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Abstract. We discuss computational aspects of the developed mathematical models for
resonant processes in confined geometry of atomic and atom-ion traps. The main at-
tention is paid to formulation in the nondirect product discrete-variable representation
(npDVR) of the multichannel scattering problem with nonseparable angular part in con-
fining traps as the boundary-value problem. Computational efficiency of this approach is
demonstrated in application to atomic and atom-ion confinement-induced resonances we
predicted recently.

1 Introduction

During the last three decades one can observe an impressive development of the physics of ultra-
cold atoms [1] and cold ions [2]. Different aspects of this investigations attract big interest from the
side of theoreticians and experimentalists. Thus, experimentalists have got a chance to work here
with deterministically prepared quantum systems [3] with precise control of interparticle interaction,
particle states and particle number [2, 3]. It opens a possibility for quantum simulation with fully con-
trolled few-body systems in ultracold quantum gases [4—6]. The control of interparticle interaction is
performed in quantum gases with the help of magnetic Feshbach resonances [1] which, in confined
geometry of atomic traps, transform into so-cold confinement-induced resonances (CIRs) [7-13].
The mathematical modeling of resonant processes in the confined geometry of atomic traps is a
special computational problem due to the strong nonseparability of the angular part of the system
wave-function, what is the consequence of the strong particle-trap interaction. Therefore, the conven-
tional theory is no longer valid here and the development of the low-dimensional theory, including
the influence of the confinement, is needed. In our works we have developed computational meth-
ods [9, 10, 14, 15] for pair collisions in tight atomic waveguides and have found several novel effects
in its applications: the CIRs in multimode regimes including effects of transverse excitations and de-
excitations [10], the so-called dual CIR yielding a complete suppression of quantum scattering [9],
and resonant molecule formation with transferring energy relies to center-of-mass excitation while
forming molecules [16]. The last effect was recently confirmed in the Heidelberg experiment [3].
Our calculations have also been used for planning and interpretation of the Innsbruck experiment on
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investigation of CIRs in ultracold Cs gas [8]. We have also calculated the Feshbach resonance shifts
and widths induced by atomic waveguides [11, 12] and predicted dipolar CIRs [13].

Recently, hybrid systems of laser-cooled trapped ions and ultracold atoms combined in a single
experimental setup have emerged as a new platform for fundamental research in quantum physics.
These experiments aim to inherit the most important advantages of such hybrid atom-ion systems
and to show new emerging features providing a platform for both fundamental research in quantum
physics and upcoming quantum technologies [17].

Here we discuss computational aspects of the methods we developed for low-dimensional ul-
tracold processes with more extended presentation of results obtained recently for hybrid atom-ion
confined scattering in waveguide-like traps. Specifically, this concerns the prediction of the atom-ion
CIRs [18]. In the section 2 we formulate a typical scattering problem which models a resonant scat-
tering in confined geometry of a waveguide-like trap. By using as an example the confined resonant
scattering, we give a brief discussion of a nondirect product discrete variable representation (npDVR)
in application to coupled 3D Schrddinger equations in the section 3. The formulation of the scattering
problem as a boundary-value problem in the npDVR is also given here. In the section 4 applications of
these methods to the quantitative description of atomic and atom-ion CIRs are discussed. Concluding
remarks are given in the last section.

2 Resonant Scattering in Atomic and Atom-lon Traps

The mathematical modeling of resonant scattering in confined geometry of atomic and atom-ion
traps requires the development of efficient computational methods for integration of the system of
3D Schrodinger-like equations

2 1 PN
([_ZA‘ + Sp@x + o) |1+ vm) ly(r)) = Ely(r)), (1)

strongly coupled by the matrix of effective interatomic potential V() (/ is unit matrix here) and the
derivation of the wave-function

W) = Y dele),  a={ec=1,..},

satisfying the scattering asymptotic

Po(r) = (" + fue™ ) Do(x,y),  Yelr) - 0, 2)

at |z7| — +oo for the fixed collision energy E, where
r =(x,y,z) = (pcosp,psing, z) = (rsinfcos ¢, rsinfsin @, r cos 6)

is the relative variable between the colliding atoms [9—-13] or the atom variable relative the heavy
ion [18]. Here, f.(E) is the desired scattering amplitude, @y (x, y) is the wave function of the ground-
state of the 2D harmonic oscillator %u(a)ﬁxz + wﬁyz) describing the interaction of the atoms with the

confining trap and kg = 2u(E — fiw,)/h = 2uE/h — 0 is the relative momentum of two atoms in
the open channel e, where w, = (w, + w,)/2 and p is the reduced mass of two colliding atoms [9—-13]
or the mass of atom colliding with heavy ion [18].

In the case of the atom-atom interaction a four-channel potential V(r) describing three lowest
magnetic Feshbach resonances in Cs [19] (with ¢ = 1,2, 3) was used in works [11, 12]. Some of these
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resonances have been used in experimental investigation of the Cs confinement-induces resonances in
anisotropic waveguide-like traps [8]. In the case of atom-ion confined scattering the problem (1, 2)
was reduced to one channel scattering (¢ = e) with scalar atom-ion potential V(r) - V(r) ~ Cy/F*
[18].

Note, that in the presence of an anisotropic harmonic trap (w, # w,) the problem (1, 2) becomes
non-separable in the 3D space {p, z,#}. To resolve the problem in the case of atom-atom confined
scattering [11, 12] we have to integrate the system of four coupled 3D Schrodinger-like equations (1).
In an isotropic trap (wy = w,) the problem admits separation of the angle ¢ and reduction to 2D case.
In free space (w, = w, = 0) the angular part separates and the problem reduces to four coupled radial
equations considered in [19]. The choice of the potential V(r) in the tensorial form (@ = {e, c}) with the
diagonal terms V,,(r) as square-wells enabled the derivation [19] of an analytic model for describing
Feshbach resonances in free space (w, = w, = 0). However, to develop an efficient computational
scheme for the integration of the problem (1, 2) in a confining trap (wx # 0, w, # 0) is a challenging
task due to sharp jumps at the edge of the interaction in the diagonal terms V,,(r) chosen in the form
of square-well potential [11, 12]. In the case of atom-ion confined scattering the tensorial structure
of the potential V(r) is absent but the need arises to get accurate solution for the long-range scalar
atom-ion interaction V(r) ~ C4/r* [18].

3 Method

The key feature of the system of equations (1) is the strong nonseparability of the angular part of
the desired wave-function [(r)) due to the strong coupling of the partial waves defined by the atom-
trap interaction W(r) = %,u(wixz + w§y2). To solve the difficulty, the approximation of the angular
part is done within the nondirect product discrete-variable representation (npDVR) which was sug-
gested [20-23] and developed in our works [9-13, 16, 22-31]. It was shown that 2D npDVR is much
more efficient computationally as compared to the conventional partial wave analysis due to its fast
convergence and flexibility: there is no need for laborious calculation of the matrix elements under the
change of the form of the interactions because any local interaction is a diagonal one in the npDVR.

In npDVR we have formulated the multichannel scattering problem with nonseparable angular part
as a boundary-value problem and successfully applied this scheme to scattering in confined geometry
of atomic and hybrid atom-ion traps [10-13, 18]. Here we discuss computational aspects of this
approach and recent results obtained in quantitative analysis of the atom-ion CIRs.

We have also developed the efficient splitting-up-method in npDVR in application for the time-
dependent few-dimensional Schrédinger equation [9, 16, 22-29]. Detailed description of this method
one can find in our previous paper published in the EPJ (Web of conferences) [15].

3.1 Nondirect Product Discrete-Variable Representation

Different kinds of the 1D DVR or Lagrange-meshes are widely used in quantum mechanics computa-
tions [32-35] due to the simplicity (DVR leads to diagonal form for the interaction and compact form
for the kinetic energy operator) and efficiency (fast convergence and stability) of this approach. In
the work [20] we have theoretically estimated and confirmed by numerical experiment that the error
very quickly decreases ~ 1/(N + 1)! with an increase in the number of DVR basis functions N. It
ensures fast convergence of the 1D DVR. However, an extension of this representation to the 2D case
(two angles 6 and ¢ of the unit sphere) is a nontrivial problem. Actually, the simple idea to construct
the 2D DVR as a direct product of two 1D DVRs leads to essential complication of the matrix of the
angular part of the kinetic energy operator [33, 36]. As a result, the advantages of the 1D DVR, its
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simplicity and efficiency, are lost [33]. An alternative way to construct 2D DVR on an unit sphere is
to use the spherical harmonics defined on a two-dimensional grid. However, in this case it becomes
not possible to satisfy the orthogonality conditions for all the elements of the fixed set of this basis on
the chosen grid [36, 37]. To overcome this difficulty we have suggested [22, 23] to use the basis of
the orthogonalized combinations of the spherical harmonics on the two-dimensional grid over 6 and ¢
variables. It turned out that this idea was very efficient for the time-dependent, as well as, stationary
Schrodinger equations with two [10-13, 18], three [22—28] and four [9, 16, 29, 30] nonseparable spa-
tial variables. Our idea how to construct the 2D npDVR [22, 23] was also successfully extended for
computing vibrational levels of four-atom molecules [36] where it has got the title non-direct product
DVR (npDVR). An alternative variant of 2D npDVR with non-direct product angular grid coinciding
on the unit sphere with the nodes of the Lebedev quadratures was suggested in [37].

By applying the 2D npDVR for Eq. (1) we get the system of 4N Schrodinger-like coupled equa-

tions with respect to the unknown vector u(r) = { \//l_ju}’(r)} (here j=1,...,N;a=e,0)
(P + W) + V() u() = Eu(r) )
where
aa’ hz d2 1 N —
i T DYl + DY)y | G “)
v=1
aa’ 1
Wip = 3K (‘“ﬁxi + w§y3)5.fj/5aaw ®)
V;l](/l/ = ch’(r) 6/)" ' (6)

Here x; = rsin@;cos¢; and y; = rsinf; sin¢; and the elements u¢(r) of the vector u(r) coincide
with the values rf,(r, Q) of desired wave function on N angular grid points Q; = {6}, ¢;}. The matrix
Y}, and its inverse (¥ -, ; are defined on the grid Q; as described in [9, 10, 15, 24] (here one can also
find the procedure of construction of the 2D angular grid Q; and the definition of the weights 4;).

Thus, by using the 2D npDVR we transform the initial scattering problem (1, 2) to the system of
the Schrodinger-like coupled equations (3) with the following asymptotic

u(r) = r<eik°zf + feeik‘”z"l) Qo (xj,y;), uf(r)=0 @)

at |z;| = |rcos ;| — +oo and
ul(r) = 0, )

at r = 0, which follows from the finiteness of the desired wave function ,(r) (@ = e,c) at r — 0.

3.2 Boundary conditions: reduction scattering problem to boundary-value problem

The problem (3-8) is defined on the semi-axis r € [0, +c0) which is replaced by the interval [0, 7,,].
The right edge of the interval r,, and any neighbour point 7,,_; to the left of the edge must be chosen
such that some of the points zT = rucosf; and z?q‘l = ru-1cosf; (let say for jo < j, and for
Jjo = Ng — ju + 1, here j,, is a constant) fall into the asymptotic region Iz;ﬂ = |r,, cosd;| — +oco where
the wave function u‘]‘f(r) satisfies the asymptotic formulae (7) (see Fig. 1).
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By using two equations (7) in the points r,, and r,,—; we eliminate the unknown amplitude f, and
construct the two-point boundary condition at the right edge of the interval [0, 7,,]

Tm®@o(x, Y1)
Fne1 Qo )

) — 0 )0 = e — o D o

(if jo < jmor jo = Nop— jm + 1),

u;(rm) =0 (ifjm < jH < Np - ]m +1),
M;(Vm) =0, (9)

where X' = r,; sin6jcos ¢; and y' = 1y, sin 6 sin ¢;.

Thus, the initial scattering problem (1, 2) is reduced to the boundary-value problem for the system
of ordinary differential equations of second order (3) with the boundary conditions (8) and (9) which
do not contain the unknown scattering amplitude f,. After integration of the problem (3), (8) and
(9) one can find the scattering amplitude f, by mapping the calculated wave function ¢, (7, €2;) at the
points |z;.”| = |ry cos @;| — +oo with the asymptotic boundary condition (7). We solve the system of
Egs. (3) on a quasi-uniform radial grid [22, 27]

eror — 1
Tn =T n=12,...,N, (10)
of N, grid points {r,} defined by mapping r,, € [0, r,,](r,, = +c0) onto the uniform grid ¢, € [0, 1]
with the equidistant distribution ¢, — {,—1 = 1/N,. One can achieve a suitable distribution of the grid
points for a specific interatomic and confining potential by varying N, and the parameter y > 0.

To integrate the boundary-value problem (3), (8) and (9) one can apply efficient algorithms. By
using high order (six-order) finite-difference approximation for the radial derivatives on quasi-uniform
grid we arrive at a system of algebraic equations with block-band structure which can be solved by the
LU decomposition [38] or the sweep (also known as the Thomas algorithm [39]) method [40], which
are very efficient for speed and memory.

4 Results

The high computational efficiency of the mathematical model (3,8) and (9) was demonstrated in ap-
plication to the resonant scattering in confined geometry of waveguide-like atomic traps [10-12].
In Fig. 2 we present calculated atomic probability density distribution |y, (x,z)|? in the vicinity of
d-wave Cs Feshbach resonance (occurs at By = 47.8 G [19]) for B = 47.9 G in the trap with
w, = wy = wy, = 14 kHz [8]. This resonance is developed as a peak at the region r < a of the
action of the square-well potential between the atoms in the plot of probability density distribution
with a rapid oscillating behaviour over » (which is not clear in the figure), due to the constitution of
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quasi-molecular states. In the asymptotic region |z] — +co we observe slow oscillations of the chan-
nel wave function ¥,(x, z) (2) with the period of oscillations 27/ky — oo defined by the very small
colliding energy ko = +/2uE;/h — 0. Fig. 3 illustrates the convergence of the method with respect

Figure 2. The calculated probability
density distribution |y, (x, z)|* in the en-
trance channel in the vicinity of d-wave
Cs Feshbach resonance at B = 47.9
G. Variables are given in the units a,
N =30and N, = 1.0 x 10°.

to the number of grid points N over the angular variable on a typical example of calculating the T
coefficient T = |1 + £.|> near s-wave Cs Feshbach resonance (which occurs at B, = —11.16 G [19])
for B = 14.14 G. It demonstrates rather fast convergence of the 2D npDVR over angular grid points
N despite the strong coupling over angular variable provided by the atom-trap interaction potential
1/2p? r* sin” 6 in a wide area of variation of the interatomic distance r. It is shown that for getting
absolute accuracy on the level 1072 it is enough to keep about N = 10 of equations in the system
(3). Further computations with increasing N demonstrate monotonic convergence to more accurate 7
coefficient. To reach the level of accuracy ~ 107* it needs to increase N up to =~ 30.

AT T T T T T T T(N)
0
10" F TN) 3 10°
10" ” ” g Figure 3. The dependence on the num-
ber of angular grid points N of the
102k y transmission coefficient 7'(N) and abso-
‘ A 1'% lute error AT(N) = [T(N) = T(N = 40)|
107 Tree 1 in T(N) due to npDVR. This results
i S 1 have been obtained for B = 14.14 G,
10k e 1 N, = 1.0 x 10° and r,, = 100a.
410?
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With this method the atom-ion CIRs were predicted and quantitatively investigated [18]. In Fig. 4
we present calculated transmission coefficients T(R*/a, ,a, /asp) for the atom-ion scattering in con-
fined geometry of hybrid atom-ion trap w, = w, = w, as a function of ratios of the range of atom-ion
interaction R* to the width of atomic trap a, = +/fi/(uw,) and a, to the atom-ion scattering length
asp in free space. The minima in the coefficient 7' indicate the positions of the atom-ion CIRs. Before
this investigation the CIR were known only for confined atomic scattering at the point a, /as;p = 1.46
for R*/a, — 0 (see arrow in Fig. 4) [7-13]. Our investigation [18] has predicted conditions for CIR
appearance in the confined atom-ion scattering. It was shown that due to longer tail of the atom-ion
interaction with respect to atom-atom interaction, the limitation R*/a, — 0 characterizing the atomic
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CIR is overcame in hybrid atom-ion confined systems. Due to the importance of the CIRs for control-
ling the interparticle interactions further investigations are in demand. Specifically, the effect of the
ion-micromotion induced heating is most actual unsolved problem. It asks for additional development
of efficient computational methods [2]. Our computational schemes are look very promising in this
respect.

107y R'/a =0.025 1
a =U. o
104: “\t.;‘ ,.0//*/,/. :
oF Rla=2 " & Rla=04473
107 ki ! - s
e 1 o-s: : Figure 4. The transmission coefficients
WoF E T(R*/a,,a,/asp) calculated for the confined
107 F i pair Li-Yb* collisions for different values R*/a,
3 =
107§ . \ R E and a, /azp.
3 =
10™ o
P 0 3
10'15 s | s | s | s |
0.5 1.0 1.5 2.0 2.5
ala,

5 Conclusion

In this lecture we have considered computational aspects of the mathematical models we developed
recently for ultracold two-body resonant processes in atomic and hybrid atom-ion traps. The main at-
tention is paid to formulation in the npDVR of the multichannel scattering problem with nonseparable
angular part in the confining traps as a boundary-value problem. The computational efficiency of this
approach is demonstrated in application to atomic and atom-ion confinement-induced resonances we
predicted recently.

The computational efficiency of our mathematical models achieved in quantitative analysis of
different resonant processes and the supposed transparent procedure for its parallelization make the
developed techniques very promising in application to other challenging problems of low-dimensional
few-body physics. Note here the computationally demanding, and actual in physics of quantum gases
and ions, problem of the impact of the ion-micromotion induced heating on the surrounding atomic
gas in hybrid atom-ion ultracold systems [2, 18].
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