Acta Crystallographica Section E

Structure Reports

Online
ISSN 1600-5368

2-(5-lodo-2-oxoindolin-3-ylidene)hydrazinecarbothioamide including an unknown solvate

Viviane Conceição Duarte de Bittencourt, ${ }^{\text {a }}$ Vanessa Carratu Gervini, ${ }^{\text {a* }}$ Juliano Rosa de Menezes Vicenti, ${ }^{\text {a }}$ Jecika Maciel Velasques ${ }^{\text {a }}$ and Priscilla Jussiane Zambiazi ${ }^{\text {b }}$

${ }^{a}$ Escola de Química e Alimentos, Universidade Federal do Rio Grande, Av. Itália, km 08, Campus Carreiros, 96203-900, Rio Grande, RS, Brazil, and ${ }^{\text {b }}$ Departamento de Química, Universidade Federal de Santa Maria, Av. Roraima, Campus, 97105-900, Santa Maria, RS, Brazil
Correspondence e-mail: vanessa.gervini@gmail.com

Received 2 May 2014; accepted 11 May 2014

Key indicators: single-crystal X-ray study; $T=100 \mathrm{~K}$; mean $\sigma(\mathrm{C}-\mathrm{C})=0.004 \AA$; R factor $=0.028 ; w R$ factor $=0.062$; data-to-parameter ratio $=18.0$.

The molecule of the title compound, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{IN}_{4} \mathrm{OS}$, is almost planar (r.m.s. deviation $=0.0373 \AA$). In the molecule, $\mathrm{N}-$ $\mathrm{H} \cdots \mathrm{N}$ and $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds generate, respectively, $S(5)$ and $S(6)$ ring motifs. In the crystal, molecules are linked via $\mathrm{N}-\mathrm{H} \cdots \mathrm{O}$ hydrogen bonds, forming chains propagating along [010]. These chains are linked via S...I contacts [3.4915 (16) A], forming sheets lying parallel to (100). A region of disordered electron density, probably a disordered tetrahydrofuran solvent molecule, was treated using the SQUEEZE routine in PLATON [Spek (2009). Acta Cryst. D65, 148-155]. The formula mass and unit-cell characteristics were not taken into account during refinement.

Related literature

For the synthesis, see: Chiyanzu et al. (2003). For applications, see: Silva et al. (2001); Chiyanzu et al. (2003). For similar structures, see: de Bittencourt et al. (2014); Bandeira et al. (2013); de Oliveira et al. (2012). For S • I I interactions, see: Auffinger et al. (2004).

Experimental

Crystal data
$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{IN}_{4} \mathrm{OS}$
$V=2518.4(6) \AA^{3}$
$M_{r}=346.15$
$Z=8$
Monoclinic, C2/c
Mo $K \alpha$ radiation
$a=33.765$ (5) A
$\mu=2.69 \mathrm{~mm}^{-1}$
$b=4.4569$ (5) A
$T=100 \mathrm{~K}$
$c=19.977$ (3) \AA
$1.15 \times 0.10 \times 0.09 \mathrm{~mm}$
$\beta=123.100$ (4)

18679 measured reflections 2892 independent reflections 2577 reflections with $I>2 \sigma(I)$ $R_{\text {int }}=0.036$

Refinement

$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028 \quad \mathrm{H}$ atoms treated by a mixture of
$w R\left(F^{2}\right)=0.062$
$S=1.05$ independent and constrained

2892 reflections
161 parameters
refinement
$\Delta \rho_{\max }=1.50$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.52 \mathrm{e}^{-3}$

Table 1
Hydrogen-bond geometry ($\AA{ }^{\circ},{ }^{\circ}$).

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 12 \cdots \mathrm{~N} 3$	$0.85(4)$	$2.28(4)$	$2.633(3)$	$105(3)$
$\mathrm{N} 2-\mathrm{H} 21 \cdots \mathrm{O} 1$	$0.83(4)$	$2.07(4)$	$2.725(3)$	$135(3)$
$\mathrm{N} 4-\mathrm{H} 41 \cdots 1^{\mathrm{i}}$	$0.77(3)$	$2.04(4)$	$2.809(3)$	$178(3)$
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{~S}^{\mathrm{ii}}$	$0.79(3)$	$2.66(4)$	$3.448(3)$	$170(3)$

Symmetry codes: (i) $-x+\frac{1}{2}, y-\frac{1}{2},-z+\frac{3}{2}$; (ii) $-x,-y+4,-z+1$.

Data collection: APEX2 (Bruker, 2009); cell refinement: SAINT (Bruker, 2009); data reduction: SAINT; program(s) used to solve structure: SHELXS97 (Sheldrick, 2008); program(s) used to refine structure: SHELXL97 (Sheldrick, 2008); molecular graphics: DIAMOND (Brandenburg, 2006); software used to prepare material for publication: publCIF (Westrip, 2010) and PLATON (Spek, 2009).

We gratefully acknowledge Professor Dr Manfredo Hörner (Federal University of Santa Maria, Brazil) for his help and support with the X-ray measurements. We also acknowledge financial support through the DECIT/SCTIE-MS-CNPq-FAPERGS-Pronem-\# 11/2029-1 and PRONEX-CNPqFAPERGS projects.

Supporting information for this paper is available from the IUCr electronic archives (Reference: BG2528).

References

Auffinger, P., Hays, F. A., Westhof, E. \& Ho, P. S. (2004). Proc. Natl Acad. Sci. USA, 101, 16789-16794.
Bandeira, K. C. T., Bresolin, L., Näther, C., Jess, I. \& Oliveira, A. B. (2013). Acta Cryst. E69, o1251-o1252.
Bittencourt, V. C. D. de, Vicenti, J. R. de M., Velasques, J. M., Zambiazi, P. J. \& Gervini, V. C. (2014). Acta Cryst. E70, o64-o65.
Brandenburg, K. (2006). DIAMOND. Crystal Impact GbR, Bonn, Germany.
Bruker (2009). APEX2, SAINT and SADABS. Bruker AXS Inc., Madison, Wisconsin, USA.

Chiyanzu, I., Hansell, E., Gut, J., Rosenthal, P. J., McKerrow, J. H. \& Chibale, K. (2003). Bioorg. Med. Chem. Lett. 13, 3527-3530.

Oliveira, A. B. de, Silva, C. S., Feitosa, B. R. S., Näther, C. \& Jess, I. (2012). Acta Cryst. E68, o2581.
Sheldrick, G. M. (2008). Acta Cryst. A64, 112-122.

Silva, J. F. M., Garden, S. J. \& Pinto, A. C. (2001). J. Braz. Chem. Soc. 12, $273-$ 324.

Spek, A. L. (2009). Acta Cryst. D65, 148-155.
Westrip, S. P. (2010). J. Appl. Cryst. 43, 920-925.

supporting information

2-(5-Iodo-2-oxoindolin-3-ylidene)hydrazinecarbothioamide including an unknown solvate

Viviane Conceição Duarte de Bittencourt, Vanessa Carratu Gervini, Juliano Rosa de Menezes Vicenti, Jecika Maciel Velasques and Priscilla Jussiane Zambiazi

S1. Comment

Isatins and their derivatives are described as compounds with technological applications, such as organic analytical chemistry and pigments and dyes (Silva et al., 2001). Particularly, halogen substituted isatins containing thiosemicarbazone fragment demonstrated biological activity against some trypanosomes (cruzain and rhodesain) and malaria (falcipain-2) parasites (Chiyanzu et al., 2003). In this paper, we describe the crystal structure of 2-(5-Iodo-2-oxoindolin-3-ylidene)-hydrazinecarbothioamide, $\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{ON}_{4} \mathrm{SI}$. There is one molecule in the asymmetric unit (Figure 1), and it is very similar to that of the Cl analogue previously published by us (de Bittencourt et al., 2014). The molecule is almost planar (Bandeira et al., 2013; de Oliveira et al., 2012), displaying a r.m.s. deviation of $0.0373 \AA$ for all fitted nonhydrogenoid atoms (with maximum deviation of 0.1057 (12) observed for S 1 atom). Although the same intramolecular $\mathrm{S}(5)$ and $\mathrm{S}(6)$ ring motifs are verified (Table 1), the crystal packing differs totally when compared with the chloro substituted analog. In the present case, co-operative dimmers are formed through $\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{~S} 1^{\mathrm{i}}$ interactions displaying distances of 2.67 (4) \AA. The crystal structure is expanded along the [010] crystallographic direction through N4$\mathrm{H} 41 \cdots \mathrm{O} 1^{\mathrm{ii}}$ interactions with distances of 2.08 (4) \AA, generating a one-dimensional polymer-like motif. One of the most interesting features are the $S \cdots I^{\text {iii }}$ contacts which further connects the molecules along the [001] crystallographic direction, presenting distances of 3.4915 (16) \AA (Figure 2, symmetry codes: (i) $-x, 2-y,-z$; (ii) $1 / 2-x,-1 / 2+y, 1 / 2-z$; (iii) $x,-y, 1 / 2$ $+z$). Such $\mathrm{S} \cdots$ I short interactions are related to be present in sulfur-containing proteins like cysteine and methionine (Auffinger et al., 2004), being mentioned to play an important hole in biological systems. As a second interesting feature, it was noted disordered solvent molecules occupying accessible voids of $83 \AA^{3}$, suggestive of tetrahydrofuran, which was indeed used for crystallization. Due to this, collected data was treated using the SQUEEZE routine of the PLATON software (Spek, 2009) in order to remove solvent electronic density. The new $H K P$ file generated was then used for further refinement of the final solvent free crystal structure. For solvent-voids position assignement in the unit cell, a solvent plot calculated by PLATON is shown in Figure 3.

S2. Experimental

To 20 ml of ethanol it was mixed $500 \mathrm{mg}(1.83 \mathrm{mmol} \mathrm{s})$ of 5-iodo-isatine with $170 \mathrm{mg}(1.83 \mathrm{mmol} \mathrm{s})$ of thiosemicarbazide. Then, it was added ten drops of glacial acetic acid and the system was kept under reflux for four hours. After this time, the reaction mixture was cooled and an orange precipitated was filtered off under vacuum and dried at room temperature. m.p. $249-253{ }^{\circ}$ C. Yield: 98%. Crystallization: needle single crystals of the title compound suitable for X-ray diffraction were obtained by slow evaporating a solution containing 30 mg of the product dissolved in 5 ml of tetrahydrofuran.

S3. Refinement

All H atoms attached to C atoms were positioned with idealized geometry and were refined isotropic with $U_{\text {eq }}(\mathrm{H})$ set to 1.2 times of the $U_{\mathrm{eq}}(\mathrm{C})$. It was used a riding model with aromatic $\mathrm{C}-\mathrm{H}=0.93 \AA$. Reflection 200 was omitted due to the large difference observed between $F_{o}{ }^{2}$ and Fc^{2}.
The needle-like single crystals were very weakly diffracting for what an unusually large crystal (1.152 mm , with a 0.6 mm collimator) was used.

Figure 1
Asymmetric unit of the title compound showing intramolecular hydrogen bond interactions represented with dashed lines. Ellipsoid probability: 50\%.

Figure 2

Packing diagram of the title compound showing hydrogen bond network generated through interactions represented as dashed lines. Some hydrogen atoms were omitted for clarity. Symmetry codes: (i) $-x, 2-y,-z$; (ii) $1 / 2-x,-1 / 2+y, 1 / 2-z$; (iii) $x,-y, 1 / 2+z$.

Figure 3
Plot generated by PLATON showing solvent accessible voids positions in the unit cell as dashed delimited circles.

2-(5-Iodo-2-oxoindolin-3-ylidene)hydrazinecarbothioamide

Crystal data

$\mathrm{C}_{9} \mathrm{H}_{7} \mathrm{IN}_{4} \mathrm{OS}$

$M_{r}=346.15$
Monoclinic, C2/c
Hall symbol: -C 2 yc
$a=33.765$ (5) \AA
$b=4.4569$ (5) \AA
$c=19.977$ (3) \AA
$\beta=123.100(4)^{\circ}$

$$
\begin{aligned}
& V=2518.4(6) \AA^{3} \\
& Z=8 \\
& F(000)=1328 \\
& D_{\mathrm{x}}=1.826 \mathrm{Mg} \mathrm{~m} \\
& \text { Melting point: } 522 \mathrm{~K} \\
& \text { Mo } K \alpha \text { radiation, } \lambda=0.71073 \AA \\
& \text { Cell parameters from } 9997 \text { reflections } \\
& \theta=2.4-28.3^{\circ}
\end{aligned}
$$

$\mu=2.69 \mathrm{~mm}^{-1}$
$T=100 \mathrm{~K}$

Data collection

Bruker APEXII CCD

diffractometer
Radiation source: fine-focus sealed tube
Graphite monochromator
φ and ω scans
Absorption correction: numerical
(SADABS; Bruker, 2009)
$T_{\min }=0.701, T_{\max }=0.777$

Refinement

Refinement on F^{2}
Least-squares matrix: full
$R\left[F^{2}>2 \sigma\left(F^{2}\right)\right]=0.028$
$w R\left(F^{2}\right)=0.062$
$S=1.05$
2892 reflections
161 parameters
0 restraints
Primary atom site location: structure-invariant direct methods

Needle, yellow
$1.15 \times 0.10 \times 0.09 \mathrm{~mm}$

18679 measured reflections
2892 independent reflections
2577 reflections with $I>2 \sigma(I)$
$R_{\text {int }}=0.036$
$\theta_{\text {max }}=28.3^{\circ}, \theta_{\text {min }}=2.0^{\circ}$
$h=-44 \rightarrow 44$
$k=-3 \rightarrow 5$
$l=-26 \rightarrow 26$

Secondary atom site location: difference Fourier map
Hydrogen site location: inferred from neighbouring sites
H atoms treated by a mixture of independent and constrained refinement
$w=1 /\left[\sigma^{2}\left(F_{0}^{2}\right)+(0.0208 P)^{2}+10.8261 P\right]$ where $P=\left(F_{0}^{2}+2 F_{\mathrm{c}}^{2}\right) / 3$
$(\Delta / \sigma)_{\text {max }}=0.001$
$\Delta \rho_{\text {max }}=1.50$ e \AA^{-3}
$\Delta \rho_{\text {min }}=-1.52 \mathrm{e} \AA^{-3}$

Special details

Geometry. All e.s.d.'s (except the e.s.d. in the dihedral angle between two l.s. planes) are estimated using the full covariance matrix. The cell e.s.d.'s are taken into account individually in the estimation of e.s.d.'s in distances, angles and torsion angles; correlations between e.s.d.'s in cell parameters are only used when they are defined by crystal symmetry. An approximate (isotropic) treatment of cell e.s.d.'s is used for estimating e.s.d.'s involving 1.s. planes.
Refinement. Refinement of F^{2} against ALL reflections. The weighted R-factor $w R$ and goodness of fit S are based on F^{2}, conventional R-factors R are based on F, with F set to zero for negative F^{2}. The threshold expression of $F^{2}>\sigma\left(F^{2}\right)$ is used only for calculating R-factors (gt) etc. and is not relevant to the choice of reflections for refinement. R-factors based on F^{2} are statistically about twice as large as those based on F, and R - factors based on ALL data will be even larger.

Fractional atomic coordinates and isotropic or equivalent isotropic displacement parameters (A^{2})

	x	y	z	$U_{\text {iso }} * / U_{\text {eq }}$
C6	$0.20209(11)$	$0.5198(5)$	$0.48073(18)$	$0.0190(6)$
H6	0.2160	0.3772	0.4658	0.023^{*}
C7	$0.22592(10)$	$0.6149(6)$	$0.55978(17)$	$0.0168(5)$
H7	0.2555	0.5382	0.5981	0.020^{*}
C5	$0.15782(10)$	$0.6347(6)$	$0.42365(16)$	$0.0170(6)$
H41	$0.2442(12)$	$0.924(7)$	$0.693(2)$	$0.016(8)^{*}$
H21	$0.1270(13)$	$1.502(7)$	$0.631(2)$	$0.023(9)^{*}$
H11	$0.0129(12)$	$1.770(7)$	$0.4600(19)$	$0.019(8)^{*}$
H12	$0.0403(15)$	$1.560(9)$	$0.449(3)$	$0.043(12)^{*}$
I1	$0.125098(8)$	$0.47387(4)$	$0.306159(11)$	$0.02521(7)$
S1	$0.06378(3)$	$1.88628(14)$	$0.62093(4)$	$0.01889(15)$
O1	$0.19376(7)$	$1.3146(4)$	$0.70372(11)$	$0.0168(4)$
N4	$0.22091(9)$	$0.9605(5)$	$0.65344(15)$	$0.0145(5)$

N3	$0.11031(8)$	$1.3194(4)$	$0.53273(13)$	$0.0130(4)$
C9	$0.18938(9)$	$1.1590(5)$	$0.64912(16)$	$0.0137(5)$
C1	$0.06744(9)$	$1.6773(5)$	$0.55453(16)$	$0.0140(5)$
N1	$0.03597(10)$	$1.6699(6)$	$0.47747(15)$	$0.0209(5)$
C3	$0.15944(9)$	$0.9428(5)$	$0.52186(16)$	$0.0127(5)$
N2	$0.10679(9)$	$1.5041(4)$	$0.58282(15)$	$0.0145(5)$
C8	$0.20411(9)$	$0.8269(5)$	$0.57920(15)$	$0.0133(5)$
C2	$0.14815(9)$	$1.1580(5)$	$0.56399(15)$	$0.0127(5)$
C4	$0.13579(10)$	$0.8471(5)$	$0.44356(16)$	$0.0143(5)$
H4	0.1061	0.9222	0.4053	0.017^{*}

Atomic displacement parameters $\left(\AA^{2}\right)$

	U^{11}	U^{22}	U^{33}	U^{12}	U^{13}	U^{23}
C6	$0.0251(17)$	$0.0160(11)$	$0.0226(17)$	$0.0021(10)$	$0.0173(14)$	$0.0005(9)$
C7	$0.0115(15)$	$0.0176(11)$	$0.0198(15)$	$0.0015(9)$	$0.0076(12)$	$0.0034(9)$
C5	$0.0212(16)$	$0.0181(11)$	$0.0129(15)$	$-0.0041(10)$	$0.0101(13)$	$-0.0011(9)$
I1	$0.04097(15)$	$0.02153(9)$	$0.01480(12)$	$-0.00098(7)$	$0.01630(11)$	$-0.00167(6)$
S1	$0.0206(4)$	$0.0199(3)$	$0.0160(4)$	$0.0050(2)$	$0.0099(3)$	$0.0011(2)$
O1	$0.0125(10)$	$0.0216(9)$	$0.0106(10)$	$-0.0011(7)$	$0.0026(8)$	$-0.0027(7)$
N4	$0.0091(13)$	$0.0177(10)$	$0.0095(13)$	$0.0006(8)$	$0.0005(11)$	$0.0010(8)$
N3	$0.0119(12)$	$0.0143(9)$	$0.0125(12)$	$-0.0011(8)$	$0.0065(10)$	$-0.0002(7)$
C9	$0.0106(14)$	$0.0153(11)$	$0.0124(14)$	$-0.0029(9)$	$0.0044(12)$	$0.0013(9)$
C1	$0.0101(14)$	$0.0154(11)$	$0.0160(15)$	$-0.0001(9)$	$0.0068(12)$	$0.0019(9)$
N1	$0.0137(14)$	$0.0276(12)$	$0.0147(14)$	$0.0078(10)$	$0.0034(11)$	$-0.0008(9)$
C3	$0.0110(14)$	$0.0139(10)$	$0.0123(14)$	$-0.0017(9)$	$0.0057(12)$	$0.0019(8)$
N2	$0.0130(13)$	$0.0168(10)$	$0.0091(13)$	$0.0007(8)$	$0.0030(10)$	$-0.0001(8)$
C8	$0.0117(14)$	$0.0144(10)$	$0.0111(14)$	$-0.0011(9)$	$0.0044(11)$	$0.0020(9)$
C2	$0.0131(14)$	$0.0135(10)$	$0.0090(13)$	$-0.0025(9)$	$0.0043(11)$	$0.0008(8)$
C4	$0.0119(14)$	$0.0159(11)$	$0.0110(14)$	$-0.0025(9)$	$0.0036(11)$	$0.0010(9)$

Geometric parameters (\AA, ${ }^{\circ}$)

C6-C7	1.390 (4)	N3-C2	1.292 (3)
C6-C5	1.391 (4)	N3-N2	1.350 (3)
C6-H6	0.9300	C9-C2	1.498 (4)
C7-C8	1.378 (4)	$\mathrm{C} 1-\mathrm{N} 1$	1.309 (4)
C7-H7	0.9300	$\mathrm{C} 1-\mathrm{N} 2$	1.364 (3)
C5-C4	1.389 (4)	N1-H11	0.79 (3)
C5-I1	2.100 (3)	N1-H12	0.82 (4)
S1-C1	1.680 (3)	C3-C4	1.379 (4)
O1-C9	1.232 (3)	C3-C8	1.402 (4)
N4-C9	1.350 (3)	C3-C2	1.457 (3)
N4-C8	1.399 (3)	N2-H21	0.83 (4)
N4-H41	0.77 (3)	C4-H4	0.9300
C7-C6-C5	121.0 (2)	C1-N1-H11	118 (2)
C7-C6-H6	119.5	$\mathrm{C} 1-\mathrm{N} 1-\mathrm{H} 12$	119 (3)

C5-C6-H6	119.5	H11-N1-H12	122 (4)
C6-C7-C8	117.5 (3)	C4-C3-C8	120.7 (2)
C6-C7-H7	121.2	C4-C3-C2	133.3 (3)
C8-C7-H7	121.2	C8-C3-C2	105.9 (2)
C6-C5-C4	121.3 (2)	N3-N2-C1	119.9 (2)
C6-C5-I1	117.67 (19)	N3-N2-H21	121 (2)
C4-C5-I1	121.0 (2)	$\mathrm{C} 1-\mathrm{N} 2-\mathrm{H} 21$	119 (2)
C9-N4-C8	111.2 (2)	C7-C8-N4	128.4 (3)
C9-N4-H41	122 (2)	C7-C8-C3	121.6 (2)
C8-N4-H41	127 (2)	N4-C8-C3	110.0 (2)
C2-N3-N2	116.5 (2)	N3-C2-C3	126.1 (2)
O1-C9-N4	127.1 (3)	N3-C2-C9	127.4 (2)
O1-C9-C2	126.5 (2)	C3-C2-C9	106.5 (2)
N4-C9-C2	106.4 (2)	C3-C4-C5	117.8 (2)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2$	117.0 (2)	C3-C4-H4	121.1
N1-C1-S1	125.4 (2)	C5-C4-H4	121.1
$\mathrm{N} 2-\mathrm{C} 1-\mathrm{S} 1$	117.5 (2)		
C5-C6-C7-C8	-0.1 (4)	C2-C3-C8-N4	-0.6 (3)
C7-C6-C5-C4	-0.3 (4)	N2-N3-C2-C3	179.7 (2)
C7-C6-C5-I1	-179.88 (19)	N2-N3-C2-C9	-2.1 (4)
C8-N4-C9-O1	-179.3 (2)	$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 2-\mathrm{N} 3$	-1.1 (5)
C8-N4-C9-C2	-0.5 (3)	C8-C3-C2-N3	178.9 (2)
$\mathrm{C} 2-\mathrm{N} 3-\mathrm{N} 2-\mathrm{C} 1$	-178.7 (2)	C4-C3-C2-C9	-179.7 (3)
$\mathrm{N} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$	-4.7 (3)	C8-C3-C2-C9	0.3 (3)
$\mathrm{S} 1-\mathrm{C} 1-\mathrm{N} 2-\mathrm{N} 3$	176.33 (18)	O1-C9-C2-N3	0.4 (4)
C6-C7-C8-N4	-178.9 (2)	N4-C9-C2-N3	-178.4 (2)
C6-C7-C8-C3	0.3 (4)	O1-C9-C2-C3	179.0 (2)
C9-N4-C8-C7	-180.0 (2)	N4-C9-C2-C3	0.1 (3)
C9-N4-C8-C3	0.7 (3)	C8-C3-C4-C5	-0.4 (4)
C4-C3-C8-C7	0.0 (4)	C2-C3-C4-C5	179.5 (3)
C2-C3-C8-C7	-180.0 (2)	C6-C5-C4-C3	0.5 (4)
$\mathrm{C} 4-\mathrm{C} 3-\mathrm{C} 8-\mathrm{N} 4$	179.4 (2)	$\mathrm{I} 1-\mathrm{C} 5-\mathrm{C} 4-\mathrm{C} 3$	-179.85 (18)

Hydrogen-bond geometry ($A,{ }^{\circ}$)

$D-\mathrm{H} \cdots A$	$D-\mathrm{H}$	$\mathrm{H} \cdots A$	$D \cdots A$	$D-\mathrm{H} \cdots A$
$\mathrm{~N} 1-\mathrm{H} 12 \cdots \mathrm{~N} 3$	$0.85(4)$	$2.28(4)$	$2.633(3)$	$105(3)$
$\mathrm{N} 2 — \mathrm{H} 21 \cdots \mathrm{O} 1$	$0.83(4)$	$2.07(4)$	$2.725(3)$	$135(3)$
$\mathrm{N} 4-\mathrm{H} 41 \cdots \mathrm{O}^{1}$	$0.77(3)$	$2.04(4)$	$2.809(3)$	$178(3)$
$\mathrm{N} 1-\mathrm{H} 11 \cdots \mathrm{~S} 1^{\mathrm{ii}}$	$0.79(3)$	$2.66(4)$	$3.448(3)$	$170(3)$

Symmetry codes: (i) $-x+1 / 2, y-1 / 2,-z+3 / 2$; (ii) $-x,-y+4,-z+1$.

