐷(𝑝)𝑇

2
𝛿𝜆(𝛼)/2𝑛 − 𝑇.

It is obvious that 𝐺

(𝛼) < 0. So, 𝐺(𝛼) is strictly decreasing

in 𝛼.

(1) If Δ
1
(𝑛, 𝑝) ≤ 0, 𝐺(𝛼) ≤ 0, and ∀𝛼 ∈ [0, 𝛼],

TP(𝑛, 𝛼, p) is decreasing in 𝛼 ∈ [0, 𝛼]. So, the optimal
preservation cost is 𝛼

∗
= 0.

(2) If Δ
2
(𝑛, 𝑝) ≥ 0, 𝐺(𝛼) ≥ 0, and ∀𝛼 ∈ [0, 𝛼],

TP(𝑛, 𝛼, 𝑝) is increasing in 𝛼 ∈ [0, 𝛼]. So, the optimal
preservation cost is 𝛼

∗
= 𝛼.

(3) If Δ
1
(𝑛, 𝑝) > 0 and Δ

2
(𝑛, 𝑝) < 0, according to the

intermediate value theorem, there exists unique value
𝛼
∗

∈ (0, 𝛼) to satisfy 𝐺(𝛼
∗

) = 0, that is,

𝑐𝐷 (𝑝) 𝑇
2
𝛿𝜆 (𝛼
∗

)

2𝑛
− 𝑇 = 0. (18)

Proposition 3 indicates that when the initial deterioration
rate is sufficiently small or the efficiency of the invested capital
is low, there is no need to invest in preservation technology,
for it is unbeneficial. Besides, if there is a constraint of the
investment capital, there may be a potential for the firm to
get more profit. Conclusions are proved in the case study.

Proposition 3. There exists unique 𝑝
∗ whichmaximizes profit

function TP(𝑛, 𝛼, 𝑝) for fixed 𝑛 and 𝛼.

Proof. The first and second partial derivatives of the target
function TP(𝑛, 𝛼, 𝑝) with respect to 𝑛 are as follows:

𝜕TP (𝑛, 𝛼, 𝑝)

𝜕𝑝
= (𝑏 − 2𝑎𝑝) 𝑇 + 𝑎𝑐 [𝑇 +

𝑇
2
𝜆 (𝛼
∗

)

2𝑛
]

+ 𝑎ℎ
𝑇
2

2𝑛
.

(19)

Let 𝜕TP(𝑛, 𝛼, 𝑝)/𝜕𝑝 be zero and solve for the optimal 𝑝
∗,

we have

𝑝
∗

=
𝑏

2𝑎
+

𝑐

2
[1 +

𝑇𝜆 (𝛼)

2𝑛
] +

ℎ𝑇

4𝑛
. (20)

At point 𝑝 = 𝑝
∗, we have 𝜕

2TP(𝑛, 𝛼, 𝑝)/𝜕𝑝
2
|
𝑝=𝑝
∗ =

−2𝑎𝑇 < 0.
Thus, 𝑝

∗ is the global optimal whichmaximizes the profit
function TP(𝑛, 𝛼, 𝑝) for fixed 𝑛 and 𝛼.

Combining Propositions 1, 2, and 3, we have
Proposition 4.

Proposition 4. For fixed 𝑛, the optimal solution (𝛼
∗

, 𝑝
∗

) that
maximizes profit function 𝑇𝑃(𝑛, 𝛼, 𝑝) exists and is unique.
The optimal solution can be obtained through some interaction
algorithms.

In the subsection, we use an interaction algorithm to solve
numerical examples.

5. Algorithm

Step 1. Set 𝑛 = 1.

Step 2. Set 𝑘 = 1 and initialize the value of 𝑝
𝑘

= 𝑝
0
.

Step 3. Calculate Δ
1
(𝑛, 𝑝), Δ

2
(𝑛, 𝑝) and execute any one of

the following three cases 1, 2, or 3.

(1) If Δ
1
(𝑛, 𝑝) ≤ 0, then 𝛼

𝑘

1
= 0. Obtain 𝑝

𝑘

1
from (20).

(2) If Δ
2
(𝑛, 𝑝) ≥ 0, then 𝛼

𝑘

1
= 𝛼. Obtain 𝑝

𝑘

1
from (20).

(3) If Δ
1
(𝑛, 𝑝) > 0 and Δ

2
(𝑛, 𝑝) < 0, obtain the value of

𝛼
𝑘

1
by solving (18). Substitute the value of 𝛼

𝑘

1
into (20)

and to obtain the corresponding value of 𝑝
𝑘

1
.

Set 𝑝
𝑘+1

= 𝑝
𝑘

1
and 𝛼

𝑘
= 𝛼
𝑘

1
.

Step 4. If |𝑝
𝑘+1

− 𝑝
𝑘
| ≤ 10

−4, then (𝛼
∗

, 𝑝
∗

) = (𝛼
𝑘
, 𝑝
𝑘+1

) and
go to Step 5. Otherwise, set 𝑘 = 𝑘 + 1 and go to Step 3.

Step 5. Calculate TP(𝑛, 𝛼
∗

, 𝑝
∗

). It is the maximum of profit
function for fixed 𝑛.

Step 6. Set 𝑛


= 𝑛 + 1, repeat Step 2 to 5 and find
TP(𝑛

, 𝛼
∗

, 𝑝
∗

). Go to Step 7.

Step 7. If TP(𝑛

, 𝛼
∗

, 𝑝
∗

) ≥ TP(𝑛, 𝛼
∗

, 𝑝
∗

), set 𝑛 = 𝑛
. Go to

Step 6. Otherwise go to Step 8.

Step 8. Set (𝑛
∗

, 𝛼
∗

, 𝑝
∗

) = (𝑛, 𝛼
∗

, 𝑝
∗

), then (𝑛
∗

, 𝛼
∗

, 𝑝
∗

) is the
optimal solution.

Step 9. Calculate corresponding 𝑄 according to (3).

6. Case Study

To better illustrate our conclusions, we proposed four cases.
The first one is a normal case, which is a benchmark for the
other two. In the second case, there is a constraint for the
investment capital. In the third and fourth case, the value
of initial deterioration rate and the efficiency parameter is
relatively small. Here, we apply the above algorithm to solve
the problem.
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Table 1: Initial values of the parameters.

𝐴 𝑏 𝑎 𝑐 ℎ 𝜆
0

𝛼 𝑇 𝛿

500 10 0.2 10 1 0.02 10 100 0.5

To
ta

l p
ro

fit

𝑝 𝛼

1640
1620
1600
1580
1560
1540

36
35

34
33 1

1.5
2 2.5

3

Figure 2: The function with respect to 𝑝 and 𝛼 for fixed 𝑛 = 6.

Example 1. The initial values of the parameters are listed in
Table 1.

By calculatingwithMatlab 7.1, when 𝑛 = 6, we can plot the
relation of total profit to market price and preservation cost
as Figure 2. From Figure 2, we can see that the profit function
is jointly concave in market price and preservation cost. For
different 𝑛, the optimal profit always exists. As is shown in
Table 2, the profit function is concave in ordering frequency.
And when 𝑛 = 6, the profit function reaches its maximum.
So, the maximum of profit is TP = $1621.9.

In this example, the upper bound of investment on
preservation cost is sufficiently large. The optimal solution is
not on the boundary.

Example 2. In this example, we set 𝛼 = 1.7500 without
change of other parameters of Example 1. From Table 3, we
can see that the optimal solution is 𝛼

∗
= 1.7500 which is on

the boundary and the profit is smaller than that of the first
example. In practice, the maximum capital on preservation
technology investment can have significant influence on the
benefit of retailer.

Example 3. The initial values of the parameters are shown
in Table 4. When the initial value of the deterioration rate
is relatively low, that is, 𝜆

0
= 0.001 in Table 4, according to

the algorithm, Δ
1
(𝑛, 𝑝) < 0, the optimal investment capital is

𝛼
∗

= 0. This indicates that invest in preservation technology
is not beneficial when the initial value of the deterioration rate
is low.

Example 4. The initial values of the parameters are shown in
Table 5. When the sensitive parameter 𝛿 = 0.01, according
to algorithm, Δ

1
(𝑛, 𝑝) < 0, so the optimal solution for the

investment is 𝛼
∗

= 0. This also indicates that when the
efficiency of the parameter is low, it is not beneficial to invest
in preservation technology.

Table 2: The search process of the problem.

𝑛 𝛼 𝑝 𝜆 𝑞 TP
3 2.6383 38.78 0.0053 81.47 754.4
4 2.4144 36.62 0.0060 71.88 1337.0
5 2.1512 35.34 0.0068 62.64 1582.6
6 1.8996 34.49 0.0077 55.04 1621.9
7 1.6681 33.88 0.0087 48.91 1529.2
8 1.4567 33.43 0.0097 43.93 1347.8
9 1.2634 33.07 0.0106 39.84 1104.0

Table 3: The search process of the problem.

𝑛 𝛼 𝑝 𝜆 𝑞 TP
3 1.7500 39.03 0.0083 83.31 707.65
4 1.7500 36.78 0.0083 73.04 1300.1
5 1.7500 35.42 0.0083 63.20 1553.4
6 1.7500 34.51 0.0083 55.21 1596.3
7 1.6681 33.88 0.0087 48.91 1529.2
8 1.4567 33.43 0.0097 43.93 1347.8
9 1.2634 33.07 0.0106 39.84 1104.0

Table 4: Initial values of the parameters for Example 3.

𝐴 𝑏 𝑎 𝑐 ℎ 𝜆
0

𝛼 𝑇 𝛿

500 10 0.2 10 1 0.001 10 100 0.5

Table 5: Initial values of the parameters for Example 4.

𝐴 𝑏 𝑎 𝑐 ℎ 𝜆
0

𝛼 𝑇 𝛿

500 10 0.2 10 1 0.02 10 100 0.01

7. Sensitive Analysis

In this part, we performed the sensitivity analysis on the
optimal solution of the model with respect to parameters
(𝐴, 𝜆
0
, 𝑐, ℎ, 𝛿) by changing each of the parameters by −50%,

−40%, −30%, −20%, −10%, 10%, 20%, 30%, 40%, and 50%,
taking one parameter at a time and keeping the remaining
parameters unchanged. Table 6 is the sensitive analysis results
with respect to Example 1. Figure 3 is the percent changes of
parameter on total profit for Example 1.

From Table 6, we can conclude the following.

(1) The retailer’s ordering frequency is insensitive to the
change of 𝜆

0
and 𝛿. While, the retailer’s ordering

frequency is decreasing in 𝐴 and 𝑐, it is increasing
in ℎ. It means that when the ordering cost is high,
retailer will order less frequently to reduce the cost.
When buying cost is high, the increasing ordering
frequency leads to a lower deterioration cost, which
is beneficial for the retailer. But when the inventory
holding cost rate is low, the less ordering frequency is
much beneficial for the retailer.

(2) The retailer’s total ordering quantity 𝑛 ⋅ 𝑞 and profit
TP are both decreasing in 𝐴 and 𝑐, and insensitive on
the change of 𝜆

0
. While the retailer’s total ordering
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Table 6: Sensitive analysis results for Example 1 (𝛼 = 5.0000).

−50% −40% −30% −20% −10% 0 +10% +20% +30% +40% +50%

𝐴

𝑛 9 8 7 7 6 6 5 5 5 5 4
𝛼 1.2634 1.4567 1.6681 1.6681 1.8996 1.8996 2.1512 2.1512 2.1512 2.1512 2.4144
𝑝 33.07 33.43 33.88 33.88 34.49 34.49 35.34 35.34 35.34 35.34 36.62

𝑛 ⋅ 𝑞 358.56 351.44 342.37 342.37 330.24 330.24 313.20 313.20 313.20 313.20 287.52
TP 3354.0 2947.8 2579.2 2229.2 1921.9 1621.9 1332.6 1082.6 832.6 582.6 337.0

𝜆
0

𝑛 6 6 6 6 6 6 6 6 6 6 6
𝛼 0.5133 0.8779 1.1862 1.4533 1.6889 1.8996 2.0902 2.2642 2.4243 2.5725 2.7105
𝑝 34.49 34.49 34.49 34.49 34.49 34.49 34.49 34.49 34.49 34.49 34.49

𝑛 ⋅ 𝑞 330.24 330.24 330.24 330.24 330.24 330.24 330.24 330.24 330.24 330.24 330.24
TP 1760.5 1724.0 1693.2 1666.5 1642.9 1621.9 1602.8 1585.4 1569.4 1554.6 1540.8

𝑐

𝑛 6 6 6 6 6 6 6 6 5 5 5
𝛼 0.8172 1.1247 1.3743 1.5806 1.7536 1.8996 2.0232 2.1278 2.4540 2.5220 2.5762
𝑝 31.94 32.45 32.96 33.47 33.98 34.49 35.00 35.51 36.88 37.40 37.91

𝑛 ⋅ 𝑞 401.10 384.30 369.36 355.62 342.66 330.24 318.18 306.42 277.75 266.35 255.05
TP 3439.0 3046.5 2669.7 2307.3 1958.2 1621.9 1297.7 985.4 696.7 424.6 164.0

ℎ

𝑛 4 5 5 5 6 6 6 6 6 7 7
𝛼 2.8430 2.4120 2.3501 2.2860 1.9537 1.8996 1.8439 1.7866 1.7275 1.4783 1.4277
𝑝 33.43 33.30 33.81 34.32 34.06 34.49 34.91 35.34 35.77 35.34 35.71

𝑛 ⋅ 𝑞 351.48 354.00 343.80 333.60 338.70 330.24 321.72 313.20 304.62 313.18 305.83
TP 3209.2 2837.0 2508.1 2189.4 1883.9 1621.9 1366.9 1119.0 878.26 649.85 443.05

𝛿

𝑛 6 6 6 6 6 6 6 6 6 6 6
𝛼 0.9388 1.4150 1.6682 1.8032 1.8712 1.8996 1.9036 1.8927 1.8723 1.8461 1.8163
𝑝 34.83 34.71 34.63 34.57 34.53 34.49 34.46 34.43 34.41 34.40 34.38

𝑛 ⋅ 𝑞 343.50 339.12 335.94 333.54 331.68 330.24 328.98 327.96 327.12 326.40 325.74
TP 1511.3 1533.1 1557.0 1580.3 1602.0 1621.9 1640.0 1656.5 1671.6 1685.4 1699.8

1.5

0.5

1

0

−0.5

−1
−0.5 −0.4 −0.3 −0.2 −0.1 0 0.1 0.2 0.3 0.4 0.5

𝐴
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×
10
0

%

×100%

Figure 3: Percent changes of parameter on total profit for Example 1.

quantity is decreasing in 𝛿, the profit is increasing in
𝛿.

(3) The market price is insensitive to 𝜆
0
, increasing in

𝐴 and 𝑐 and decreasing in 𝛿. For the same ordering
frequency, market price is increasing in ℎ.

(4) The preservation cost is increasing in 𝐴, 𝑐, and 𝜆
0
,

while decreasing in ℎ. Itmeans that when the ordering
cost, the buying cost, and initial deterioration rate
are high, the retailer will invest more to reduce the
deteriorating cost. But when the holding cost rate is
high, the retailer can reduce the cost by orderingmore
frequently instead of investing more on preservation
cost.

8. Conclusions and Future Research

In this paper, we study a kind of deteriorating seasonal prod-
ucts whose deterioration rate can be controlled by investing
on the preservation efforts. Then, we propose an algorithm
to solve the nonlinear program problem. By analysis, we
can find some properties when parameters changed. Smaller
buying cost per unit, holding cost per unit time, and ordering
cost can all benefit the company. Besides, when deterioration
rate is relatively small or the sensitivity parameter of the
investment (𝛿) is small, there is no need to invest the
preservation technology. Also, the profit can be influenced by
the constraint of the investment capital.

For future research, we can take the backlogged demand
into our model. Furthermore, we can assume that the order-
ing lead time exists and can be controlled by extra investment.
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Also, we can extend the model to the deteriorating problems
in multiechelon supply chains.
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