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Abstract. Interactive high quality volume rendering is becoming increasingly more important as the amount of more complex
volumetric data steadily grows. While a number of volumetric rendering techniques have been widely used, ray casting has been
recognized as an effective approach for generating high quality visualization. However, for most users, the use of ray casting
has been limited to datasets that are very small because of its high demands on computational power and memory bandwidth.
However the recent introduction of the Cell Broadband Engine (Cell B.E.) processor, which consists of 9 heterogeneous cores
designed to handle extremely demanding computations with large streams of data, provides an opportunity to put the ray casting
into practical use. In this paper, we introduce an efficient parallel implementation of volume ray casting on the Cell B.E. The
implementation is designed to take full advantage of the computational power and memory bandwidth of the Cell B.E. using
an intricate orchestration of the ray casting computation on the available heterogeneous resources. Specifically, we introduce
streaming model based schemes and techniques to efficiently implement acceleration techniques for ray casting on Cell B.E.
In addition to ensuring effective SIMD utilization, our method provides two key benefits: there is no cost for empty space
skipping and there is no memory bottleneck on moving volumetric data for processing. Our experimental results show that we

can interactively render practical datasets on a single Cell B.E. processor.
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1. Introduction

There is a consistent trend in almost all scientific,
engineering and medical domains toward increasingly
generating higher resolution volumetric data as com-
puting power steadily increases and imaging instru-
ments get more refined. For computational scientists,
there is a constant desire to conduct more computation-
ally demanding simulations in order to capture com-
plex phenomena at finer scales. At the same time, bio-
medical researchers and practitioners are demanding
higher quality visualization for medical data gener-
ated by increasingly more sophisticated imaging in-
struments such as CT, MRI and 3-D confocal mi-
croscopy. Clearly, the ability to interactively visualize
the volumetric data using high quality rendering tech-
niques is critical to fully explore and understand the
corresponding datasets.

Ray casting [7] has been recognized as a fundamen-
tal volume rendering technique that can produce very
high quality images. However, for most of users, its
application has been limited only to datasets of very

small sizes because of its high computational require-
ments and its irregular data accesses. In particular, the
amount of data to be processed and the generally irreg-
ular access patterns required make it very hard to ex-
ploit caches, which in general result in high memory
latencies. Thus, it is very difficult for current general
purpose desktop computers to deliver the targeted level
of interactivity for most practical volumetric datasets.
Significant research efforts have attempted to ac-
celerate volume rendering using graphics hardware.
A representative technique is based on the exploita-
tion of the texture-mapping capabilities of the graph-
ics hardware [2,6]. The texture-mapping based volume
rendering has enabled a single PC with a commod-
ity graphics card to achieve interactive frame rates for
moderate-sized data. Also, modern methods allow us
to achieve very good image quality as well [9]. How-
ever, the size of the data that can interactively be ren-
dered is limited by the graphics memory size, which
is typically substantially smaller than system memory.
When the dataset does not fit in the graphics memory,
which is often the case in time-series data, interactivity
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becomes very hard to achieve because data has to be
transferred from system memory to graphics memory,
a process that usually takes at least an order of magni-
tude more time than the graphics memory bandwidth.

On the other hand, in order to address the increas-
ing demands on interactive, higher-quality video ren-
dering, Sony, Toshiba and IBM (STI) teamed togeth-
er to develop the Cell Broadband Engine (Cell B.E.)
[5], which is the first implementation of a chip mul-
tiprocessor with a significant number of general pur-
pose programmable cores. The Cell B.E. is a heteroge-
neous multicore chip capable of massive floating point
processing optimized for computation-intensive work-
loads and rich broadband media applications, and thus
opening up the opportunity to put the ray casting algo-
rithm into widespread, practical use.

In this paper, we introduce a carefully tailored, effi-
cient parallel implementation of volume ray casting on
the Cell B.E. In general, achieving high performance
for demanding computations with highly irregular data
movements is extremely difficult on the Cell B.E. as
it was primarily designed for large scale SIMD opera-
tions on media data streaming through the core proces-
sors. In our work, we aim to take full advantage of the
unique capabilities of the Cell B.E. while overcoming
its unique challenges. In particular, we achieve an op-
timized implementation of two main acceleration tech-
niques for volume ray casting [7] — empty space skip-
ping and early ray termination — on the Cell B.E.

We present a streaming model based scheme to ef-
ficiently employ both acceleration techniques. This
scheme makes an effective use of the heterogeneous
cores and asynchronous DMA features of the Cell B.E.
In our scheme, a PPE (the PowerPC processor on the
Cell B.E.) is responsible for traversing a hierarchical
data structure and generating the lists of intersecting
voxels along the rays over non-empty regions, as well
as it is responsible for feeding the SPEs (Synergistic
Processing Elements — SIMD type cores with very high
peak floating point performance) with the correspond-
ing lists. The SPEs are responsible for actual render-
ing of the data received from the PPE, and they natu-
rally implement the early ray termination acceleration
technique. To deal with the speed gap between the het-
erogeneous cores (PPE versus SPEs), we introduce a
couple of important techniques.

Our streaming model based scheme provides the
following two key benefits. First, we essentially re-
move the overhead caused by traversing the hierarchi-
cal data structure by overlapping the empty space skip-
ping process with the actual rendering process. Sec-

ond, using prefetching, we essentially remove memory
access latency, which has been the main performance
degradation factor that is due to the irregular data ac-
cess patterns. In addition to these two key benefits, we
can also achieve better SIMD utilization in the SPEs
because the SPEs know the sampling voxels to process
in advance and thus they can pack them into SIMD op-
erations.

Our experimental results show that we can inter-
actively ray cast practical datasets of size 256> onto
a 256° image at 9-26 frames/s with one Cell B.E.
processor 3.2 GHz, which is about an order of mag-
nitude faster than the implementation at Intel Xeon
3 GHz. Our scalability results with respect to volume
size show that we can achieve interactive visualization
for much larger datasets but we could not run larger
experiments because the memory of our Cell B.E. was
limited to 1 GB.

In the following sections, we start by discussing re-
lated work and briefly introducing Cell B.E. architec-
ture. We then explain our primary work decomposition
and assignment scheme followed by a description of
the techniques to deal with the speed gap between the
heterogeneous cores. We end with a brief summary of
the experimental results and a conclusion.

2. Related work

Levoy [7] proposed two optimization techniques for
ray casting — empty space skipping and early ray ter-
mination, which are the most widely used optimization
techniques for ray casting. He used a pyramid of binary
volumes to make rays efficiently skip empty space and
also made each ray terminate early if the opacity value
accumulates to a level where the color stabilizes. Yagel
and Shi [16] proposed another optimization technique
using frame-to-frame coherency. Their method saves
the coordinates of the first non-empty voxel encoun-
tered by each ray so that rays can start from these coor-
dinates in the next frame. Their method was improved
by Wan et al. [15] in several ways.

As volume rendering is computationally quite de-
manding especially for large datasets or high resolu-
tion screens, there have been many efforts to acceler-
ate this method using the latest hardware and/or a clus-
ter of computers. Recently, the most popular method
seems to be the one that is based on using the graph-
ics cards’ texture mapping capability [2], which can
also be extended to multiple cards and a cluster system.
Kniss et al. [6] distribute a dataset into multiple graph-
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ics cards in a shared-memory system, and make each
card render a subvolume by using the texture mapping
technique. Lum et al. [8] and Strengert et al. [13] use
the same technique in a cluster environment. As graph-
ics processors become more programmable, there have
been efforts to implement ray casting on the graph-
ics cards. Stegmaier and et al. [12] show that ray cast-
ing can be implemented on the programmable graphics
processor and Miiller et al. [10] extend the hardware
accelerated ray casting technique to a cluster system.
On the other hand, it is worth mentioning the recent
hardware-based ray tracing techniques for geometric
rendering since the principle of ray shooting is the
same. Horn et al. [3] develop k-D tree based GPU ray
tracing methods and Benthin et al. [1] introduce ray
tracing techniques for Cell B.E. For isosurface render-
ing on the Cell B.E., we refer the reader to O’Conor et
al. [11].

3. Cell broadband engine overview

The Cell Broadband Engine (Cell B.E.) [5], as
shown in Fig. 1, consists of one 64-bit PowerPC
Processor Element (PPE) and eight Synergistic Proces-
sor Elements (SPEs), all connected together by a high-
bandwidth Element Interconnect Bus (EIB).

Each SPE contains a Synergistic Processor Unit
(SPU), a Memory Flow Controller (MFC) and 256 kB
of local storage (LS). The MFC has DMA engines that
can asynchronously transfer data across the EIB be-
tween the LS and main memory. Each SPU contains
a 128-bit-wide SIMD engine enabling 4-way 32-bit
floating point operations. The SPU can not access main
memory directly. It obtains data and instruction from
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its 256 kB local storage and it has to issue DMA com-
mands to the MFC to bring data into the local store or
write results back to main memory.

The Cell allows using the same virtual addresses to
specify system memory locations regardless of proces-
sor element type and thus it enables seamless data shar-
ing between threads on both the PPE and the SPEs. It is
also possible for the SPEs to reference different virtual
memory spaces associated with respective applications
executing concurrently in the system.

With a clock speed of 3.2 GHz, the Cell B.E. has a
theoretical peak performance of 204.8 GFlops/s. The
EIB supports a peak bandwidth of 204.8 GB/s for on-
chip data transfers. The memory interface controller
provides 25.6 GB/s bandwidth to main memory at peak
performance.

4. Primary work decomposition and allocation

In this section, we describe our primary work de-
composition and assignment scheme for volume ray
casting on the Cell B.E. Our scheme is illustrated in
Fig. 2.

Our work decomposition scheme is based on fine-
grain task parallelism that achieves load balancing
among the SPEs as well as matching workload be-
tween the PPE and the SPEs. In ray casting, the over-
all concurrency is obvious since we can compute each
pixel value on the screen independently of all the other
pixels. To take advantage of this fact, we divide the
screen into a grid of small tiles. Each tile will be inde-
pendently rendered by a certain SPE. The size of the
tile should be small enough to balance loads between
the SPEs. Also, an SPE should be able to store in its

SPE
SPU SPU SPU SPU
Rambus XDR
MEC | LS MEC | LS MFC | LS MEC | LS ﬁ
PPE 1T 1T 1T 1T Mermory
<:> Interface
L1 Controller
PowerPC
m,m. c::) Element Interconnect Bus (EIB)
core L2 c::> Bus
Interface
ﬁ II II ]:I Controller
MFC | LS MFC LS MFC | LS MFC LS
Rambus FlexIO
SPU SPU SPU SPU

Fig. 1. Cell broadband engine overview [4].
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SPEO || SPE1 namw SPE7

Fig. 2. Work decomposition and assignment to the SPEs. The gener-
ation of each small image tile is assigned to an SPE as indicated, and
the tiles are arranged in a Z-order to exploit spatial locality.

very limited local memory the task list generated by
the PPE as well as the tile image itself. Note that the
size of the task list from the PPE increases as the tile
size does. On the other hand, the tile size should be
large enough to ensure enough work between synchro-
nizations.

The high communication bandwidth of the Cell B.E.
makes it possible to achieve excellent performance us-
ing image-based fine-grain decomposition despite the
fact that the Cell B.E. is essentially a distributed mem-
ory system, in which object-based coarse-grain decom-
position is usually chosen. This fine-grain task paral-
lelism enables us to achieve near-optimal load balanc-
ing and also to overcome the limited local memory
size.

Our work assignment scheme is static. We assign
each tile to each SPE in some order as shown in Fig. 2,
which shows a Z-order based scheme. Such an order-
ing tries to exploit spatial locality as much as possi-
ble. Even though the assignment is static, the time it
takes to render all the assigned tiles in each SPE is
almost identical for the different SPEs because of the
fine-grain work decomposition.

5. Implementation of acceleration techniques
There are two most widely used acceleration tech-

niques for ray casting [7]: empty space skipping and
early ray termination. To skip empty space, one usually

constructs a hierarchical data structure that stores the
information about which subvolume is empty and skips
the subvolume during traversal. This acceleration tech-
nique is very useful in most volumetric datasets since
they usually have significant portions that are empty
space. On the other hand, early ray termination can also
save significant time by stopping a ray traversal after
its opacity value reaches some threshold since its final
pixel value will hardly change by further ray traver-
sal. This acceleration technique is particularly useful
when the objects embedded in the volume are mostly
opaque. Efficiently implementing these two accelera-
tion techniques is very important since it significantly
affects the ray casting performance.

5.1. Streaming model for acceleration

Our basic idea for implementing the acceleration
techniques on the Cell B.E. is to assign empty space
skipping to the PPE and early ray termination to the
SPEs. The PPE is a full-fledged 64-bit PowerPC with
L1 and L2 caches, and hence can handle branch pre-
diction much better than the SPE. Clearly the PPE is a
better candidate for efficiently traversing a hierarchical
data structure. Furthermore, the SPE would have sub-
stantial overhead in handling empty space skipping due
to the limited local memory size as the size of the hi-
erarchical data structure increases. On the other hand,
the SPE is ideal for the rendering work since it was de-
signed for compute-intensive workloads using SIMD
style operations. Thus, we naturally implement early
ray termination on the SPE.

We streamline the empty space skipping process and
the actual rendering process. Given a ray, the PPE tra-
verses the hierarchical data structure along the ray di-
rection and collects ray segments (defining the cor-
responding sampled voxels along the ray) which are
only in non-empty subvolumes. Each ray segment is
denoted by (R, L), where R is the offset along the ray
from the viewpoint and L is the length of the corre-
sponding segment. The collected ray segments for all
the pixels of a tile are concatenated and transferred to
the SPE in charge of the corresponding tile, which then
renders the tile with early ray termination option. This
streaming model is illustrated in Fig. 3.

In this streaming model, the PPE side is responsi-
ble for generating and sending only the contributing
(non-empty) ray segments to the SPEs. For that, we
use a simple 3-D octree data structure, in which each
node has 8 children and stores a maximum value of
any voxel in the subvolume rooted at the node. How-



J. Kim and J. JaJa / Streaming model based volume ray casting implementation for Cell B.E.

CPU
rerPC, Core2

PDuo)

Fig. 3. Our streaming

PPE

Initialization

Repeated for
all SPEs?

Get the list of
contributing ray segments
for the next Tile
in the current SPE,
and store into a buffer

)

Send the size of the list
unless the queue
in the SPE is full

I

No tile to process?
Yes

Wait until
all SPEs done

Finish

(Offset, Length)...

177

High-Throughp
Device
(SPE, GPU)

-

L

Relile

Contributing
Ray Segment List

*Rendering
Reconstruction/
Shading/
Compositing
*Early Ray
Termination

model for acceleration techniques.

SPE

Get the List for
current tile

}

Issue asynchronous
DMA for next 4 ray
sampling points

{
{

Data for current 4
Ray sampling points
ready?

Do Interpolation, Shading,
Classification and
Compositing using SIMD

Yes, then
skip
current
pixel

Yes

Issue asynchronous
DMA for current tile image
(0 main memory

T

Finish

Fig. 4. Main algorithms in PPE and SPE.

ever, we should carefully set the leaf node size. The
smaller the size of the leaf node, the more traversal
time and the more amount of data needs to be trans-

ferred to the SPEs. However, the larger the leaf size,

the more empty space will need to be handled by the
SPEs, eventually leading to significant increase in ren-
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dering time. Empty space can be determined by either
opacity values after classification or raw voxel values.
If opacity values are used, the octree would have to be
updated every time the classification table is changed.

The SPEs are responsible for the actual rendering
process. An SPE waits until it gets a signal from the
PPE that it has collected all the contributing ray seg-
ments corresponding to all the pixels in the tile un-
der consideration. Once it receives the signal from the
PPE, it starts the rendering process for the correspond-
ing tile. The rendering process consists of four main
steps: prefetching, interpolation, shading/classification
and compositing. During the rendering, four ray sam-
pling points are processed together in a loop to exploit
the SIMD capabilities of the SPE. To achieve peak
performance, we organize the volumetric data in main
memory into a 3-D grid of subvolumes (also called
bricks) of the same size such that each SPE will move
4 subvolumes at a time. First, for prefetching, we take
advantage of the asynchronous DMA feature of the
Cell B.E. and use double buffering [4]. We prefetch the
next 4 subvolumes required for rendering the next 4 ray
sampling points into a buffer. If the 4 subvolumes nec-
essary for rendering the current 4 ray sampling points
are ready, we concurrently perform 4 tri-linear interpo-
lations using 4-way SIMD instructions to reconstruct
the signals. Reconstructed values are mapped to a color
and opacity value using shading and classification ta-
bles. Finally, we composite the 4 values sequentially
since compositing can not be concurrently done. How-
ever, we concurrently composite the R, G, B values,
and hence we utilize 3 /4 of the SIMD capability of the
SPE. The final opacity value is then tested for early ray
termination, and, if so, we proceed to the next ray. Af-
ter getting all the pixel values for the tile, we send the
tile image back to the main memory using asynchro-
nous DMA and proceed to the next tile.

5.2. Techniques for filling performance gap between
heterogeneous cores

The successful implementation of our streaming
model critically depends on how much we can match
the executions of the two stages of the model. If the
PPE performs its tasks faster than the SPE, the out-
puts generated by the PPE should be stored somewhere
so that it can proceed to execute the next task. How-
ever, much more difficult is the situation when the PPE
performs its tasks slower than the SPE. In that case,
the SPEs will be idle waiting for the inputs from the
PPE, which can substantially degrade the overall per-

PPE :> SPE
(PowerPC)

*For cach SPE

Waork List for Tile k
Work List for Tile k+1
Work List for Tile k+2

*4-entry Mailbox
“BUFFERING” List size for Tile k

List size for Tile k+1

List size for Tile k+2

Fig. 5. Our buffering scheme in order to handle the case when the
PPE executes its tasks faster than the SPEs.

formance and negatively impact scalability since the
more the number of SPEs, the more work has to be per-
formed by the PPE and hence the more time the SPE
will have to wait. In the following, we introduce a cou-
ple of techniques for taking care of the possible perfor-
mance gap between the heterogeneous cores.

We first describe a simple way to handle the case
when the PPE executes its tasks faster than the SPEs
handling of their corresponding tasks. As seen in
Fig. 5, we keep a small buffer for each SPE in main
memory, where each entry stores a complete list of
contributing ray segments for a tile. When the PPE fin-
ishes the task of creating a list of ray segments for a
tile, it stores the list in the buffer and sends a mes-
sage, which is actually the size of the list, to the mail-
box of the SPE assigned for the tile. Then, the SPE
initiates the transfer from the buffer to its local mem-
ory. The SPE keeps track of the entry from which it
has to transfer data for the current tile. Since the mail-
box in the SPE has 4 entries, we essentially use it as
a 4-entry queue so that the messages from the PPE
can be buffered and used immediately when the SPE is
ready to proceed to the next tile. This scheme of using
buffers on both PPE and SPE enables us to efficiently
deal with the situation of overflowing inputs from PPE.

In the following subsections, we introduce our “ap-
proximation + refining” scheme to deal with the other
case, in which the PPE is not fast enough to feed the
SPEs. This is unfortunately the case for the current
Cell B.E.

Approximation

In order to reduce the workload of the PPE, we only
generate the list of contributing ray segments for every
(k x k)th pixel, rather than for every pixel. Each seg-
ment is now computed by projecting the boundary of
an intersected octree leaf (corresponding to non-empty
subvolume) onto the ray direction as shown in Fig. 6.
We estimate the contributing ray segments for each
subtile by taking the union of the ray segments lists at
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Fig. 6. Approximation technique applied to an image tile (¢, j). Here we take k to be half the length of the tile side, and hence we need to cast

rays only through 9 pixels as illustrated on the image in the left.

the surrounding 4 corners. Then, the SPE assigned to
the tile uses the resulting list to render to all the pixels
in the subtile of size k x k. This method significantly re-
duces the processing time in the PPE by a factor of k.
However, it increases the processing time in the SPE
because the SPE ends up with processing much more
empty voxels due to the approximate nature of the con-
tributing ray segments used for each pixel.

In this approximation technique, we might miss
some intersecting subvolumes for some pixels as
shown in Fig. 7 even though we use the projected ray
segments since we selectively shoot rays to get the con-
tributing ray segments. Missed subvolumes may lead
to incorrect rendering since it can end up with report-
ing no contributing ray segments for a particular subtile
even though there is a non-empty subvolume, which is
not traversed by any of the four rays.

Thus, we need to make sure that we never miss any
subvolume for correct rendering. In orthographic ray
casting, where all rays are cast in parallel, we only need
to make sure the interval value k is smaller than the
minimum distance between any two grid points of the
leaf subvolume. In perspective ray casting, we can eas-
ily prove the following.

Proposition 1. Tivo rays that are k apart on the image
plane, originating from the same viewpoint, never di-
verge more than 2k inside the volume as along as the
distance from the viewpoint to the image plane, diste,

./

\

A

Fig. 7. The case of missing non-empty subvolumes. In the figure, the
shaded region is not checked by any of rays using the approximation
technique.

Image Plane Volume

—r

N

|

sl

dist,

> |

dist,

Fig. 8. Proof of Proposition 1.

is larger than the distance from the image plane to the
far end of the volume, dist,. See Fig. 8.
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Proof. First, for the case when the image plane is be-
yond the far end of the volume, rays are always less
than k apart inside the volume. For the other case, we
have a simple relationship dist.: k& = (dist + disty)/y,
where £ is the distance between the two rays on the im-
age plane and y is the one on the far end of the volume.
In order to have y less than 2k, dist, must be larger
than dist,. O

Thus, we use the approximation technique by setting
the k value to half of the minimum distance between
any two grid points of the leaf subvolume. Then, we
can guarantee that we can safely zoom out up to 1/2
and zoom in to infinity since the eye distance to the
image plane is always larger than the distance from the
image plane to the far end of the volume. This guaran-
tee is acceptable in volume rendering since we are not
interested in investigating objects in smaller size.

Refining

In order to reduce the amount of additional work
performed by the SPE due to the approximation tech-
nique, we send to the SPEs additional information
about which subvolume is empty so that the SPEs can
skip the processing of the sampling points that belong
to empty subvolumes. We use hashing to capture this
additional information as follows.

Given a tile, we keep a hash table for every (k x k)th
ray and record which subvolume is not empty using the
following universal hashing function as seen in Fig. 9:

key = (ranX - x +ranY - y +ranZ - z)
modulo PR,
hash — table[key] = 1,

PR: prime number equal to the hash table size,
0 < random number ranX, ranY, ranZ < PR,
x, 1, z: the smallest coordinates

of the subvolume.

Then, we approximate the hash table for a subtile by
taking the union of the hash tables at the 4 surrounding
corners and send it to a corresponding SPE. The SPE
skips a sampling point if it belongs to an empty sub-
volume by checking the hash table. Note that by using
the hash table, we might have the case where an empty
subvolume is recognized as non-empty, but will never
have the opposite case. Also, by setting the hash table
size large enough, we can significantly reduce the false
alarm rate.

*Every kxk-th ray

Smallest

coordinate |:> Hash function

(x,y,z) of non- key=f(x,y,z) 1

empty leaf table[key]=1 0
0

node

Fig. 9. Our hashing scheme in order to handle the case when the PPE
executes its tasks slower than the SPEs. The hash table is sent to the
corresponding SPE. A ‘1’ indicates a non-empty subvolume.

6. Experimental results

To evaluate the performance of our streaming model
based methods, we selected four volumetric datasets
that are widely used in the literature: two from the
medical domain (foot and aneurism) and two from the
science/engineering domain (fuel and engine) [14]. Ta-
ble 1 summarizes the characteristics of the correspond-
ing datasets.

All default rendering modes are semi-transparent
and default rendering image size is 2562. All exper-
imental results were obtained by averaging the re-
sults from 24 randomly selected view points. We chose
16 x 16 for tile size and 8 for the k-value used by ex-
periments. We used one Cell B.E. 3.2 GHz through-
out the evaluation. Figure 10 shows rendered images
obtained using our method.

We first demonstrate that our streaming model with
the “approximation + refining” scheme removes the
overhead of traversing the octree structure for empty
space skipping by almost fully overlapping it with the
actual rendering process. Figure 11 shows the process-
ing time for the PPE and the SPEs for three different
combinations of the techniques using the four datasets.
Processing time on the PPE is the time it takes to tra-
verse the octree data structure and to generate the con-
tributing ray segments. The SPE time is the time it
takes to perform the actual rendering. When none of
the techniques is used, we end up starving the SPEs
due to the long processing time on the PPE. When
only the approximation technique is used, we signifi-
cantly reduce the processing time on the PPE, but end
up with increased SPE time. Finally, when the approx-
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Table 1
Test datasets
Dataset Size Characteristic
Foot 2563 (16 MB) Small empty space + moderate opaque interior
Aneurism 256 (16 MB) Moderate empty space + moderate opaque interior
Engine 2562 x 128 (8 MB) Small empty space + small opaque interior
Fuel 2563 (16 MB) Large empty space + small opaque interior

Note: Fuel dataset size is originally 643. We enlarged it for better comparison.

Foot

Aneurism

Engine

Fuel

Fig. 10. Rendered images from four datasets throughout the tests.

imation technique is used in combination with the re-
fining technique, we achieve the best results. Figure 11
also shows that the current implementation can scale
up to the double number of SPEs since the processing
time on the PPE is allowed to double for the balance of
performance between the PPE and the SPE.

Another important benefit of our streaming model is
that it essentially removes the latency due to the access
of volume data by making it possible to almost always
prefetch the data. Table 2 compares the rendering time
with and without prefetching and shows that prefetch-
ing reduces rendering time by about one half.
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Fig. 11. Processing time in PPE and SPE for three different combinations of approximation and refining techniques.
Table 2 Table 3
Effects of prefetching (in milliseconds) Memory latency hiding using prefetching (in milliseconds)
Foot Aneurism Engine Fuel Foot Aneurism Engine Fuel
w/o prefetch 224 210 133 76 Local volume, 161 103 85 39
w/ prefetch 113 99 72 38 w/o early termination
w/ prefetch, 179 112 88 41

Howeyver, it does not show that there is no mem-
ory access latency. The SPE program is blocked un-
til the subvolumes required for rendering the current
sampling points are moved to the local memory. If
prefetching hides memory latency, our rendering time
should be approximately the same as the time it takes
for rendering any volumetric data stored in the local
memory. Table 3 compare the rendering time on local
volume with or without our prefetching scheme. Note
that since early ray termination makes the rendering
time depend on the data contents, we disabled early ray
termination in those experiments. We believe that the
~7% increase in the results is from prefetch I/O over-

w/o early termination

head because we achieved only less than 1% better re-
sults in the same experiments with only difference in
the size of data transfer, which was set to zero.

Our fine-grain task decomposition allows us to
achieve very good load balance. Figure 12 shows that
our scheme achieves near-optimal load balance with
average percentage standard deviation 1.7% among the
8 SPEs of the Cell B.E. Figure 13 shows how much
the synchronization portion of our algorithm affects the
scalability. Image composition step, which rearranges
the result tile images from SPEs into one final image,
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Fig. 12. Load balance among eight SPEs.
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Fig. 13. Speed up with respect to the number of SPEs.

comes after all SPEs finish rendering and is completely
done in PPE. Also, we believe that memory bus con-
tention is another synchronization part that affects the
scalability.

Finally, we compare the rendering performance on
the Cell B.E. 3.2 GHz with that of the Intel Xeon
dual processor 3 GHz with SSE2. We implemented the
same acceleration techniques with the same ray cast-
ing algorithm. The SSE2 vector instructions are used
for interpolation and compositing in the same way as
in the SPEs of the Cell B.E. We created two threads on
Intel Xeon while creating two threads on the PPE and
8 threads on the SPEs. Two threads on each of Xeon
and the PPE reduce tree traversal time by dividing the
traversal work. Figure 14 shows that our scheme for
Cell B.E. consistently achieves an order of magnitude
better performance.

The results show that the new multi-core architec-
ture can handle compute and communication inten-

sive applications such as volume ray casting in much
more efficient way since the particular Xeon proces-
sor and the Cell processor that we have used for the
experiments do not have much difference in the num-
ber of transistors (286 million and 234 million, respec-
tively) and operate at about the same frequency (3 and
3.2 GHz, respectively).

7. Conclusion

We presented a streaming model based volume ray
casting, which is a new strategy for performing ray
casting. This strategy enables the full utilization of
empty space skipping and early ray termination, in ad-
dition to removing memory latency overheads typi-
cally encountered in ray casting due to irregular data
accesses. In addition to successfully implementing this



184 J. Kim and J. JaJa / Streaming model based volume ray casting implementation for Cell B.E.

Intel Xeon 3GHz vs. Cell B.E.
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Fig. 14. Performance comparison with Intel Xeon dual processor
3 GHz with SSE2.

strategy on the Cell B.E., we introduced a few addi-
tional techniques including the “approximation + re-
fining” technique to balance the performance gap be-
tween the two streaming stages. We have presented ex-
perimental results that illustrate the effectiveness of our
new techniques.
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