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1. INTRODUCTION

Osterberg et al. [1] analyzed electrostatically deformed
diaphragms using a one-dimensional numerical model and
a three-dimensional model. Osterberg and Senturia [2]
showed that the sharp instability phenomena of electrostatic
pull-in behavior of cantilever beam and fixed-fixed beam
actuators can be adopted to extract the material properties
of microelectromechanical system. Elwenspoek et al. [3]
studied the dynamic behavior of active joints for various
electrostatic actuator designs. Hirai et al. [4–6] presented
the deflection characteristics of electrostatic actuators with
modified electrode and cantilever shapes. Wang [7] applied
a feedback control for suppressing the vibration of actuator
beams in an electrostatic actuator. Shi et al. [8] combined
an exterior boundary element method for electrostatics
and a finite element method for elasticity to evaluate the
coupling effect between the electrostatic force and the elastic
deformation. Gretillat et al. [9] employed three-dimensional
finite element programs to simulate the dynamics of a
nonlinear actuator, considering the effect of squeeze-film
damping. Hung and Senturia [10] proposed leveraged
bending and strain-stiffening methods to enlarge the limit of
travel distance before pull-in of electrostatic actuators. This
work will analyze the nonlinear pull-in behaviors of different
types of microactuator with various residual stresses using

the differential quadrature method. The Chebyshev-Gauss-
Lobatto point distribution on each actuator will be used.
The integrity and computational accuracy of the differential
quadrature method in solving this problem will be evaluated
through a range of case studies. The dynamic equations
of the cantilever microactuator are derived using the dif-
ferential quadrature method. The equations describing the
residual vibrations of the microelectrostatic actuators are
derived in this paper. The differential quadrature method is
used to produce the electrostatic field equations in matrix
form.

2. THE DIFFERENTIAL QUADRATURE METHOD

This paper employs the differential quadrature method,
with its easy-to-use and meshless technique, to analyze
the nonlinear deflection behaviors of different types of
microactuator with different residual stresses. There are
a number of solution techniques for complicated beam
problems, such as the Rayleigh-Ritz method, the analytical
method, the Galerkin method, the finite element method,
and the boundary element method. The differential quadra-
ture method has been extensively used to solve a variety of
problems in different fields of science and engineering with
no need of energy formulation. The differential quadrature
method has been shown to be a powerful contender in
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solving initial and boundary value problems and has, thus,
become an alternative to the previous methods. Jang et al.
[11] proposed the δ method, in which the boundary points
are selected at a small distance from each other. The δ
technique can be applied to the double boundary conditions
of plate and beam problems. The accuracy of the solution
depends on a sufficiently small δ. The boundary points
are chosen at a small distance δ. The δ technique can be
applied to the double boundary conditions of plate and beam
problems. The use of δ at the boundary makes the matrix
ill conditioned [11]. Wang and Bert [12] considered the
boundary conditions in finding the differential quadrature
weighting coefficients. Malik and Bert [13] solved the
problem of the free vibration of the plates and showed that
the boundary conditions can be built into the differential
quadrature weighting coefficients. In their formulation, the
multiple boundary conditions are directly applied to the
differential quadrature weighting coefficients, and thus it
is not necessary to select a nearby point. In other words,
the accuracy of the calculated results will be independent
of the value of the δ-interval. The differential quadrature
weighting coefficients can be obtained by multiplying the
inverse matrix [13]. Sherbourne and Pandey [14] solved
buckling problems using the differential quadrature method.
From the foregoing discussion, over the last two decades, the
differential quadrature method has been applied extensively
as an effective means of solving a range of problems in
various fields of science and engineering. Quan and Chang
[15, 16] derived the weighting coefficients in a more explicit
way. Feng and Bert [17] analyzed the flexural vibration
analysis of a geometrically nonlinear beam using the quadra-
ture method. Chen and Zhong [18] presented the study
on the nonlinear computations of the differential quadra-
ture method and differential cubature method. Tomasiello
[19] applied the differential quadrature method to initial-
boundary-value problems. Wang et al. [20] presented the free
vibration analysis of circular annular plates with nonuniform
thickness by the differential quadrature method. Wang and
Gu [21] presented the static analysis of frame structures
by the differential quadrature element method. Liew et al.
[22, 23] presented the differential quadrature method for
Mindlin plates on Winkler foundations and thick symmetric
cross-ply laminates with first-order shear flexibility. Du et al.
[24] presented the application of a generalized differential
quadrature method to structural problems. Mirfakhraei and
Redekop [25] solved the buckling of circular cylindrical shells
using the differential quadrature method. Moradi and Taheri
[26] presented the delamination buckling analysis of general
laminated composite beams using the differential quadrature
method. De Rosa and Franciosi [27] introduced the exact
and approximate dynamic analysis of circular arches using
the differential quadrature method. Sun and Zhu [28]
used the upwind local differential quadrature method for
solving incompressible viscous flow. Gu and Wang [29]
presented the free vibration analysis of circular plates with
stepped thickness over a concentric region by the differential
quadrature method. Du et al. [30] presented the generalized
differential quadrature method for buckling analysis. Han
and Liew [31] analyzed axisymmetric free vibration of thick

annular plates. Tanaka and Chen [32] applied a dual reci-
procity boundaryelement method to transient elastodynamic
problems using the differential quadrature method. Chen
et al. [33] solved the high-accuracy plane stress and plate
elements by the quadrature element method. The essence
of the differential quadrature method is that the derivative
of a function at a sample point can be approximated
as a weighted linear summation of the functional values
at all of the sampling points in the domain. Using this
approximation, the differential equation is then reduced to a
set of algebraic equations. The effects of position-dependent
electrostatic force and axial residual stress have all been
considered in the proposed models. While the efficiency and
accuracy of the Rayleigh-Ritz method depend on the number
and accuracy of the selected comparison functions; the
differential quadrature method does not have this difficulty
of selecting the appropriate comparison functions. The
differential quadrature method approximates the mth order
partial derivative of f (z, t) with respect to z. For a function
f (z, t), the differential quadrature approximation for the
mth order derivative at the ith sampling point is given by

∂m

∂zm

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (z1, t)

f (z2, t)
...

f (zN , t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

∼=
[
D(m)
i j

]

⎧
⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎩

f (z1, t)

f (z2, t)
...

f (zN , t)

⎫
⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎭

for i, j = 1, 2, . . . N ,

(1)

in which f (zi, t) is the functional value at the sample

point zi, and D(m)
i j are the differential quadrature weighting

coefficients of the mth order differentiation attached to these
functional values. Quan and Chang [15, 16] introduced
a Lagrangian interpolation polynomial to overcome the
numerical ill conditioning in determining the differential

quadrature weighting coefficients D(m)
i j , that is,

f (z, t) =
N∑

i=1

M(z)
(z − zi)M1(zi)

f (zi, t), (2)

where

M(z) =
N∏

j=1

(z − zj),

M1(zi) =
N∏

j=1, j /= i
(zi − zj) for i = 1, 2, . . . ,N.

(3)

Equation (2) is substituted into (1). The differential quadra-
ture weighting coefficients are then given as

D(1)
i j =

M1(zi)
(zi − zj)M1(zj)

for i, j = 1, 2, . . . ,N , i /= j,

D(1)
ii = −

N∑

j=1, j /= i
D(1)
i j for i = 1, 2, . . . ,N.

(4)

Once the sampling points, such as zi for i = 1, 2, . . . ,N ,
are selected, the coefficients of the differential quadrature
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weighting matrix can be obtained from (4). Higher order
derivatives of the differential quadrature weighting coeffi-
cients can also be directly calculated by matrix multiplication
[34], which can be expressed as

D(2)
i j =

N∑

k=1

D(1)
ik D

(1)
k j for i, j = 1, 2, . . . ,N ,

D(3)
i j =

N∑

k=1

D(1)
ik D

(2)
k j for i, j = 1, 2, . . . ,N ,

D(4)
i j =

N∑

k=1

D(1)
ik D

(3)
k j for i, j = 1, 2, . . . ,N ,

...

D(m)
i j =

N∑

k=1

D(1)
ik D

(m−1)
k j for i, j = 1, 2, . . . ,N.

(5)

There are many computational methods available for
dynamic analysis. In this paper, the residual vibrations of the
microelectrostatic actuators are investigated using the differ-
ential quadrature method. The most convenient approach
to solving a beam structure problem is to uniformly space
out the sample points. The selection of sample points is
important for the accuracy of the differential quadrature
method solution, but inaccurate results have been obtained
when using this uniform distribution. A nonuniform sample
point distribution, such as the Chebyshev-Gauss-Lobatto
distribution [34], improves the accuracy of the calculation.
The integrity and computational efficiency of the differential
quadrature method in solving this problem will be demon-
strated using a set of case studies. However, an alternative
efficient technique is still sought. In this study, the unequally
spaced sample points of each beam using the Chebyshev-
Gauss-Lobatto distribution are chosen as

zi = L

2

(

1− cos
(i− 1)π
N − 1

)

for i = 1, 2, . . . ,N. (6)

The differential quadrature method has been shown to be a
powerful candidate for solving initial and boundary value
problems, and has thus become an alternative to other
methods. The efficiency and the accuracy of Rayleigh-Ritz
method depend on the number and accuracy of the selected
comparison functions, whereas the differential quadrature
method does not have such a difficulty. Like that of any
polynomial approach, the accuracy of the solution using this
method is improved by increasing the number of sample
points. The differential quadrature method uses high-order
element level, where the finite element method approximates
a function using low-order polynomials.

3. DYNAMIC BEHAVIOR OF MICROACTUATORS

A shaped microbeam with a curved electrode is shown
in Figure 1. The figure depicts the geometry of a tapered
electrostatic microactuator. t0 specifies the thickness at the
root of the actuator. L is the length of the microactuator. q(z)
is the load. Load q(z) acts on z = 0∼L in the beam. As a
driving voltage is applied between the fixed-fixed microbeam

Electrode

y

+

V
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d

δe

t0

q(z)

Actuator

Dielectric
structure

z

L

Figure 1: Schematic view of an electrostatic fixed-fixed actuator.

and the electrode, a position-dependent electrostatic pres-
sure is distributed to deform the microbeam toward the
curved electrode. The gap between the shaped microbeam
and the curved electrode determines the distribution of the
electrostatic pressure. To prevent a short circuit after pull-
in contact, an isolated layer or other structure is required.
The force pulls the microbeam toward the shaped electrode.
Different electrode shapes have been proposed to improve
the electrostatic force distribution and the deformed shape
of the actuator. The kinetic energy of the microactuator is

T = 1
2

∫ L

0
ρA
(
∂u

∂t

)2

dz +
1
2

∫ L

0
ρA
(
∂v

∂t

)2

dz

+
1
2

∫ L

0
GJz

(
∂φ

∂t

)2

dz,

(7)

where u is the displacement in the direction of the x-axis,
v is the displacement in the direction of the y-axis, φ is the
twist angle in the direction of the z-axis, A is the area of the
cross-section of the microbeam, Jz is the polar moment in the
direction of the z-axis, and ρ is the density of the material of
the actuator.

While the external voltage e is applied between the
deformable beam and the fixed electrode, a position-
dependent electrostatic pressure is created to pull the
deformable beam toward the ground electrode. This electro-
static pressure is approximately proportional to the inverse
of the square of the gap between them. When the voltage
reaches the critical voltage, the fixed-fixed beam will be
pulled toward the electrode suddenly. The electric fringing
effects are ignored in the following analyses. The strain
energy of the microactuator can be approximated as

U = 1
2

∫ L

0
E
(

Iyy

(
∂2u

∂z2

)2

+ 2Ixy

(
∂u

∂z

)(
∂v

∂z

)

+ Ixx

(
∂2v

∂z2

)2)

dz

+
1
2

∫ L

0
GJz

(
∂φ

∂z

)2

dz

− 1
2

∫ L

0
P
(
∂u

∂z

)2

dz − 1
2

∫ L

0
P
(
∂v

∂z

)2

dz,

(8)
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where E is Young’s modulus of the actuator, G is the shear
modulus, and Ixx, Iyy , and Ixy are the moments of area. The
load P is the residual axial loading acting on the fixed end of
the actuator. The value of P is σb0t0. σ is the residual stress,
and b0 is the beam width. Because of the coupling between
the mechanical and electrostatic effects, the behavior of
the electrostatic actuator appears more complicated than
elastic behavior. The external damping presents a viscous
resistance to transverse displacement of the actuator, and the
internal damping provides a viscous resistance to straining of
the microactuator material. The damping forces cu(∂u/∂t),
cv(∂v/∂t), and cφ(∂φ/∂t) are assumed for resistance to the
transverse velocity of the actuator. The damping forces
cui(∂2/∂z2)(EI(∂3u/∂t∂z2)), cvi(∂2/∂z2)(EI(∂3v/∂t∂z2)), and
cφi(∂/∂z)(GJz(∂2φ/∂t∂z)) are assumed for the resistance to
the strain velocity of the microactuator. Considering the
electrostatic force and the internal and external damping
effects in the actuator, the virtual work δW done by the bent
actuator is

δW = −
∫ L

0
cu
∂u

∂t
δu dz −

∫ L

0
cui

∂2

∂z2

(

EI
∂3u

∂t∂z2

)

δudz

−
∫ L

0
cv
∂v

∂t
δv dz −

∫ L

0
cvi

∂2

∂z2

(

EI
∂3v

∂t∂z2

)

δv dz

−
∫ L

0
cφ
∂φ

∂t
δφ dz +

∫ L

0
cφi

∂

∂z

(

GJz
∂2φ

∂t∂z

)

δφ dz

+
∫ L

0

ε0b0e2

2(d + S− α sin(πz/L)t0/2− v)2 δv dz

−
∫ L

0
q(z)δv dz,

(9)

where e is the applied voltage, ε0 is the dielectric constant
of air, such as ε0 = 8.85 × 10−12, b0 is the width of the
actuator, and d is the initial gap as shown in Figure 1.
The cross-section area of the actuator is A(z) = b0t0(1 +
α sin(πz/L)), α is the constant. I(z) is the moment of inertia
of the cross-sectional area of the actuator, which is I(z) =
I0(1 + α sin(πz/L))3 and I0 = b0t

3
0/12. The shape function

S(z) describes the shape of the curved electrode, and it is
presented as S(z) = δe + β sin(πz/L). δe is the fixed end
gap distance of the curved electrode at z = 0 and z = L.
The electrode shape is varied with the values of β and δe.
However, due to the difficulty of no linearity between the
actuator deflection and the electrostatic force, this residual
vibration phenomenon has been studied in only a very few
papers, as has the effect of electrode shape on the residual
response. Substituting (7), (8), and (9) into Hamilton’s
equation:

∫ t2

t1
(δT − δU + δW)dt = 0, (10)

the dynamic deflection of a fixed-fixed micro-actuator can be
expressed as the following nonlinear differential equation:

E
∂2Iyy
∂z2

∂2u

∂z2
+ 2E

∂Iyy
∂z

∂3u

∂z3
+ EIyy

∂4u

∂z4
+ E

∂2Ixy
∂z2

∂2v

∂z2

+ 2E
∂Ixy
∂z

∂3v

∂z3
+ EIxy

∂4v

∂z4
+ P

∂2v

∂z2

+ cu
∂u

∂t
+ cui

∂2

∂z2

(

EIyy
∂3u

∂z2∂t

)

+ ρA
∂2u

∂t2
= 0,

E
∂2Ixx
∂z2

∂2v

∂z2
+ 2E

∂Ixx
∂z

∂3v

∂z3
+ EIxx

∂4v

∂z4
+ E

∂2Ixy
∂z2

∂2u

∂z2

+ 2E
∂Ixy
∂z

∂3u

∂z3
+ EIxy

∂4u

∂z4
+ P

∂2v

∂z2

+ cv
∂v

∂t
+ cvi

∂2

∂z2

(

EIxx
∂3v

∂z2∂t

)

+ ρA
∂2v

∂t2

= ε0b0e2

2(d + S(z)− α sin(πz/L)t0/2− v(z))2 − q(z)

− ∂

∂z

(

GJz
∂φ

∂z

)

+ cφ
∂φ

∂t
− cφi ∂

∂z

(

GJz
∂2φ

∂t∂z

)

+ ρJz
∂2φ

∂t2
= 0,

(11)

where ε0 is the dielectric constant of air. The corresponding
boundary conditions of the clamped-clamped micro-ctuator
are

u(0, t) = 0,

∂u(0, t)
∂z

= 0,

u(L, t) = 0,

∂u(L, t)
∂z

= 0,

v(0, t) = 0,

∂v(0, t)
∂z

= 0,

v(L, t) = 0,

∂v(L, t)
∂z

= 0,

φ(0, t) = 0,

φ(L, t) = 0.

(12)

Equation (1) is substituted into (11)-(12) by employing the
differential quadrature method. The equations of motion of
the microactuator can be discretized in matrix form with
respect to the sample points as

[M]
{
∂2w

∂t2

}

+ [C]
{
∂w

∂t

}

+ [K]{w} = {F}. (13)
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The displacement vector at the sample points is

{w} =

⎧
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

u(z1)

u(z2)

...

u(zN )

v(z1)

v(z2)

...

v(zN )

φ(z1)

φ(z2)

...

φ(zN )

⎫
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎬

⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎭

. (14)

The elements in the mass matrix are

Mii = 0 for i = 1, 2,

Mii = ρA for i = 3, 4, . . . ,N − 2,

Mii = 0 for i = N − 1,N ,

Mij = 0 for i /= j, i = 1, 2, . . . ,N , j = 1, 2, . . . ,N ,

Mij = 0 for i = 1, 2, . . . ,N , j = N + 1,N + 2, . . . , 2N ,

Mij = 0 for i = 1, 2, . . . ,N , j = 2N + 1, 2N + 2, . . . , 3N ,

Mij = 0 for i = N + 1,N + 2, . . . , 2N , j = 1, 2, . . . ,N ,

Mii = 0 for i = N + 1,N + 2,

Mii = ρA for i = N + 3,N + 4, . . . , 2N − 2,

Mii = 0 for i = 2N − 1, 2N ,

Mij = 0 for i /= j, i = N + 1,N + 2, . . . , 2N ,

j = N + 1,N + 2, . . . , 2N ,

Mij = 0 for i = N + 1,N + 2, . . . , 2N ,

j = 2N + 1, 2N + 2, . . . , 3N ,

Mij = 0 for i = 2N + 1, 2N + 2, . . . , 3N ,

j = 1, 2, . . . ,N ,

Mij = 0 for i = 2N + 1, 2N + 2, . . . , 3N ,

j = N + 1,N + 2, . . . , 2N ,

Mii = 0 for i = 2N + 1,

Mii = ρJz for i = 2N + 2, 2N + 3, . . . , 3N − 1,

Mii = 0 for i = 3N ,

Mij = 0 for i /= j, i = 2N + 1, 2N + 2, . . . , 3N ,

j = 2N + 1, 2N + 2, . . . , 3N.
(15)

The elements in the damping matrix are

Cij = 0 for i = 1, 2, j = 1, 2, . . . , 3N ,

Cii = cu + cui
∂2

∂z2
(EIyy)D

(2)
ii + 2cui

∂

∂z
(EIyy)D

(3)
ii

+ cuiEIyyD
(4)
ii for i = 3, 4, . . . ,N − 2,

Cij = cui
∂2

∂z2
(EIyy)D

(2)
i j + 2cui

∂

∂z
(EIyy)D

(3)
i j + cuiEIyyD

(4)
i j

for i /= j, i = 3, 4, . . . ,N − 2, j = 1, 2, . . . ,N ,

Cij = 0 for i = 3, 4, . . . ,N − 3,N − 2,

j = N + 1,N + 2, . . . , 3N ,

Cij = 0 for i = N − 1,N , j = 1, 2, . . . , 3N ,

Cij = 0 for i = N + 1,N + 2, . . . , 2N , j = 1, 2, . . . ,N ,

Cij = 0 for i = N + 1,N + 2, j = N + 1,N + 2, . . . , 2N ,

Cii = cv + cvi
∂2

∂z2
(EIxx)D(2)

ii + 2cvi
∂

∂z
(EIxx)D(3)

ii + cviEIxxD
(4)
ii

for i = N + 3,N + 4, . . . , 2N − 2,

Cij = cvi
∂2

∂z2
(EIxx)D(2)

i j + 2cvi
∂

∂z
(EIxx)D(3)

i j + cviEIxxD
(4)
i j

for i /= j, i = N+3,N+4, . . . , 2N − 2,

j = N + 1,N+2, . . . , 2N ,

Cij = 0 for i = 2N − 1, 2N , j = N + 1,N + 2, . . . , 2N ,

Cij = 0 for i = N + 1,N + 2, . . . , 2N ,

j = 2N + 1, 2N + 2, . . . , 3N ,

Cij = 0 for i = 2N + 1, j = 1, 2, . . . , 3N ,

Cij = 0 for i = 2N + 2, 2N + 3, . . . , 3N − 1,

j = 1, 2, . . . , 2N ,

Cii = cφ − cφi ∂
∂z

(GJz)D
(1)
ii − cφi(GJz)D(2)

ii

for i = 2N + 2, 2N + 3, . . . , 3N − 1,

Cij = −cφi ∂
∂z

(GJz)D
(1)
i j − cφi(GJz)D(2)

i j

for i /= j, i = 2N + 2, 2N + 3, . . . , 3N − 1,

j = 2N + 1, 2N + 2, . . . , 3N ,

Cij = 0 for i = 3N , j = 1, 2, . . . , 3N.
(16)
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The elements in the stiffness matrices are

K11 = 1,

K1 j = 0 for j = 2, 3, . . . , 3N ,

K2 j =
D(1)

1 j

L
for j = 1, 2, . . . ,N ,

K2 j = 0 for j = N + 1,N + 2, . . . , 3N ,

Kij = E
∂2Iyy
∂z2

∣
∣
∣
∣
z=zi

D(2)
i j + 2E

∂Iyy
∂z

∣
∣
∣
∣
z=zi

D(3)
i j

+ EIyyD
(4)
i j + PD(2)

i j for i = 3, 4, . . . ,N − 2,

j = 1, 2, . . . ,N ,

Kij = E
∂2Ixy
∂z2

∣
∣
∣
∣
z=zi

D(2)
i, j−N + 2E

∂Ixy
∂z

∣
∣
∣
∣
z=zi

D(3)
i, j−N

+ EIxyD
(4)
i, j−N for i = 3, 4, . . . ,N − 2,

j = N + 1,N + 2, . . . , 2N ,

KN−1, j = D(1)
N , j−N for j = 1, 2, . . . ,N ,

KN j = 0 for j = 1, 2, . . . ,N − 1,

KNN = 1,

KN j = 0 for j = N + 1,N + 2, . . . , 3N ,

Kij = 0 for i = 3, 4, . . . ,N − 2,

j = 2N + 1, 2N + 2, . . . , 3N ,

Kij = 0 for i = N + 1, j = 1, 2, . . . ,N ,

KN+1,N+1 = 1,

Kij = 0 for i = N + 1, i = N + 2,N + 3, . . . , 3N ,

Kij = 0 for i = N + 2, j = 1, 2, . . . ,N ,

Kij = D(1)
1, j−N for i = N + 2, j = N + 1,N + 2, . . . , 2N ,

Kij = 0 for i = N + 2, i = 2N + 1, 2N + 2, . . . , 3N ,

Kij = E
∂2Ixy
∂z2

∣
∣
∣
∣
z=zi

D(2)
i−N , j + 2E

∂Ixy
∂z

∣
∣
∣
∣
z=zi

D(3)
i−N , j + EIyyD

(4)
ii

for i = N + 3,N + 4, . . . , 2N − 2, j = 1, 2, . . . ,N ,

Kij = E
∂2Ixx
∂z2

∣
∣
∣
∣
z=zi

D(2)
i−N , j−N + 2E

∂Ixx
∂z

∣
∣
∣
∣
z=zi

D(3)
i−N , j−N

+ IxxD
(4)
i−N , j−N for i = N + 3,N + 4, . . . , 2N − 2,

i = N + 1,N + 2, . . . , 2N ,

Kij = 0 for i = 2N − 1, j = 1, 2, . . . ,N ,

Kij = D(1)
1, j−N for i = 2N − 1, j = N + 1,N + 2, . . . , 2N ,

Kij = 0 for i = 2N − 1, j = 2N + 1, 2N + 2, . . . , 3N ,

Kij = 0 for i = 2N + 1, j = 1, 2, . . . , 2N ,

Kij = 1 for i = 2N + 1, j = 2N + 1,

Kij = 0 for i = 2N + 1, j = 2N + 2, . . . , 3N ,

Kij = 0 for i = 2N + 2, 2N + 3, . . . , 3N ,

j = 1, 2, . . . , 2N ,

Kij = −G∂Jz
∂z

∣
∣
∣
∣
z=zi

D(1)
i−2N , j−2N −GJzD(2)

i−2N , j−2N

for i = 2N + 2, 2N + 3, . . . , 3N − 1,

j = 2N + 1, 2N + 2, . . . , 3N ,

Kij = 0 for i = 3N , j = 1, 2, . . . , 3N − 1,

Kij = 1 for i = 3N , j = 3N ,

Fi = 0 for i = 1, 2, . . . ,N + 2,

Fi = ε0be2

2(d + S(z)− α sin(πz/L)t0/2− v(z))2 − q(z)

for i = N + 3,N + 4, . . . , 2N − 2,

Fi = 0 for i = 2N − 1, 2N , . . . , 3N.

(17)

The dynamic responses of the microactuator are solved
using the Wilson-θ integration method in this paper. The
Wilson-θ integration method is an effective implicit time
integration procedure for dynamic problems. It is a step-by-
step integration method that assumes that the acceleration
terms vary linearly between consecutive sampling instants.
An electrostatic force pulls the cantilever actuator toward the
curved electrode. The electrostatic force is generated by the
difference between voltage applied to the curved electrode
and that applied to the actuator. This electrostatic pressure
is approximately proportional to the inverse of the square of
the gap between them. When the voltage exceeds the critical
voltage, the fixed-fixed beam is suddenly pulled into the
electrode.

4. NUMERICAL RESULTS AND DISCUSSION

The microactuator is fabricated from polysilicon material.
The geometric parameters and the material of the microac-
tuator are E = 150 GPa, δmax = 30 μm, α = 0, β = 0, cui = 0,
cvi = 0, cφi = 0, cu = 0, cv = 0, cφ = 0, b0 = 5 μm,
t0 = 2 μm, d = 2 μm, and L = 500 μm. Figure 2 shows
the deflections of the microbeam with different applied
voltages. The results indicate that the results calculated from
the proposed differential quadrature method agree very well
with the results found using the finite element method.
Figure 3 shows the frequencies of an electrostatic fixed-fixed
actuator for various lengths of the beam. Again, the results
found using the differential quadrature method are similar
to the results found using the finite element method. Figure 4
plots the deflections near the middle of an electrostatic fixed-
fixed actuator for various residual stresses. The value of
applied voltageis 620 V. The nonlinear dynamic equation
formed by the differential quadrature method is solved by
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Figure 2: Deflections of an electrostatic fixed-fixed actuator for
various applied voltages.
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Figure 3: Frequencies of an electrostatic fixed-fixed actuator for
various beam lengths.
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Figure 4: Deflections near the middle of an electrostatic fixed-fixed
actuator for various residual stresses.
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Figure 5: Stresses near the middle of an electrostatic fixed-fixed
actuator for various residual stresses.
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Figure 6: Stresses near the root of an electrostatic fixed-fixed
actuator for various residual stresses.

the Wilson-θ integration method, with θ = 1.4 and Δt =
0.003 millisecond. A number of papers state that Wilson-θ
integration method is unconditionally stable with a factor
of θ ≥ 1.37 [35, 36]. The calculated results show that
higher residual stresses produce smaller deflections near the
middle of an electrostatic fixed-fixed actuator. Figure 5 shows
the stresses near the middle of an electrostatic fixed-fixed
actuator for various residual stresses. Numerical results in
this example show that the residual stresses can significantly
affect the dynamic behavior of the actuator system, showing
that higher residual stresses produce larger stresses near the
middle of an electrostatic fixed-fixed actuator. Figure 6 shows
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the stress near the root of an electrostatic fixed-fixed actuator
for various residual stresses. Results indicate that residual
stress is a very sensitive parameter for the residual vibration
of the microactuator. Numerical results in this example show
that the driving voltage can affect the electromechanical
behavior of the actuator system significantly. Calculated
results also display that the higher residual stresses introduce
the larger stresses near the root of an electrostatic fixed-
fixed actuator. Residual axial loading should be considered
in the design. Numerical results indicate that the differential
quadrature method is a feasible and efficient method to
analyze the nonlinear pull-in behavior of a fixed-fixed type
of electrostatic microbeam.

5. CONCLUSIONS

The differential quadrature method is highly suited to
designing or analyzing an electrostatic microactuator. The
simplicity of this formulation makes it a strong candidate for
modeling applications that are more complicated. The effects
of residual stresses of microactuators on the nonlinear pull-
in phenomena have also been investigated by employing the
proposed differential quadrature method algorithm.
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