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The second-order statistics of two correlated cascaded (double) Rayleigh fading channels are analyzed, where different relevant
second-order cross-correlation functions of in-phase and quadrature components of the cascaded Rayleigh channels are derived.
The level crossing rate (LCR) and average fade duration (AFD) of the cascaded channels are evaluated, and a single-integral form
of the LCR is derived. Numerical results of the LCR and AFD are presented, and the effect of the correlation is illustrated.

1. Introduction

Recently, the cascaded fading channels have attracted a lot
of research interests [1–12]. The cascaded fading channels
can be used to model different wireless communication
scenarios, such as the keyhole fading channel [4], the
mobile-to-mobile transmission channel [5], dual-hop fading
channels [8], and radio frequency identification (RFID)
pinhole channels [9–12].

In the published works of [1–9], the cascaded processes
are assumed to be independent. For cascaded keyhole or
pinhole fading channels, since the faded signals terminate
and originate at the same keyhole or pinhole location, the
correlation between cascaded fading processes may have
some impacts on the performance of wireless transmissions.
In [10–12], the bit error rate (BER) of RFID with multiple
tags has been examined for correlated cascaded (forward-
backscatter) channels. In fact, the completely dependent or
correlated cascaded Rayleigh fading channels have been stud-
ied in earlier works [13], where the corresponding BERs of
different modulations have been evaluated. The scenarios of
keyhole multiple-input multiple-output (MIMO) channels
and RFID pinhole channels with a correlation coefficient are
illustrated in Figure 1.

In this paper, in contrast to the evaluation of first-order
performance for correlated cascaded Rayleigh channels, such

as the bit error rate given in [10–12], second-order statistics
of correlated cascaded Rayleigh processes are analyzed and
evaluated. The second-order statistics such as the LCR
and AFD are useful for the design of practical wireless
communication systems [14–19]. The LCR of a faded signal
is defined as the average rate at which the signal envelope
crosses a given level, and the AFD is the average duration that
the signal envelope becomes lower than the given threshold
[14, 15]. As addressed in [20], the second-order statistics,
LCR and AFD, are also important for the design of real
RFID systems. In [8], the LCR and AFD were analyzed for
independent cascaded Rayleigh fading channels. In [16], the
LCR and AFD were applied to the burst-error analysis for
independent cascaded Rayleigh fading channels. In [17], the
LCR and AFD of cooperative selection diversity were studied,
where independent cascaded Rayleigh fading channels were
assumed. In [18, 19], the LCR and AFD were evaluated for
independent cascaded Nakagami-m fading channels.

In the context, two completely correlated Rayleigh
processes [13] in cascaded are modelled, corresponding
second-order correlation functions are derived, and the LCR
and AFD of the correlated cascaded Rayleigh processes are
evaluated. The result of the paper can be applied to the
analysis of second-order statistics of correlated cascaded
Rayleigh fading channels, such as a path of keyhole or
pinhole fading channels shown in Figure 1.
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Figure 1: The scenarios of keyhole MIMO channels and RFID pinhole channels.

In Section 2, the correlated cascaded Rayleigh random
processes and their in-phase and quadrature processes are
modelled, where various second-order correlation functions
are derived. In Section 3, the LCR and AFD of the correlated
cascaded processes are evaluated. In Section 4, numerical
results of the LCR and AFD are given and the effect of the
correlation is illustrated. Conclusions are drawn in Section 5.

2. Second-Order Correlation Functions of
Correlated Cascaded Rayleigh Processes

2.1. Modeling. Let αi(t) (i = 1, 2) be a Rayleigh process with
the probability density function (pdf) given by the following:

fi(αi) = αi
σ2
i

e−α
2
i /(2σ2

i ), αi ≥ 0, (1)

where 2σ2
i = E[α2

i ]. Then, two correlated Rayleigh processes
in cascade can be modelled by the following:

R(t, τ) = α1(t)α2(t + τ), t, τ ≥ 0, (2)

where τ is the time or phase offset between α1 and α2. The
joint pdf of α1 and α2 is [21]
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σ2
1σ

2
2

(
1− ρ2

) e−(σ2
2α

2
1+σ2

1α
2
2)/(2σ2

1 σ
2
2 (1−ρ2))

× I0

(
α1α2

∣
∣ρ
∣
∣

σ1σ2
(
1− ρ2

)

)

, α1,α2 ≥ 0,

(3)

where I0(·) is the zeroth order modified Bessel function
of the first kind, and the correlation coefficient is in the
range −1 < ρ < 1. Notice that when ρ = 1, α1 and
α2 have a linear relation, and R reduces to the well-known
chi-square distribution. With f12(α1,α2) given by (3), it is
straightforward to show that the pdf of R is
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(4)

where K0(·) is the zeroth order modified Bessel function
of the second kind, and [22, (3.478.4)] is used to evaluate
the integral. In Figure 2, the pdf with different correlation
coefficients is shown. From Figure 2, when ρ increases,
the cascaded Rayleigh processes has a larger probability of
yielding smaller values.
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Figure 2: Probability density function of correlated cascade
Rayleigh processes.

2.2. Second-Order Correlation Functions of In-Phase and
Quadrature Processes. For i = 1, 2, let Xi and Yi be the
underlying in-phase and quadrature components of αi(t),
and

α2
i (t) = X2

i (t) + Y 2
i (t). (5)

The time derivatives of Xi,Yi, and αi(t) give the second-order
information of cascaded Rayleigh processes.

Le fm be the maximal Doppler frequency of the cascaded
fading channels and θk be the uniformly distributed phase on
[0, 2π]. Based on the modeling used in [13, 14], for i = 1, 2,
we may write (Xi,Yi) in the following forms [23]

Xi(t) = lim
n→∞

√
2σ2

i

n∑

k=1

ak cos
(
ωkt − ωc,iTk

)
,

Yi(t) = lim
n→∞

√
2σ2

i

n∑

k=1

ak sin
(
ωkt − ωc,iTk

)
,

(6)

where ωk = 2π fm cos θk, ak is the corresponding fractional
power for the kth component, ωc,i is the frequency, and Tk

is the time-delay [15]. In practice, Tk can be modelled by



International Journal of Antennas and Propagation 3

an exponential distribution with mean T [15]. The time
derivatives of (Xi,Yi) are

Ẋi(t) = − lim
n→∞

√
2σ2

i
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akωk cos θk sin
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)
,
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n→∞

√
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i

n∑

i= 1
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(
ωkt − ωc,iTk

)
.

(7)

Let 〈·〉 denote the average operator. With (7), we can directly
obtain that the second-order autocorrelation functions are

〈
Xi(t)Ẋi(t + τ)

〉 = 〈Yi(t)Ẏi(t + τ)
〉 = 0, i = 1, 2. (8)

Similarly, the second-order intercross-correlation functions
of the in-phase and quadrature processes can be obtained as

〈
Xi(t)Ẏi(t + τ)

〉 = 〈Ẋi(t)Yi(t + τ)
〉

= 〈Ẋi(t)Ẏi(t + τ)
〉 = 0, i = 1, 2.

(9)

Let Δω = ωc,2 − ωc,1 and ωm = 2π fm. By using (7) and some
manipulations, the second-order cross-correlation function
〈Ẋ1(t)Ẋ2(t + τ)〉 and 〈Ẏ1(t)Ẏ2(t + τ)〉 can be derived as

〈
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(10)

where Ji(·) (i = 0, 1, 2, . . .) denotes the ith-order Bessel
function of the first kind, and [22, (3.715), (8.339), (3.895),
and (8.473.1)] are applied to evaluate the integral.

When the two cascaded channels are using the same
carrier frequency, we have Δω = 0. In Figure 3, this second-
order cross-correlation of in-phase and quadrature processes
with Δω = 0 is plotted for σ2

1 = σ2
2 = 1. From Figure 2, the

vibration range of the cross-correlation may increase when
fm becomes higher.
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Figure 3: Cross-correlation function of in-phase and quadrature
processes of the cascaded fading channels.

Other non-zero second-order correlation functions can
be derived in a similar way. Following manipulations similar
to those used for deriving (10), we can obtain the related
second-order correlation functions as follows:

〈
Ẋ1(t)Ẏ2(t + τ)

〉 = − 〈Ẏ1(t)Ẋ2(t + τ)
〉

= − σ1σ2ω2
mΔωT

2
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)2
]
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〈
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〉 = − 〈X1(t)Ẋ2(t + τ)
〉

= − 〈Ẏ1(t)Y2(t + τ)
〉

= − 〈Y1(t)Ẏ2(t + τ)
〉

= − σ1σ2ωmJ1(ωmτ)

1 +
(
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)2 ,

〈
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〉 = 〈Ẏ1(t)X2(t + τ)
〉

= − 〈Ẋ1(t)Y2(t + τ)
〉

= − 〈Y1(t)Ẋ2(t + τ)
〉

= σ1σ2ωmΔωTJ1(ωmτ)

1 +
(
ΔωT

)2 .

(11)

The above second-order correlation functions can be applied
to the derivation of the cross-correlation between α̇1(t) and
α̇2(t + τ) that will be useful for the LCR and AFD derivation
in Section 3.
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2.3. Cross-Correlation Function of α̇1(t) and α̇2(t). For i =
1, 2 the time derivative of αi(t) has the form

α̇i(t) = Xi(t)Ẋi(t) + Yi(t)Ẏi(t)√
X2
i (t) + Y 2

i (t)
= Xi(t)Ẋi(t) + Yi(t)Ẏi(t)

αi(t)
.

(12)

The correlation function between α̇1(t) and α̇2(t + τ) under
fixed α1(t) and α2(t + τ) can be written as follows:

〈α̇1(t)α̇2(t+τ)〉

=
〈
X1Ẋ1X2Ẋ2

〉
+
〈
Y1Ẏ1Y2Ẏ2

〉
+
〈
X1Ẋ1Y2Ẏ2

〉
+
〈
X2Ẋ2Y1Ẏ1

〉

α1(t)α2(t+τ)
,

(13)

where the variables t in (X1,Y1) and (t + τ) in (X2,Y2) are
omitted for simplification. To derive 〈α̇1(t)α̇2(t + τ)〉, we
need to obtain the four expectations in the numerator of
(13). Based on the model of central limit theorem considered
in [14, 15], [24, (8.111)], all Xi, Ẋi,Yi, and Ẏi have a zero-
mean Gaussian distribution. On the other hand, it is well
known that if the random variables (Z1,Z2,Z3,Z4) have a
jointly zero-mean Gaussian distribution, 〈Z1Z2Z3Z4〉 can be
evaluated by [19, (8.61)] the following:

〈Z1Z2Z3Z4〉= 〈Z1Z2〉〈Z3Z4〉
+〈Z1Z3〉〈Z2Z4〉
+〈Z1Z4〉〈Z2Z3〉.

(14)

Thus, we can use the property given by (14) to analyze the
numerator of (13). The four expectations in the numerator
of (13) can be derived by using (14) and the expectations of
the forms 〈ZiZj〉 and 〈ZiŻ j〉 (i, j = 1, 2). For Z = X or Y in
(14), we have

〈Xi(t)Yi(t + τ)〉 = 0,

〈X1(t)X2(t + τ)〉 = 〈Y1(t)Y2(t + τ)〉 = σ1σ2J0(ωmτ)

1 +
(
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)2 ,
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1+
(
ΔωT

)2 .

(15)

Using the result obtained in Section 2.2, and (13)–(15),
we can simplify (13) into the form

〈α̇1(t)α̇2(t + τ)〉

= σ2
1σ

2
2ω

2
m
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[
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]
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]
.

(16)

To evaluate (16), we employ the following relation derived in
[15, (1.5.20)] and [23, (4.31b)] for ρ and ΔωT

ρ2(ωmτ) = J2
0 (ωmτ)

1 +
(
ΔωT

)2 . (17)

From (17), for Δω = 0, the correlation coefficient is a
function of the maximum Doppler frequency and the phase
offset between the cascaded processes. Substituting (17) with
Δω = 0, we can simplify (16) into the form

〈α̇1(t)α̇2(t + τ)〉 = −σ2
1σ

2
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d2
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)′′
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= −σ2
1σ

2
2ω

2
m

(
ρ2
)′′

R(t, τ)
,

(18)

where we use the recursive relations of Bessel functions given
by [22, (8.473.1), (8.473.4)], and (ρ2)′′ is defined by

(
ρ2)′′ =

[
d2ρ2(x)
dx2

]

x=ωmτ

. (19)

For the derivation of the LCR and AFD of the correlated
cascaded Rayleigh channels, in the next section, without loss
of generality, Δω = 0 is considered.

3. Derivation of LCR and AFD

3.1. LCR. The average LCR of a random process R at R = r
can be evaluated by [14, 15]

NR(r) =
∫∞

0
ṙ fR,Ṙ(r, ṙ)dṙ = fR(r)

∫∞

0
ṙ fṘ|R(ṙ | r)dṙ, (20)

where ṙ denotes the time derivative of r, and fṘ|R(ṙ | r) is the
pdf of the time derivative Ṙ conditioned on R = r.

To evaluate the LCR given by (20), we first characterize
the probability distribution of Ṙ below, where

Ṙ(t, τ) = α2(t + τ)α̇1(t) + α1(t)α̇2(t + τ). (21)

Based on [15], α̇i is Gaussian distributed with zero mean and
variance σ2

α̇i = 2π2 f 2
mσ

2
i . Consequently, conditioned on fixed

(α1,α2), Ṙ is Gaussian distributed with zero mean and the
variance

σ̇2
R = α2

2σ
2
α̇1

+ α2
1σ

2
α̇2

+ 2α1α2 cov(α̇1, α̇2), (22)

where cov(α̇1, α̇2) denotes the covariance of α̇1(t) and α̇2(t +
τ) under fixed (α1,α2), and is given by (18) for Δω = 0. Let
fṘ|r,α(ṙ | α1,α2) denote the conditional pdf of Ṙ under fixed
(α1,α2). Thus,

fṘ|r,α(ṙ | α1,α2) ∼ Gaussian
(
0, σ̇2

R

)
. (23)

Let fR|α(r | α1,α2) denote the conditional pdf of R under
fixed (α1,α2). Then, for the correlated cascaded processes, the
LCR given by (20) can be rewritten in the form

NR(r) =
∫ ∫ ∫∞

0
δ(r − α1α2)ṙ fṘ|r,α(ṙ | r,α1,α2)dṙ

× fR|α(r | α1,α2) f12(α1,α2)dα1dα2

=
∫∞

0

(∫∞

0
ṙ fṘ|α

(
ṙ | r

α2
,α2

)
dṙ
)

1
α2

f12

(
r

α2
,α2

)
dα2,

(24)
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where δ(·) is the Dirac delta function, f12(r/α2,α2) has the
form given by (3) with α1 replaced by r/α2, and fṘ|α(ṙ |
r/α2,α2) is given by (23) also with α1 replaced by r/α2.
Substituting (18) into (22) and (3) into (24), we can express
the normalized LCR in the single-integral form

NR(r)
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πr
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2
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2
2 r

2/α2
2)/2σ2

1 σ
2
2 (1−ρ2))dα2

(25)

that can be easily evaluated with a computing software, such
as MATLAB. If ρ = 0, it can be easily check that (25) will
reduce to the form given in [8, 17, 18] for independent
cascaded Rayleigh channels.

3.2. AFD. Let P (R ≤ r) be the cumulative distribution
function (cdf) of R. With the normalized LCR given by (25),
the normalized AFD can be evaluated by [14]

TR(r) = fm · P (R ≤ r)
NR(r)

. (26)

By using the pdf of R given by (4), the cdf in the above AFD
can be evaluated as

P (R ≤ r)=
∫ r

0
fR
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,

(27)

where I1(·) is the first-order modified Bessel function of the
first kind, and a formula modified from [22, (6.521.4)] with
Ii(z) = j−iJi( jz) ( j = √−1) is used to write the integral into
a closed-form.

4. Numerical Results of LCR and AFD

From (17), due to the property of Bessel functions, ρ2 is
not a monotone function of τ. However, as τ increases,
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the vibration range of J2
0 (ωmτ) tends to be smaller, and ρ2

becomes smaller.
To demonstrate the impact of the correlation on the LCR

and AFD, the normalized LCR of the correlated cascaded
Rayleigh channels for different values of τ is plotted in
Figure 4. The result in Figure 4 implies that when correlation
increases, the cascaded envelope R has more chances to enter
a deep fading area. For example, as shown in Figure 4, the
correlated cascaded channels may have a 5% ∼ 10% more
crossing rate than independent cascaded channels to go into
deep fade below −10 dB.

In Figure 5, the numerical AFD is plotted. According to
Figure 5, as the correlation increases, the average duration
when R temporarily stays in the deep fading area can be
shorter although R enters the area more frequently.

Thus, the correlation between cascaded channels not
only affects the BER as shown in [10–13] but also changes
the second-order statistics which are more serious in a deep
fading area.

5. Conclusions

Different second-order correlation functions of completely
correlated cascaded fading channels have been derived and
the corresponding LCR and AFD are analyzed, which can
facilitate the design of wireless communication or RFID
systems on keyhole or pinhole channels. Under the con-
sideration of the channel correlation, the LCR and AFD
will depart from those obtained for independent cascaded
channels. Numerical results show that the correlation has
a higher impact on the second-order statistics in the deep
fading region. The evaluation of LCR and AFD will also
be helpful for the design of interleaving transmission and
encoding schemes over correlated cascaded fading channels.
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Further research on related topics may consider the second-
order statistics of diversity schemes over correlated cascaded
channels.
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