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entire study area and the entire time series, the gravel to 
sand ratio fluctuated, but was overall stable. Nonetheless, 
when only the biodiversity hotspots were considered, net 
losses and a gradual trend, indicative of potential smoth-
ering, was captured by ensemble and post-classification 
approaches respectively. Additionally, a two-dimensional 
morphological analysis, based on the bathymetric data, 
suggested a loss of profile complexity from 2004 to 2015. 
Causal relationships with natural and anthropogenic stress-
ors are yet to be established. The methodologies presented 
and discussed are repeatable and can be applied to broad-
scale geographical extents given that broad-scale time 
series datasets become available.

Keywords Multibeam · Seafloor backscatter · Change 
detection · Seafloor integrity · Marine Strategy Framework 
Directive · Reference calibration area

Introduction

Human pressures to the marine biome have reached 
unprecedented extents. Today, globally up to 41% of 
marine habitats are directly impacted by a multitude of 
anthropogenic stressors (Halpern et al. 2008). Changes in 
seafloor substrate composition and spatial configuration 
may occur as a result of such anthropogenic pressure, 
but also of natural variability driven by varying hydro-
meteorological conditions (van Denderen et  al. 2015). 
Our ability to monitor the spatio-temporal dynamics of 
the seafloor and, ultimately, to relate the observed pat-
terns to driving processes is central to our understand-
ing of marine ecosystems and to the tutelage of the eco-
system services we depend on. This is also recognized 
in the European Marine Strategy Framework Directive 
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(MSFD—EC 2008-56-EC) in which the seafloor is the 
backbone of several indicators of ‘Good Environmental 
Status’. For this purpose, seabed mapping, and particu-
larly multibeam echosounding are increasingly used.

High-frequency multibeam echosounders (MBES) are 
considered as the state-of-the-art sonar instruments and 
are employed by commercial, governmental (i.e. hydro-
graphic services), industry (e.g. oil and gas exploration 
and exploitation), and research institutions. This is due 
to the MBES ability to co-register high-density echo 
time, geometrical features and intensity over large seabed 
swaths, hence providing depth and intensity data (Kenny 
et  al. 2003). While up until now the bathymetry has 
been the main focus of hydrographic surveys and map-
ping programs (i.e. following International Hydrographic 
Organisation standards of acquisition and accuracy of 
depth measurements; Wells and Monahan 2002), seafloor 
reflectivity (backscattered intensity from the seafloor) has 
only recently attracted interest from a scientific perspec-
tive due to its ability to map the water-sediment-interface 
constituency (Lurton and Lamarche 2015). Mapping 
this interface over vast areas allows extending informa-
tion from isolated point locations (in-situ measurements 
such as grab samples and video observations) to the spa-
tial extent of a digital surface. Moreover, if time series 
of acoustic data are acquired, it allows the application of 
change detection methods as developed in the terrestrial 
sciences with satellite data (e.g. Foody 2002; Pontius 
et  al. 2004; Hussain et  al. 2013). This raises the possi-
bility to measure how much the attributes of a particular 
area have changed between two or more periods.

Despite the increasing interest of using MBES back-
scatter, standards of seabed backscatter acquisition and 
processing are still under development. A set of guide-
lines and recommendations was developed by the Back-
scatter Working Group (or BSWG; see http://geohab.org/
bswg) mandated by the Geological and Biological Marine 
Habitat Mapping scientific committee (GEOHAB). 
Reaching standardisation of MBES data acquisition and 
processing procedures is challenging due to the number 
of manufacturers, multibeam models and dedicated pro-
cessing platforms, each implementing their own process-
ing algorithms and proprietary software features.

This paper addresses the application of change detec-
tion methods to capture seafloor substrate changes over a 
period of 10 years based on a time series of seven data-
sets of MBES depth and backscatter data (2004–2015). It 
relates to assessing good environmental status of gravel 
beds in the Belgian part of the North Sea (BPNS) for 
which the Belgian State specified two indicators on sea-
floor integrity (MSFD descriptor 6) and for which multi-
beam technology was put forward as monitoring tool 
(Belgian State 2012):

1. The areal extent and distribution of the European 
Nature Information System (EUNIS) level 3 Habitats 
(sandy mud to mud; muddy sand to sand and coarse 
sediments), as well as of the gravel beds, remain within 
the margin of uncertainty of the sediment distribution 
with reference to the Initial Assessment.

2. Specifically related to the gravel beds it is furthermore 
specified that the ratio of the hard (gravel) substrate 
surface area to the soft (sand) substrate surface area 
must not show a negative trend.

The case study is located within a sandbank system in 
a Habitat Directive Area of the BPNS. While of high eco-
logical relevance, this area is intensively fished and marine 
aggregate extraction started in 2012 near its northern limit. 
In this paper a methodological framework is presented to 
assess progress of good environmental status based on 
multibeam backscatter data. Whilst developed at a local 
scale, the change detection methodology is promising to be 
applied on a more regional North Sea level.

Study area

The study site is approximately 8 km2 and is located in the 
proximity of the Western Border of the BPNS, more spe-
cifically in the Vlaamse Banken Habitat Directive Area 
(enacted as of 16th October 2012, EC 92/43/EEC; Fig. 1, 
grey-shaded polygon). It is located in the southern part of a 
complex sandbank-dune system named the Hinder Banks. 
Depths range from −8 to −30 m lowest astronomical tide 
(LAT). Fine to medium sands dominate the sandbank por-
tion of this environment where large and very-large dunes 
(ranging from 4 to >10 m height) are present (sensu Ash-
ley 1990). The western flank of the main sandbank body 
forms a transitional area between the bank sandy environ-
ment and the adjacent gully. In the latter, medium to coarse 
sand as well as gravel occur. Gravel provides small-scale 
structural complexity for ecological successional phases to 
occur (e.g. deposition of current advected larvae; Houziaux 
et al. 2007). Seabed maps indicate that the system is very 
poorly enriched by silt (0–1% silt–clay content; Verfail-
lie et al. 2006). A series of steep barchanoid dunes is pre-
sent in the transitional area, with considerable amounts of 
gravel in the troughs (Van Lancker 2017). Diverse assem-
blages of sessile and vagile epifauna and benthic fish were 
observed here in pioneering and more recent studies (Hou-
ziaux et al. 2011, and references therein). Hereafter, these 
are called gravel refugia, since in the majority of the gully 
epifaunal growth on gravel beds is absent because of severe 
bottom-trawling occurring since the late 1800s. In gravel 
areas, these are known to routinely remobilise the gravel 
clasts (Jones 1992).

http://geohab.org/bswg
http://geohab.org/bswg
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Since 2012, a new anthropogenic stressor was introduced 
in the area, related to sand extraction occurring 2.5 km NE 
of the Habitat Directive Area. Depending on timing, fre-
quency and amount of extraction and hydrodynamic set-
tings, resuspension of sediment plumes could represent a 
source of smothering leading to loss of surficial complex-
ity and burial of epifaunal colonies (Thrush and Dayton 
2002; Van Lancker et al. 2010; Spearman 2015). To assess 
environmental impacts, a monitoring programme was set-
up combining multibeam recordings with seabed sampling, 
visual observations and water column measurements as 
well as hydrodynamic and sediment transport modelling 
(Van Lancker et  al. 2016). Sediment plumes arising from 
the marine aggregate extraction activities, and their deposi-
tion, were depicted in acoustic imagery (Van Lancker and 
Baeye 2015), and numerical modelling results showed that 
their deposits reach the gravel beds in the Habitat Direc-
tive Area up to the study site (Van Lancker et  al. 2016). 
The cumulative volume of marine aggregates extracted 
throughout the duration of the data time series is shown in 
Fig. 2: larger quantities were extracted from 2012 onwards 
(~800,000  m3) to reach a maximum of ~2.4 × 106  m3 in 
2014.

Methods

The “Methods” presents the acoustic and ground-truth data 
acquisition and processing, comprising a two-dimensional 
characterization of the spatio-temporal morphological 
evolution of the seafloor using the bathymetry data and a 
change detection analysis carried out on the backscatter 
time series. The steps of the analysis preceding the change 
detection include the application of supervised and unsu-
pervised classification algorithms and their quantitative 
comparison. Finally, the change detection using back-
scatter data is carried out by using both classified (the-
matic/labelled) and unclassified (relative dB values/unla-
belled) backscatter mosaics, as well as applying ensemble 
approaches.

Data acquisition and processing

Acquisition

The MBES data were acquired by Ghent University in 
2004, and later by the Operational Directorate of Natu-
ral Environment of the Royal Belgian Institute of Natural 

Fig. 1  Left Belgian Part of the North Sea (BPNS). Right backscatter (dB) map of the study area with black outline polygons indicating biodiver-
sity rich areas selected as case studies to monitor seafloor integrity
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Sciences as part of a sand- and gravel-extraction moni-
toring programme and MSFD-oriented monitoring cam-
paigns (Van Lancker et  al. 2016). Of the eight acoustic 
surveys undertaken between 2004 and 2015, seven were 
kept for this investigation. Surveys exhibiting a significant 
amount of navigation artefacts (mostly due to failure in 
vessel-motion related compensation during rough-sea con-
ditions), were considered unsuitable for the analysis and 
were discarded. The first survey used a 100-kHz Kongsberg 
EM1002S, and the remaining six surveys operated a 300-
kHz Kongsberg EM3002D (Dual-head system). Both sys-
tems were installed on Belgian oceanographic vessel R/V 
Belgica.

The hydrographic quality of the EM3002D dataset is 
consistent with the IHO S44 Special Order, whereas with 
the former EM1002S only the Order 1A (Wells and Mona-
han 2002) was attained. Under these standards, the total 
vertical uncertainty with ±95% confidence levels of the 
depth measurements result in ±0.63 and 0.33  m vertical 
error for the EM1002S and EM3002D, respectively, for a 
depth of 30 m (Tables 1, 2). These intervals encompass all 
sources of errors originating from the suite of instrumenta-
tion used during acquisition.

Pitch, roll, heave and yaw were automatically compen-
sated for during acquisition and a sound velocimeter con-
stantly monitored the sound velocity at the transducers. 

Survey lines were spaced to reach a good compromise 
between survey time/costs and quality of the data result-
ing in a minimum of 20% across-swath overlap between 
adjacent lines. Throughout the timespan of acquisition 
(inter- and intra-survey), the MBES settings controlled by 
the on-board software (i.e. SIS: Kongsberg native acquisi-
tion platform) remained unchanged (i.e. pulse length, beam 
aperture, beam spacing). The state of the antenna transduc-
ers was thoroughly checked and maintained for biofoul-
ing and deterioration of its components (either by divers 
or during regular dry-dock operations). Similarly, across 
all surveys, track lines were sailed in a SW-NE direction. 
Maintaining operational parameters stable and checking the 
physical state of the instrument ensured that instrumental 
drift was kept to the minimum.

Regarding sound absorption throughout the water col-
umn, the α coefficient (see Francois and Garrison 1982) 
was computed according to the local seawater properties 
at the surface which were fed into the acquisition system 
every half an hour. The necessary water medium environ-
mental parameters were obtained from the On board Data 
Acquisition System (ODAS), which logs these data at 1-s 
intervals. No vertical profiles of the seawater properties 
were acquired since in this region the water mass is known 
to be well mixed throughout the year and no stratification is 
expected to occur (Luyten et al. 2003; van Leeuwen et al. 
2015) and the surface values are considered to be suffi-
ciently representative.

To verify instrumental drift on the medium to long 
term and allow comparison of backscatter levels in time, 
data were verified against an area with stable depth and 
backscatter levels (‘KWGS’ reference area, blue rectan-
gle in Fig.  1). This calibration area (1.8  km2) is located 
in a gully in-between two sandbanks and is dominated 
by sand to sandy Gravel. These verifications showed that 
the oblique incidence backscatter [beam angle sector 
±(35°–45°) and ±(0°–70°) for the full angular range] mean 

Fig. 2  Extracted marine aggregate volume in  Mm3 from Extraction 
Zone 4 (2.5  km away from the designated area). See Mathys et  al. 
(2011), Van Lancker et  al. (2016) for a detailed description on the 
marine aggregate extraction in this particular area. Effective extrac-
tion began in 2012. Data on extraction volumes were provided by the 
Belgian Federal Public Service Economy, Continental Shelf

Table 1  EM3002D MBES specifications and auxiliary sensors

Parameters Measure

Central frequency 300 kHz
Number of beams 508 (254/head)
Beam width 1.5° × 1.5°
Beam mode Equidistant
Angular swath range 200°
Pulse length 150 µs
Positioning systems GPS Sercell, 

Furuno and RTK 
Thales

Motion sensor Seatex MRU 5
Sound velocity sensor Valeport mini SVS
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values remained, per survey, within 1 dB around the overall 
mean BS level with no significant trend that would suggest 
instrumental drift.

MBES data processing

The backscatter strength (BS) quantifies the amount of 
acoustic intensity scattered back to the sonar receiver fol-
lowing a complex interaction of the transmitted signal with 
the seafloor. It is the result of an intricate combination of 
several physical factors: the seawater-seafloor impedance 
contrast, the interface roughness and the sediment volume 
heterogeneity, the signal incidence angle on the seafloor 
and the acoustical signal frequency (Lurton 2010). Due to 
the various scattering properties of different seafloor sub-
strates, backscatter can help determine bottom type (e.g. de 
Moustier and Alexandrou 1991; Hughes-Clarke et al. 1996; 
Ferrini and Flood 2006) and possibly to infer some of its 
physical characteristics.

However, backscatter data are inherently noisy, show-
ing strong amplitude fluctuations due to the very nature of 
the scattering process (Lurton 2010), and the possible pres-
ence of additive external noise: a first processing stage is 
to reduce this random fluctuating character by appropriate 
filtering techniques. A second category of processing aims 
to correct geometrical artefacts resulting from the char-
acteristics of instrumentation used in the acquisition (i.e. 
motion and positioning sensors), the seabed geometrical 
configuration (dictated by the local topography), the veloc-
ity and absorption properties of the water medium within 
which sound is travelling, and the angle of incidence (Lur-
ton and Lamarche 2015). The observed angular response 
of seafloor backscatter (describing how the reflectivity 
impact upon echo intensity varies with the incidence angle) 
can be categorised into three distinct angle sectors. Each 
are characterized by a different scattering regime (i.e. the 
specular or near-nadir, the oblique and the low-grazing 
angle regime), hence they can be treated as separate enti-
ties (i.e. statistical populations) (Lurton 2010). In order to 
produce a sedimentological meaningful image and avoid 

the along-track banding effect of the three domains, the 
resulting angular dependence must be compensated. Con-
sequently, the backscatter strength has to be normalised to a 
conventional reference angle (ideally in the 30°–60° range, 
but typically 45° is used).

Furthermore, several correction must be applied to the 
data, in order to account for the sonar sensor’s responses: 
source levels and pulse length; acoustic transmission losses 
due to spreading and absorption; 3-D beam directivity pat-
terns; sensitivity of the receiving arrays and electronics; 
and real-time time varying gain (TVG) corrections applied 
by the sounder. These various points were addressed in the 
real-time data reduction scheme applied in Kongsberg Mar-
itime echosounders and during acquisition (Hammerstad 
2000).

To allow consistency in the last phases of the data pro-
cessing (i.e. mosaic production) and hence enable their sub-
sequent inter-comparability (in terms of relative dB values 
expressing a reflectivity scale according to a common ref-
erence), the EM3002D data were subject to a standardised 
processing procedure following the BSWG recommenda-
tions (see Lurton and Lamarche 2015). Fledermaus Geoco-
der (FMGT, v7.4.5.b) and QPS QIMERA (v1.2.4.429a) 
software suites were used to process the MBES raw data. 
Initially, tide-corrected bathymetry was produced and 
exported as 1-m horizontal resolution raster (32-bit float 
files) and as sound density files for integration in FMGT. 
The bathymetric surfaces are used to correctly allocate the 
backscatter snippet traces from single pings to their true 
seabed position. Each survey was normalised by applying 
a flat angle varied gain (AVG) filter with a window size of 
300. In order to weight nadir pixels and reduce their band-
ing effect, the “No Nadir if Possible 2” algorithm and “50% 
line blending” FMGT options were applied.

As such, the final dataset consisted of (1) relative (stand-
ardised to a common reference surface area) backscatter 
reflectivity (in dB), and (2) bathymetric surfaces (m) at 1 m 
horizontal resolution. The EM1002S data did not prove to 
be comparable in terms of backscatter levels with those 
from the EM3002D system, due to the differing intrinsic 
properties of the sensors (i.e. electronics and hardware) 
and to the absence of a cross-calibration of both sensors. 
Consequently, the first campaign was not included in the 
pre- and ensemble classification analyses (in “Pre-classifi-
cation” and “Ensemble approach classification”).

Ground‑truth data

The ground-truth data used in this study were acquired 
in complement to the  T7 survey. Collection of ground 
truth is necessary to validate the assumptions developed 
during the observation of acoustic data and ultimately to 
derive confidence metrics expressing the validity of the 

Table 2  Time-series dataset specifications

RV Belgica surveys in the Vlaamse Banken Habitat Directive Area

Survey Time-layer-ID Month-year System

ST2004 T1 April-2004 EM1002S
ST2010 T2 February-2010 EM3002D
ST1319 T3 July-2013 EM3002D
ST1417 T4 June-2014 EM3002D
ST1425 T5 October-2014 EM3002D
ST1507 T6 March-2015 EM3002D
ST1533 T7 December-2015 EM3002D
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map produced. Ten samples were collected using a Van 
Veen grab, each with three replicas to ensure the spatial 
consistency of the acoustic theme being sampled.

Video samples were acquired by means of a drop-
frame, equipped with underwater lights and a camera 
with a 1 × 1 m field of view. Video-frame data with poor 
visibility (i.e. due to turbidity or too strong current) were 
discarded. Visual sampling was very useful to acquire 
data in the gravel areas where conventional gears failed 
(i.e. box core and Van Veen). All sample coordinates 
were corrected for the DGPS antenna layback accounting 
for the main source of positional error and were mapped 
with a 10 m buffer.

Sample types were described by combining visual and 
expert observations with grain-size parameters calculated 
by a MALVERN Mastersizer 3000 instrument. To validate 
the consistency in terms of sediment classification versus 
backscatter levels, the classes’ description was compared 
to previous substrate classification studies within the same 
area (Roche 2002).

Only features visible at the seafloor were described and 
classified into three thematic classes summarizing the main 
substrate composition: (1) homogeneous well-sorted fine 
to medium sand (fS); (2) moderately sorted medium sand 

with bioclastic detritus (mS + b); and (3) medium-to-coarse 
sand with gravel clusters (cS + G; Fig. 3).

As will be shown later (see Fig. 5 in “Supervised map 
of the study area”), the fS and mS + b classes are tex-
turally and sedimentologically similar with an overlap 
in terms of dB ranges, mS + b being a subset of the fS 
class. This is likely explained by the presence of bio-
clastic detritus and a significant roughness in the mS + b 
class which lead to interface scattering having a signifi-
cant contribution to the overall acoustic return and caus-
ing a relatively high level (≈−27 dB) of mean backscat-
ter. On the contrary, the fS class, which is almost entirely 
distributed on top of the sandbank (in the most dynamic 
part of the study area, likely with a higher water content 
than the flank and gully areas) is very well sorted and 
homogenous, with little interface roughness and no sur-
face scatterers, resulting in the lowest values (≈−31 dB) 
of mean backscatter (Fig.  5). Conversely, the cS + G 
class features the highest content of coarse material with 
sparse individual strong scatterers, and high roughness at 
the interface; hence it corresponds to the highest values 
(≈−22  dB) of mean backscatter (Fig.  5). The described 
samples were separated into training (2/3) and valida-
tion (1/3) sets (Table  3). Sample representativeness was 

Fig. 3  Backscatter mosaic, ground-validation sample picture, textural detail and class description for the identified substrate classes
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assessed visually by plotting the backscatter cumulative 
frequency distribution of the study area and for the mean 
backscatter values extracted within a 10  m buffer at the 
samples’ locations.

Morphological evolution

At first, an assessment of the spatio-temporal morphologi-
cal evolution is carried out to determine whether changes in 
substrate are due to morphological evolution (i.e. migrating 
dunes), to an actual reconfiguration of the substrate deline-
ations or to a combination of both. Regions of interest 
(ROI) encompassing the main morphological and substrate 
features of the study area were selected to extract 2D pro-
files from the time series (see Fig. 4 for profile locations). 
Simple yes/no and quantitative metrics of change with 
information about the directionality (i.e. ebb or flood domi-
nated bedforms) of the migration can be derived from here. 
For ease of interpretation, data from 2004 to 2015 were 
used only  (T1 and  T7, Table 2).

Supervised classification

The second phase of the analysis makes use of the most 
recent  (T7) acoustic survey for which complementary 
ground-truth data are available. In order to efficiently com-
bine the two datasets, a supervised classification algorithm 
is used. Unlike an unsupervised method, where no a priori 
information about the class labels is provided to the algo-
rithm (i.e. clustering procedures), supervised classification 
uses ground-truth information to train and test the classifi-
cation results.

The Random Forest (RF; Breiman 2001) algorithm was 
used for classification. RF has high predictive accuracy in 
studies focusing on the comparison of supervised classi-
fications of MBES data (Diesing et al. 2014; Diesing and 
Stephens 2015) and have proven highly successful in data 
mining research (Li et  al. 2016). As explained in Dies-
ing et al. (2014) and Li et al. (2016), the main underlying 
assumption of this method is that the predictive power of 
multiple classification trees (the elemental unit of machine 
learning methods) is higher than that of a single tree. Boot-
strapped samples from the training data are used to con-
struct the individual trees in the forest introducing the first 
element of randomness. In turn, a random subset of the 
predictor features is used at the node splits throughout the 
construction of the model. The result is the construction of 
unique trees. Decisions about the class allocation (label-
ling) are made on the basis of majority votes of individual 
trees. After a feature selection procedure, the RF was run 
growing 501 trees and leaving the parameters as default. 
The routine was implemented in R (R Development Core 
Team 2008) using the RandomForest package (Liaw and 
Wiener 2002).

Feature selection

A set of textural and morphometric predictor layers were 
computed from multibeam depth and backscatter grids 
(Table  4). Predictor layers are a set of variables (in this 
analysis terrain and texture attributes) derived from the 
MBES backscatter and bathymetry which are combined to 
the observed substrate type points (response variable) to 
predict the full-coverage seafloor map (Lecours et al. 2016). 
The relevance of the predictors was investigated by follow-
ing the feature selection procedure provided by Kursa and 
Rudnicki (2010) using the Boruta RF wrapper function. 
Boruta identifies important variables by performing multi-
ple runs of the RF classification (a total of 1000 runs were 
performed here) and by comparing the RF Z-scores of the 
original variables with the scores of their permuted cop-
ies (shadow variables). The Z-score is a measure express-
ing how many standard deviations a score stands from 
the mean. Higher importance is attributed when the mean 

Table 3  Summary of sample sets used (fS fine homogenous sand, 
mS + b fine to medium sand with bioclastic detritus, cS + G medium 
to coarse sand with gravel clusters, VV Van Veen grab sampler)

Class_ID Training Test N-samples Gear

fS 9 5 14 Grab (VV)
mS + b 4 2 6 Grab (VV)
cS + G 6 4 10 Video frame
Total 19 11 30

Fig. 4  Location of the 2D profiles selected for the analysis of mor-
phological evolution
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Z-score of a variable after n runs is significantly higher 
than z-scores produced by the shadow variables.

Model evaluation

Overall accuracy (A) and Kappa (K) accuracy metrics were 
derived using the contingency table which cross-tabulates 
test and predicted instances (Foody 2004). Global accu-
racy provides a metric expressing the amount of correctly 
labelled pixels by the classifier whereas Cohen’s Kappa 
reflects the difference between the overall agreement and 
the agreement expected by chance.

Comparison of thematic maps

Since the supervised information is to be extended to the 
broader time series of acoustic data for which there is no 
ground-validation data, an analysis similar to that of Ierodi-
aconou et al. (2005), in which supervised and unsupervised 
classifications are compared and evaluated for similarity, 
was applied. In this paper, K means was chosen as an unsu-
pervised classification method due to its success in finding 
optimal clustering solutions and after comparing the RF 
classification to an array of unsupervised classifiers. Harti-
gan and Wong (1979) algorithm was implemented using the 

R base functions (R Development Core Team 2008). Given 
a certain number of classes, the method seeks to reduce and 
maximise the within and between classes variance respec-
tively by iteratively grouping similar points in their feature 
space. To validate the application of an unsupervised clas-
sifier, paired-pixel metrics of map agreements were com-
puted after Foody (2004), Pontius and Millones (2011), and 
Pontius and Santacruz (2014). The R package diffeR was 
used (Pontius and Santacruz 2015). Components of alloca-
tion are used to derive the agreement between maps at the 
level of the entire landscape and per category. Quantity and 
Allocation describe the amount of change that is respec-
tively due to the proportion of categories between reference 
and test instances and to the amount of spatial mismatch 
between categories.

Change detection

Three types of analysis were performed on the backscatter 
time series in order to extract trends and patterns of change 
in substrate classes: pre-, post- and ensemble-methods 
classification. Ensemble approaches combine supervised 
and unsupervised classifiers, whereas a pre-classification 
method focuses on the unclassified data values (similarly to 
directly relying on spectral bands in satellite imagery). The 

Table 4  Predictor variables dataset with their description

Software used for computation is also listed

Layer Description Type Software

Backscatter strength (BS—dB) 256 Grey level (NG) dynamic range 
layer—the level of the acoustic energy 
resulting from the scattering back to its 
source of emission. Measured as the 
ratio of the acoustic energy sent and 
returned from the seafloor, referenced at 
1-m from the target at a given incidence 
angle range

MBES recorded seafloor backscatter 
strength

FMGT—QPS

Bathymetry (m) Post-processed depth samples MBES recorded seafloor depth QIMERA—QPS
Roughness (from depth) Difference between min. and max. of a 

cell and its neighbours
Secondary morphometric derivative Rx64 (raster package; 

Hijmans and van 
Etten 2014)

Contrast (BS) Differences of the intensities of the 
instances within an image in a neigh-
bourhood

Secondary backscatter texture Rx64 3.2.3 (GLCM 
package; Zvoleff, 
2015)

Mean (BS) Mean filter Secondary filtered backscatter Rx64 (GLCM package)
Dissimilarity (BS) Degree of dissimilarity (Euclidean) in a 

neighbourhood
Secondary texture Rx64 (GLCM package)

Moran (BS) Spatial auto-correlation in a neighbour-
hood

Secondary texture Rx64 (raster package)

Moran (from depth) Spatial auto-correlation in a neighbour-
hood

Secondary texture Rx64 (raster package)

Entropy (BS) Measure of spatial disorder in the distri-
bution of elements within the grey level 
co-occurrence matrix

Secondary texture Rx64 (GLCM pkg)
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aim of a post-classification approach is to allocate class-
labels to the data values to produce thematic maps.

Pre‑classification

The pre-classification approach uses backscatter values 
taken from rectangular bins of the sampling locations rep-
resentative of the different geomorphological and substrate 
features of the ROIs. Following, basic statistics and tem-
poral trends were studied (for example, fluctuations around 
the ±1 dB accuracy threshold; Hammerstad 2000). In order 
to detect outliers in the time series, sigma detections where 
chosen as the favoured statistical measure to quantify the 
dispersion of a set of data values.

Ensemble approach classification

An ensemble method, combining supervised and unsuper-
vised classifications was also applied. K-means classes (dB 
ranges) identified in  T7 were used to reclassify the com-
plete dataset for which ground-truth data were not avail-
able. From this classified dataset, proportion counts were 

extracted to observe temporal trends. Prior to transforming 
the successional backscatter mosaics into classified data, 
the Within Group Sum of Squared Distances plot was com-
puted independently for each dataset. This ensured that the 
number of classes in each time series was maintained, and 
allowed testing. This also serves to test the class discrimi-
nation potential of data gathered at 100 and 300 kHz from 
the EM1002S and EM3002D, respectively. This technique 
is similar to computing a silhouette plot where the optimal 
number and size of classes in a dataset becomes visible 
(Eleftherakis et al. 2012).

Post‑classification

The post-classification approach made use of the most com-
monly employed tool in change detection used in remote 
sensing studies: the transition matrix (Pontius et al. 2004; 
Braimoh 2006; Rattray et  al. 2013). In this analysis, two 
unsupervised seafloor maps (e.g. prior and after a natural or 
anthropogenic event) are cross tabulated to derive detailed 
statistics describing the temporal changes. Persistence and 
class swap dynamics, gross gains and losses, between time 

Fig. 5  a Backscatter distribu-
tion in the study area, and per 
sample dataset (ST1533-T7 
dataset), b boxplot of mean 
backscatter extracted from a 
10 m buffer at the ground-truth 
locations, c same as (a) using 
depth, d same as (b) using 
depth. Training and test refer to 
the distributions of the training 
and validation sample datasets 
used in the RF classification
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and between classes’ transitions, as well as persistence 
ratios expressing the tendency of a category to undergo a 
certain change process were derived after Braimoh (2006). 
Swap is defined as the change in spatial location of a sub-
strate type between times. The net change describes the 
difference in quantity of a substrate class between time 
1 and time 2. Thus, swap describes changes in location, 
whereas net change reports changes in quantity. Gain and 
Loss describe an increase and decrease of the areal extent 
of a substrate class respectively. Gain (Gp), Loss (Lp) and 
Net (Np) to persistence ratios are derived as a measure of 
class tendency to the different types of transition. Values 
above 1 indicate that a class is more likely to gain or lose 
from other classes rather than persisting across the time 
scale analysed. Values close to 0 indicate little or absence 
of change. The net change to persistence ratio,  Np, indicates 
the overall trend of a category with negative and positive 
values indicating the directionality of the temporal trends.

Results

Firstly, results are presented on the supervised classification 
achieved by implementing the Random Forest algorithm. 
Secondly, the supervised model is compared to the map 
of the study area produced by the unsupervised clustering 
method. Next, the results from the two-dimensional mor-
phological analysis are provided, followed by the change 
detection approaches tested on the time-series backscatter 
dataset.

Supervised map of the study area

Figure  5 shows the visual validation of the sample data-
sets. This showed an overall good representation of the BS 
variation in the study area (Fig. 5a). Mean backscatter val-
ues, extracted within 10 m circular buffers at the sample’s 
positions, indicate good separation of the classes (Fig. 5b) 
where coarse-hard and fine-soft classes exhibit the high-
est and lower backscatter values respectively. Similarly, 
the separation using the bathymetry evidences the distribu-
tion of substrate types within different depth zones (i.e. fS 
on the top of the sandbank, mS + b transiting to the deep-
est area, and cS + G in the gully; Fig. 5c, d). The predicted 
substrate classes’ distribution by the Random Forest super-
vised classification is shown in Fig. 6b.

The most important variables selected by the feature 
selection tool were BS, BS 3 × 3 mean filter, BS Local 
Moran and bathymetry. With these selected features, the 
map produced has an overall accuracy (A) of 81%. Further-
more, more than 70% of the classification did not occur by 
chance (k = 73%).

Comparison between supervised and unsupervised models

Figure  6 shows the visual agreement between supervised 
and unsupervised classifications, while agreement metrics 
between these models are summarised in Table 5. Overall, 
agreement is high with an overall quantity and allocation 
difference <10%. In terms of quantity, classes differ by an 
overall of 0.42%. The larger differences result as alloca-
tion disagreement of 9.47 and 8.16% for mS + b and cS + G 
classes respectively. The fS class is by far experiencing the 
highest between-map agreement (Table  5) with 1.1 and 
0.42 differences in allocation and quantity respectively.

Morphological changes

To characterize the dynamics over the full period, depth 
profiles were extracted from the ROIs for 2004  (T1) and 
2015  (T7; Fig. 7). Within the barchanoid dunes and along 
the top sand bank areas (Fig. 7a, b respectively) horizontal 
migration accounts for up to ≈40 m with a SW-NE direc-
tionality. Considering the in-between surveys, it is possible 
to observe a progressive migration, advancing of ca. 20 m 
from 2004 to 2010, ca. 10 m from 2010 to 2013 and less 
than 5  m progressively throughout the remaining surveys 
up until late 2015. Within the relatively flat and gravel-
populated areas (Fig. 7c, d, f), devoid of dunes, the seabed 
shows an overall stability. In these areas, vertical changes 
or aggradation was observed, but cannot be confirmed as 
they remain within the IHO Order S and 1A confidence 
envelopes. Nonetheless, a loss of profile complexity is 
observed between the two campaigns.

Change detection

Pre‑classification

The boxplot analysis carried out by extracting backscatter 
data from the selected ROIs is shown in Fig. 8. Excluding 
the EM1002S data (not comparable in terms of insonifica-
tion values), no significant trends are observable with the 
exception of zones A and C (transitional and gully zones 
of the study area) which exhibit deviations >1 σ and gener-
ally a decreasing trend up until late 2014  (T5). Noticeably, 
all selected regions follow an overall elliptical trend (vis-
ible in Fig. 8h) and re-establish to the initial state of Feb-
ruary 2010  (T2) by December 2015. Throughout all cases, 
the spread is lower than 1  dB evidencing no statistically 
significant changes. Testing this hypothesis, the reduced χ2 
test computed within each region shows that a significantly 
negative trend in backscatter spatio-temporal behaviour 
does not exist (χ2 ≪ 1).
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Ensemble approach classification

Class proportion counts per survey were extracted from the 
classified EM3002D dataset (ensemble approach) and are 
shown in Fig. 9. Temporal trends’ and classes’ relationships 
are shown for the entire study area, as well as for the three 
selected gravel refugia. The fS class appears to be relatively 
stable across all instances and survey. An inversely cor-
related relationship is evident between cS + G and mS + b 
classes. This is also shown in Fig. 10 where the proportion 
counts per survey are plotted against each other.

At the level of the entire study area (Fig. 9d), and simi-
larly to the pre-classification analysis, this method indicates 

that the class proportions return to their original state. On 
the contrary, within the gravel refugia zones (Fig.  9a–c), 
the cS + G class experiences a net loss in favour of finer 
substrate types with no indication of re-establishment to a 
previous state.

Post‑classification

The bi-temporal transition matrix, cross-tabulating the rela-
tionships between thematic instances present within the 
classified maps of 2004  (T1) and 2014  (T4) is presented in 
Table 6. Persistence is denoted along the diagonal whereas 
off-diagonal entries are from-to transitions. Over 50% of 
the substrate remains static between the classifications. 
This is mainly driven by persistence of the mS + b and 
cS + G classes (with 27 and 20% persistence respectively). 
The class fS experienced the lowest persistence (7.6%) evi-
dencing mostly the dynamics of the bedforms (see Fig. 11A 
where gains and losses result from the migration of dune 
crests).

Following a more detailed inspection of the matrix, 
ratios describing class tendencies to persistence, gains 
and losses, swap and net change dynamics were computed 

Fig. 6  a K means unsupervised 
classification, b Random Forest 
supervised classification and 
c map of overall agreement 
between classifications

Table 5  Components of difference, allocation and quantity, between 
models predicted by the Random Forest and K-means (pixels in per-
centage)

Differences/class Overall fS mS + b cS + G

Difference 9.79 1.52 9.78 8.28
Allocation 9.37 1.1 9.47 8.16
Quantity 0.42 0.42 0.31 0.12
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(Table 7). Gains, losses and persistence changes are illus-
trated in Fig.  11 where their reciprocal relationships are 
observable; in particular between mS + b and cS + G 
classes in the North-Eastern part of the study area (see 
Fig.  11B where the mS + b class gains in favour of the 
cS + G class, forming ripple marks). All classes experi-
enced a net gain in quantity between the 2 years except for 
the cS + G class which experienced a net loss of 7.5% [see 
Fig. 11C where it is visible that within a selected refugium, 
the loss is depicted, partly due to bedform migration (SW) 
and partly due to the appearance of the mS + b class within 
the flat and gravelly portion of this area (NE)]. Subtracting 
the net change from the total change derives swap dynam-
ics. Of the total change for all classes, 83% results as swap; 

losses in a substrate class are replaced by gains in another 
substrate class. The mS + b class experienced the highest 
gain (21.41%), as well as the greatest loss (21.14%) imply-
ing that most of the change attributable to this class is due 
to swap in location. Proportionally, 99.3, 72.5 and 65.3% 
of changes are attributable to swap for mS + b, cS + G and 
fS classes respectively. The gain, loss and net changes are 
compared to the Persistence (diagonal elements of Table 6; 
calculated after Braimoh 2006) in order to derive ratios 
(respectively Gp, Lp and Np) providing a measure of class 
tendency to types of transition. Values above 1 indicate 
that a class is more likely to gain or lose from other classes 
rather than persisting between classified instances. Values 
close to 0 indicate little or absence of change. The fS class 

Fig. 7  Depth profiles extracted 
from the digital elevation model 
time series. a Barchanoid dunes 
area, b top sand bank, c gully 
area, d gravel refugium 2, and 
e gravel refugium 3. Blue and 
red envelopes in d, e are the 
±IHO confidence intervals for 
the EM1002S and EM3002D 
surveys respectively
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has the highest Gp value: it has a high tendency to gain. The 
mS + b class has similar Gp and Lp ratios, evidencing the 
high percentage of swap in this class. Most striking is the 
negative Np ratio and the high Lp of the cS + G class.

Discussion

Multibeam backscatter in a monitoring context

The basic premise in using MBES backscatter data for sea-
floor change detection is that changes in substrate cover 
must result in changes in backscatter values and changes 
in backscatter due to seafloor cover change must be large 
with respect to changes caused by other factors (rea-
dapted from Singh 1989) such as sea conditions, sensor’s 

intrinsic characteristics, changes in on-board acquisition 
parameters, vessel speed and direction of survey (Rattray 
et  al. 2013; Lurton and Lamarche 2015). As such, verifi-
cation of MBES backscatter stability is critical and should 
be controlled (Anderson et  al. 2008). In this study, these 
limitations were mostly overcome as the dataset used was 
acquired by maintaining rigorous standards of acquisition 
and processing, including careful attention on environmen-
tally dependent transmission losses (i.e. by regular control 
of absorption coefficient). To verify instrumental drift on 
the medium to long term, the trend in backscatter levels 
was compared against a time series in backscatter levels at 
a known reference area (KWGS reference area; Blue Poly-
gon in Fig. 1; Roche et  al. 2016). As such, average back-
scatter levels of the RV Belgica EM3002D could be com-
pared from one survey to another during a similar period 

Fig. 8  Boxplot analysis for the entire time series  (T1–T7). Mean and 
standard deviation values were calculated from the EM3002D data-
set only. a Barchanoid dunes area, b top sand bank, c gully area, d 
gravel refugium 1, e gravel refugium 3, f gravel refugium 4, g entire 

study area, and h mean backscatter values for the EM3002 time series 
 (T2–T7), within each ROI. For a–g red and blue dotted lines represent 
weighted mean and ±1 σ error respectively. For the ROIs location the 
reader is referred to Fig. 1 (A–F boxes)
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and allowed obtaining a dataset with temporally consistent 
dB ranges (yet relative).

However, changing environmental factors and seabed 
conditions may affect the backscatter values also. The effect 
of biological activity, which is seasonally driven and linked 
to the spawning and recruitment period of benthic species, 
is probably the most prominent factor. From literature, it is 
known that megabenthic zoo- and/or phytobenthic structur-
ing species can be responsible for significant changes in the 
acoustic signal (e.g. Demosponges and Submerged Aquatic 
Vegetation, brittle stars; Montereale-Gavazzi et  al. 2016; 
Holler et al. 2016), but also the occurrence of soft substrata 
macrobenthos ecosystem engineers such as tubeworms and 
some bivalves (e.g. Degraer et al. 2008; Van Lancker et al. 
2012). Hitherto, the impact on the actual backscatter lev-
els is poorly quantified and more research is needed on this 
aspect in a monitoring context. Beside changes due to the 
successional stages of some benthic species, natural vari-
ability in sediment deposition and erosion can also affect 
the backscatter level. This will depend on the hydrodynam-
ics of an area, as well as on the sediment availability. Col-
lection of tightly spaced acoustic surveys would be ideal 

to have a better control on the driving forces which would 
support the interpretation of trends in backscatter levels. In 
this study, the time lag between surveys was rather irregu-
lar which complicated distinguishing changes from natural 
versus anthropogenically-steered events. The combination 
of morphological analyses with backscatter change analy-
ses is important in this regard.

Change detection methods

The pre-classification analysis of the backscatter time 
series indicated that within the selected regions of interest, 
no significant changes in seabed substrate could be detected 
across the timespan analysed. Since the first dataset was 
recorded with a former-generation echosounder, which 
was not cross-calibrated with the EM3002D and using a 
different frequency range, the values derived could not 
be directly compared in terms of the range in insonifica-
tion values. The only evident behaviour in the data was in 
the barchanoid and gravel gully regions where locally, the 
mean backscatter level fluctuated around the 1 σ deviation 
(Fig. 8a, c).

Fig. 9  Class proportions during 
each survey extracted from 
the classified dataset for three 
gravel refugia stations (a–c) and 
the entire study area (d). For 
the refugia’s location the reader 
is referred to points D, E and F 
in Fig. 1
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Since the comparison is rather focused on the spatial 
delineation and areal extent of the substrate classes rather 
than the intrinsic, physical characteristics of a circum-
scribed area, the post-classification methods, as adopted 
similarly to Rattray et  al. (2013), did allow comparing 
data from different echosounders, and acquisition param-
eters. This was also possible due to the agreement in 
the number and size of classes discriminated by the two 
echosounders. The approach revealed information on the 
behavioural tendencies of certain substrates to undergo a 

certain change such as the negative trend of the hard sub-
strate class and gain of the finer substrates.

In this study, there was a high agreement between super-
vised and unsupervised models, using quantity and allo-
cation agreement/disagreement metrics, which allowed 
extending the analysis to the entire time-series dataset. As 
such, the initially ground-validated information could be 
fully exploited and extended to the full backscatter dataset. 
Substrate class proportions over time could be extracted 
so that global changes could also be accounted for. This 
is unlike the pre-classification approach that is limited to 
selected sub-areas where backscatter levels were extracted 
from. Therefore, the ensemble approach combined super-
vised and unsupervised classification algorithms (simi-
larly to Ierodiaconou et al. 2005) which allowed using one 
ground-truth dataset to train a classification that was sub-
sequently applied to the whole time series. This is a big 
advantage since sampling of each time series is most often 
not realistic given survey time and cost restrictions. Here, 
application of consistent data acquisition and processing 
allowed the comparability of instant statistical analysis 
results at various times.

Fig. 10  Linear regressions 
between proportions of cS + G 
and mS + b classes for the 
gravel refugia stations (a–c) and 
the entire study area (d). Dotted 
lines 95% confidence limits. For 
the refugia’s location the reader 
is referred to points D, E and F 
in Fig. 1

Table 6  Raw Confusion matrix rounded to two decimals cross tabu-
lating the classified instances in 2004 and 2014 thematic maps

Bold denotes either accuracy or persistence depending on the case

2004/2014 fS mS + b cS + G

fS 7.63 5.89 1.05
mS + b 12.22 26.79 8.92
cS + G 1.99 15.53 20.03
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Accordingly to recent research (Li et al. 2016), it was 
shown that the Random Forest classifier is a highly valu-
able tool for seafloor applications, producing accurate 
models and providing information on the most important 
feature layers used in the classification. Similarly to Dies-
ing et al. (2014), backscatter was by far the most impor-
tant variable for seafloor substrate discrimination (with 
highest Boruta Z-score after 1000 runs). Depending on 
the method applied, the accuracy of the change detec-
tion is strictly dependent on the accuracy of the classified 
maps used in the assessment and on the stability of the 
repeated observations.

Application within a MSFD context

By classifying the data, it was shown that from before the 
start of dredging activities  (T1), northwards of the study 
area, to just after the peak of marine aggregate extraction 
 (T5), the gravel class progressively decreased at the level 
of the entire study area, including a net loss of the gravel 
class extent within the defined ecologically noteworthy 
areas (Fig. 1, black outlined polygons). From this, the ratio 
of hard versus soft substrata (Belgian MSFD indicator on 
seafloor integrity) first showed a negative trend, at least 
after the peak of the extraction activity, followed by a posi-
tive trend indicating a recovery process. Based on the depth 

Fig. 11  Map representation of persistence, gains and losses for each class in the study area overlapping between  T1 and  T5

Table 7  Summary of the changes between 2004 and 2014 (in percentage and expressed as ratios)

Class Total 2014 Total 2004 Gain Loss Total change Net (quantity) Swap (location) Np Gp Lp

fS 21.83 14.56 14.21 6.94 21.15 7.27 13.87 0.96 1.87 0.91
mS + b 48.2 47.92 21.41 21.14 42.55 0.28 42.28 0.02 0.8 0.79
cS + G 29.99 37.53 9.97 17.51 27.48 −7.55 19.93 −0.38 0.5 0.88
Total 100 100 45.59 45.59 91.18 15.1 76.08
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time series, a morphological analysis revealed that part of 
the change is attributable to bedform migration of which 
the drivers require further investigation. An aggradational 
trend in the gravel areas was suggested from the observa-
tions, though this fell within the IHO confidence limits 
used. Despite this, changes in the depth profile depicted a 
reduction in seafloor complexity considering the surveys 
before and after the initiation of intense marine aggregate 
extraction.

A methodological framework to unambiguously link 
changes to pressures is under development and is yet ham-
pered by a lack of data and knowledge on the natural varia-
bility and resilience of offshore sedimentary systems. Nev-
ertheless, the present results are highly significant from an 
ecological perspective and necessitate a further investiga-
tion of the substrate evolution. If indeed smothering and/or 
deposition events would be more persistent under increased 
anthropogenic pressure, this may affect several ecosystem 
states and functions: e.g. reduction of sessile bio-encrusting 
epifauna; loss of surficial complexity leading to reduced 
micro-roughness; burial of biogenic clastic material; 
and overall reduced potential of bentho-pelagic coupling 
(Watling and Norse 1998; Hewitt et al. 2005).

Conclusion

This study highlights the importance of researching 
approaches and testing tools usable for local- and regional-
scale environmental assessments (i.e. for MSFD imple-
mentation). A selection of useful methodologies was pre-
sented to detect changes in seafloor substrate types. The 
investigation showed how under specific standardised 
multibeam backscatter acquisition procedures, the confi-
dence of repeated acoustic observations could be enhanced 
significantly and how the valuable, but expensive ground-
truth information could be propagated from one survey to 
a time-series dataset via the application of supervised and 
unsupervised classification routines. The serial backscat-
ter dataset was analysed using techniques developed in the 
remote sensing terrestrial realm showing that the methodol-
ogies are applicable for marine environmental monitoring. 
This is most promising for before and after control impact 
(BACI) type of assessments and such datasets would inevi-
tably increase our understanding of anthropic impacts 
over an area. Although the methods presented were tested 
at local scales, they are repeatable and can be applied to 
broad-scale geographical extents; a major limitation being 
the need to collect large-scale datasets covering entire juris-
dictional areas.
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