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The differential evolution (DE) algorithm is a heuristic global optimization technique based on population which is easy to
understand, simple to implement, reliable, and fast. The evolutionary parameters directly influence the performance of differential
evolution algorithm. The adjustment of control parameters is a global behavior and has no general research theory to control
the parameters in the evolution process at present. In this paper, we propose an adaptive parameter adjustment method which
can dynamically adjust control parameters according to the evolution stage. The experiments on high dimensional function
optimization showed that the improved algorithm has more powerful global exploration ability and faster convergence speed.

1. Introduction

In recent years, intelligent optimization algorithms [1] are
considered as practical tools for nonlinear optimization
problems. Differential evolution algorithm [2, 3] is a novel
evolutionary algorithm on the basis of genetic algorithms
first introduced by Storn and Price in 1997. The algorithm is
a bionic intelligent algorithm by simulation of natural bio-
logical evolution mechanism. Its main idea is to generate a
temporary individual based on individual differences within
populations and then randomly restructure population evo-
lutionary. The algorithm has better global convergence and
robustness, very suitable for solving a variety of numerical
optimization problems, quickly making the algorithm a hot
topic in the current optimization field.

Because it is simple in principle and robust, DE has been
applied successfully to all kinds of optimization problems
such as constrained global optimization [4], image classifi-
cation [5], neural network [6], linear array [7], monopoles
antenna [8], images segmentation [9], and other areas [10–
14].

However, DE algorithm can easily fall into local optimal
solution in the course of the treatment of the multipeak

and the large search space function optimization problems.
In order to improve the optimization performance of the
DE, many scholars have proposed many control parameters
methods [15, 16]. Although all the methods can improve the
standardDEperformance to some extent, they still cannot get
satisfactory results for some of the functions. In this paper, we
propose an adaptive parameter adjustmentmethod according
to the evolution stage.

This paper is organized as follows. Related work is
described in Section 2. In Section 3 the background of DE is
presented.The improved algorithm is presented in Section 4.
In Section 5 some experimental tests, results, and conclusions
are given. Section 6 concludes the paper.

2. Related Work

The DE algorithm has a few parameters. These parameters
have a great impact on the performance of the algorithm,
such as the quality of the optimal value and convergence rate.
There is still no good way to determine the parameters. In
order to deal with this problem, researchers have made some
attempts. Gamperle et al. [17] reported that it is more difficult
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than expected to choose the control parameters of DE. Liu
and Lampinen [18] reported that the performance ofDE algo-
rithm is sensitive to the values of the parameters. Different
test functions should have different parameter settings.

At present, the parameter settings are mainly three ways:

(1) determined parameter setting method: the method is
mainly set by experience, for example, keeping fixed
value throughout the entire evolutionary process;

(2) adaptive parameter setting: some heuristic rules are
used to modify the parameter values accordingly to
the current state;

(3) self-adaptive parameter setting: the idea that “evolu-
tion of the evolution” is used to implement the self-
adaptive parameter setting.

Liu and Lampinen [19] proposed a fuzzy adaptive param-
eter settingmethodwhich can change the parameters dynam-
ically. The experiment shows the convergence much faster
than the traditional DE algorithm when adapting 𝐹 and CR.
In [20], self-adapting control parameters in DE are proposed;
the results show the improved algorithm is better than, or at
least comparable to, the standard DE algorithm.

3. Introduction to DE

Compared to other evolutionary algorithms, DE reserves
population-based global search strategy and uses a sim-
ple mutation operation of the differential and one-on-one
competition, so it can reduce the genetic complexity of the
operation. At the same time, the specific memory capacity of
DE enables it to dynamically track the current search to adjust
their search strategy with a strong global convergence and
robustness. So it is suitable for solving some of the complex
environments of the optimization problem. Basic operations
such as selection, crossover, and mutation are the basis of the
difference algorithm.

In an iterative process, the population of each generation
𝐺 contains 𝑁 individuals. Suppose that the individual 𝑖 of
generation 𝐺 is represented as
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3.1. Mutation Operation. An individual can be generated by
the following formula:
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3.2. Crossover Operation. In difference algorithm, the cross-
operation is introduced to the diversity of the new popula-
tion. According to the crossover strategy, the old and new
individual exchange part of the code to formanew individual.
New individuals can be represented as follow:
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(4)

where rand 𝑏(𝑗) is uniformly distributed in the interval [0, 1]
and CR is crossover probability in the interval [0, 1]. 𝑚𝑏𝑟 (𝑖)
means a random integer between [0, 𝐷].

3.3. Selection Operation. Selection operation is greedy strat-
egy; the candidate individual is generated frommutation and
crossover operation competition with target individual:
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where 𝑓 is the fitness function.
The basic differential evolution (DE) algorithm is shown

as Algorithm 1.

Algorithm 1 (the differential evolution algorithm). (1) Initial-
ize the number of population NP, the maximum number of
evolution Maxinter, the scale factor and cross-factor.

(2) Initialize the population pop.
(3)Follow theDE/rand/1/bin policy enforcement options,

and produce a new generation of individual:

(a) mutation operation;

(b) crossover operation;

(c) selection operation.

(4) Until the termination criterion is met.

The flow chart of differential evolution algorithm is
shown in Figure 1.

4. The Adaptive Control Parameter
Adjustment Method (ADE)

From standard DE algorithm, it is known that scale factor
𝐹 and cross-factor CR will not only affect convergence
speed of the algorithm, but may also lead to the occurrence
of premature phenomenon. In this paper, we propose an
adaptive adjustmentmethod according to the evolution stage.

We use a sine function (1/4 cycle) with value of (−1, 0) and
a cosine function (1/4 cycle) with value of (0, 1). The image of
the two functions shows slower change at the beginning and
in the end, with rapid changes and gradual increase in the
middle. It is very suitable for setting 𝐹 value and CR value.
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Figure 1: Flow chart of difference evaluation algorithm.

The early stage and the late stage of scale factor 𝐹 and cross-
factor CR are relatively small, with relatively fast increase in
the middle, just to meet the global search of PE
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where 𝛼 and 𝛽 are constants; for example, we can set 𝛼 =

0.8, and 𝛽 = 0.75 in the experiment. MAXITER is the
maximum number of iterations, and 𝑡 is the current number
of iterations.

The procedure for implementing the APE is given by the
following steps.

Algorithm 2 (the improved differential evolution algorithm).
(1) Initialize the number of population NP, the maximum

Table 1: Functions used to test the effects of ADE.
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Table 2: The performances of DE and ADE.

Function DE ADE
Optimal Time (s) Optimal Time (s)

Sphere 0.039 0.42 0.019 0.31
Rastrigrin 19.07 0.43 4.75 0.36
Griewank 0.43 0.45 0.33 0.28
Ackey 1.16 0.45 1.31 0.27
Shaffer 0.00973 0.43 0.00973 0.35

number of evolutionMaxinter, scale factor𝐹 and cross-factor
CR.

(2) Initialize the population pop.
(3)Update the scaling factor 𝐹 of each individual accord-

ing to the above formula (6).
(4)Update the cross-factor CR of each individual accord-

ing to the above formula (7).
(5) Perform the following behavior: Mutation, Crossover

and Selection, and produce a new generation of individuals.
(6) Until the termination criterion is met.

5. Experimental Results

A set of unconstrained real-valued benchmark functions
shown in Table 1 was used to investigate the effect of the
improved algorithm.

The results are shown in Table 2. Each point is made from
average values of over 10 repetitions. We set scale factor 𝐹 =

0.6 and cross-factor CR = 0.5 for the standard PE algorithm
and dynamically adjust 𝐹 and CR according to the evolution
stage for the ADE algorithm.

From Table 2, we can see that no algorithm performs
better than the others for all five functions, but on average,
the ADE is better than DE algorithm.

For Sphere function, Rastrigin function, and Griewank
function, ADE algorithm can effectively improve the accu-
racy such that the optimal value obtained is much closer
to the theoretical one compared with the standard DE
algorithm. Ackley function is a multimodal function; from
the results of iteration, the accuracy of the improved algo-
rithm is not as that of good as the standard DE algorithm,
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Figure 2: Sphere function.
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Figure 3: Rastrigin function.

but the difference is small and acceptable. For Shaffer func-
tion, there is no obvious superior algorithm.

For all the five functions, there is a significant improve-
ment as expected on the convergence time.These experimen-
tal results show that improving the algorithm can effectively
improve the convergence speed with excellent convergence
effect.

The comparison of two methods with convergent curves
is shown in Figures 2, 3, 4, 5, and 6. The experiment results
show the ADE algorithm has better result. Compared with
DE, the ADE algorithm has both global search ability and fast
convergence speed.

6. Conclusion

The scale factor 𝐹 and cross-factor CR have a great impact
on the performance of the algorithm, such as the quality
of the optimal value and convergence rate. There is still no

Best individual fitness value

Fi
tn

es
s v

al
ue

The number of evolutionary
0 20 40 60 80 100

DE

ADE

14

12

10

8

6

4

2

0

Figure 4: Griewank function.
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good way to determine the parameters. In this paper, we
propose an adaptive parameter adjustmentmethod according
to the evolution stage. From before mentioned experiment,
we can know the improved algorithm has more powerful
global exploration ability and faster convergence speed and
can be widely used in other optimization tasks.
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