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Abstract. The plasma dispersion function and the
reduced velocity distribution function are calculated
numerically for any arbitrary velocity distribution
function with cylindrical symmetry along the magnetic
field. The electron velocity distribution is separated into
two distributions representing the distribution of the
ambient electrons and the suprathermal electrons. The
velocity distribution function of the ambient electrons is
modelled by a near-Maxwellian distribution function in
presence of a temperature gradient and a potential
electric field. The velocity distribution function of the
suprathermal electrons is derived from a numerical
model of the angular energy flux spectrum obtained by
solving the transport equation of electrons. The numer-
ical method used to calculate the plasma dispersion
function and the reduced velocity distribution is de-
scribed. The numerical code is used with simulated data
to evaluate the Doppler frequency asymmetry between
the up- and downshifted plasma lines of the incoherent-
scatter plasma lines at different wave vectors. It is shown
that the observed Doppler asymmetry is more depen-
dent on deviation from the Maxwellian through the
thermal part for high-frequency radars, while for low-
frequency radars the Doppler asymmetry depends more
on the presence of a suprathermal population. It is also
seen that the full evaluation of the plasma dispersion
function gives larger Doppler asymmetry than the heat
flow approximation for Langmuir waves with phase
velocity about three to six times the mean thermal
velocity. For such waves the moment expansion of the
dispersion function is not fully valid and the full
calculation of the dispersion function is needed.
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1 Introduction

We want to estimate the field-aligned electron mean drift
velocity ¥, from incoherent scatter Doppler measure-
ment of the plasma lines (Vidal-Madjar et al., 1975;
Bauer et al., 1976; Showen, 1979). In order to do this we
need to solve accurately the plasma dispersion relation
for electrostatic waves at high frequencies and thus to
have an accurate model of the electron velocity distri-
bution function.

A common way of representing the whole electron
velocity distribution function is to separate it into two
populations: the ambient or bulk population f,(v) and
the suprathermal or tail population fi(v), and special
care needs to be taken for the treatment of the transition
region between the suprathermal and ambient electrons.
At ionospheric heights about the F2 region, the bulk
population of the electrons is collision-dominated and
thus the velocity-space distribution is expected to be
very close to a Maxwellian. In this case, the parameters
describing the state of the thermal population are: the
electron density n,, the electron temperature 7, and the
potential source of inhomogeneity such as the spatial
gradients of electron temperature V7, and pressure Vp,,
as well as possibly an electric field E. These parameters
are provided by the analysis of the measurement of the
ion line incoherent scattering. On the other hand, the
suprathermal component f;(v) is taken from a complete
kinetic electron transport code which takes into account
the ionization and heating resulting from both solar
insolation and particle precipitations.

In the first part, we describe and review the original
theory developed to calculate the velocity distribution
function of the ambient electrons in the presence of a
temperature gradient and/or an electric field (Spitzer
and Harm, 1953). Thereafter we present and discuss
the calculations we use to represent the suprathermal
part of the distribution function. We then describe a
numerical method to calculate the full two-dimensional
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dispersion relation. We test our numerical code and
discuss the results on simulated Doppler asymmetry
data for radars with different wave vector and compare
the results given by the heat flow approximation of
Kofman et al. (1993).

2 The ambient velocity distribution

For low energy and for a fully ionized plasma consisting
of electrons and one ion species, the distribution
function of the electrons in a highly collisional regime,
i.e. in a regime where the velocity-space distribution of
the electrons is close to a Maxwellian (Gombosi and
Rasmussen, 1991), can be approximated by the Spitzer-
Héarm distribution function of Cohen et al. (1950) and
Spitzer and Harm (1953).

This time-independent distribution function is the
result of the presence of a weak electric field and a
temperature gradient. The distribution function is
expanded as a power series in the Knudsen number ¢
which represents the ratio of the microscopic length
scale to the macroscopic length scale. In this theory only
the first order in e is kept, which is known as the
principle of local action (Woods, 1993). This restriction
to small values of € implies that the electron mean free
path Z, is much smaller than the different scale lengths
considered Vlog7,, Vlogp, and eE/K;T, (Ljepojevic
and MacNeice, 1989). The two Knudsen numbers
associated are respectively ex and ey defined as

eE  Vp,
= Ae _ 1
& 8 (KbTe De > ( )
and
VT,
€T — 2/13 Te y (2)

where E is the electric field, 7, the electron temperature,
pe the electron pressure and V represents the derivative
along the line of sight. For small Knudsen numbers, i.e.
ez << 1 and er <1, perturbation methods apply and the
ambient electron velocity distribution function f, is
expanded about a local Maxwellian fy(v)=n./
(271)3/2/1)2 exp(—(v/ve)?/2) with thermal velocity v,=
(KyT,/m.)"* and takes the following form

fa(xvenu) :fo(xve)
[1 +Z,U(EEXE(X/\/§) + GTXT(X/\/E))], (3)

where p is the cosine of the pitch angle measured from
an axis parallel to the direction of the temperature
gradient and electric field, Z is the charge number of the
ion species and x is the ratio v/v.. The functions Xz and
Xr are the solutions of two second-order differential
equations [Eq. (40) of Spitzer and Harm (1953) and Eqgs.
(6)-(13) of Cohen et al. (1950)] derived from the
Boltzmann’s equation where only the long-range elec-
tron-electron and the electron-ion interactions have
been taken into account through two Fokker-Planck
collision operators. This approximation is valid for low
energy only, so that the upper boundary of integration

of these functions should not be too large compared to
the mean thermal velocity v.,. We have recalculated the
solutions to these equations for different values of the
upper boundary. Figure 1 shows the two functions Xz
and X7 for those different values of the upper boundary
of integration xpx.

By taking the first- and third-order velocity moments
of the perturbation functions Xz and X7 one defines four
transport coefficients yz, oz, yr and or. These are the
normalized transport coefficients relative to a Lorentz-
ian gas (Spitzer and Harm, 1953; Shkarofsky, 1961).
Equations 4-7 show the relations between these coeffi-
cients, the velocity moments of the distribution function
and the transport coefficients o, 7., 1, and ..
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Fig. 1. The perturbation functions Xz and X7 integrated to different
upper boundary xpm.x = v/\/ivg =2.8,3.2,3.6 and 4.0, and for an
ion charge number Z=1. Note that Xz(0)=X7(0)=0 and that the
Xg’s are shifted by —10 with each other, the X7’s are shifted by +5
with each other, the reference curves (i.e. not shifted) are for
Xmax = 2.8
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where o, is the electrical conductivity, 7, is the current
flow conductivity due to a temperature gradient at
constant electron density, y, is the heat flow conductiv-
ity due to an electric field at constant electron temper-
ature and x, is the thermal conductivity.

Table 1 presents the values of the normalized
transport coefficients we have recalculated and the
original values of Spitzer and Harm (1953). With the
exception of the values for x,,x =2.8, the values of the
transport coefficients are in good agreement (under 1%)
with the wvalues calculated by Spitzer and Hirm
(Xmax =3.2).

In the work of Spitzer and Hédrm, the electron mean
free path 4, is taken to be the mean free path due to
electron-electron collisions and electron-ion collisions.
We shall correct the electron mean free path to take into
account the electron-neutral collision term (Banks,
1966). We define the electron mean free path as
1 1 1 1
)Le /lee * /lei * j~en ’ (9)
or as a function of the electron-charged particle free
path Z..:

o ;Lec
B 1+ ;vec//len .

The electron-neutral collisions tend to reduce the
electron mean free path, and in the limit of low neutral
particle densities we recover the electron mean free path
value of a fully ionized plasma (Banks, 1966). It is
important to note that the differential equations for the
perturbation functions Xz and X7 have not been
modified, thus the departure of the velocity distribution
function from the Maxwellian state is still caused by
Coulomb interactions through the two Fokker-Planck
collision operators for distant interactions.

In the ionosphere, a so-called polarization electric
field E builds up such that the ions and electrons are
constrained to drift as a single gas, which maintains bulk
charge neutrality. E is determined by the current J and it

Je (10)

Table 1. The normalized transport coefficients as defined in Eqgs.
(4) to (7) calculated for different values of xp,,x and compared with
the ones given by Spitzer and Hirm (xp.x = 3.2)

Xmax 2.8 3.2 Spitzer-Hirm 3.6 4.0

VE 0.5740  0.5811  0.5816 0.5826  0.5832
Y7 0.2507  0.2677  0.2727 0.2715  0.2718
or 0.4436  0.4622  0.4652 0.4672  0.4698
or 0.1877 0.2149  0.2252 0.2228  0.2237

exists whenever there is a gradient in the electron density

or in the temperature (Min et al., 1993). It is given by
J \% e e

E=—4-L Ty, (11)
g, en, G,

If the field-aligned current is attributed to the flow of the

suprathermal electrons only then the J/g, term is small

compared with the gradient terms and we get the

following relation between the electric field E and the

gradient of temperature V7,

Vpe 397Ky
en, 2yge
Using Egs. (1) to (7), this leads to the following
relationship between the two Knudsen numbers ez and er
4epyp + 3eryr = 0. (13)

In the rest of this paper we always consider the presence
of such a polarization electric field. The two Knudsen
numbers for the Spitzer-Hidrm distribution then always
satisfy Eq. (13).

E =

VT,. (12)

3 The suprathermal velocity distribution

The suprathermal velocity distribution f; we use is
derived from the angular energy flux ¢ calculated by the
electron transport model code along the Earth magnetic
field described in Lilensten ez al. (1989) and Lummerz-
heim and Lilensten (1994).

In the ionosphere, primary photoelectrons or precip-
itating electrons move along the magnetic field, produce
heat and provoke processes such as excitation and
ionization. In an ionization process, the incident elec-
tron mostly scattered forward is called the primary
electron, while the extracted electron may be scattered in
any direction and is called the secondary electron. This
code calculates the energy flux of the electrons by
solving the vertical kinetic transport equation. This
equation simply expresses the fact that the variation of
the steady-state electron flux with the scattering depth
for a given altitude, energy and pitch angle, is the
difference between whatever leaves that energy, altitude
or angle slab and whatever enters it. The variations in
energy or angle due to collisions are described through
differential cross-sections. An additional energy loss
arises from the heating of the ambient thermal electron
gas due to hot electrons to thermal electrons interac-
tions. This loss process is assumed to be a continuous
energy loss of the hot electrons to the thermal electrons,
without any deflection during the process.

We are using the angular energy flux calculated by
this code as our input to calculate the velocity distribu-
tion. The electron velocity distribution is simply related
to the angular energy flux by

2
S E, Q1) = —fi(E, Q) eV 'em s (14)
me

where E=fm.v* and Q is the solid angle. With the
assumption that the angular energy flux is symmetric
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around the magnetic field, f; is a two-dimensional
function of the energy E or the velocity v and of the
pitch angle 6 or the cosine of the pitch angle 4 = cos 6 to
the magnetic field at a given altitude.

The angular energy flux ¢ is calculated over an energy
grid of 215 points ranging from FEu;,=0.3eV to
Enax=350eV and over a u-grid corresponding to the
points of the double-Gauss quadrature integration rule
(Stamnes et al., 1988). The number of points in the u-grid
is often referred to as the number of streams. The double-
Gauss quadrature refers to two Gauss quadratures
applied separately on the upper and lower hemispheres.
The main advantage of this double-Gauss scheme is that
the quadrature points (in even orders) are distributed
symmetrically around |u|=0.5 and clustered both to-
wards |u| =1 and u=0, whereas in the single Gauss
scheme they are clustered towards |u|=1. This clustering
towards u=0 will give superior results near the bound-
aries where the functions to integrate vary rapidly or can
even be discontinuous, i.e. around u=0.

The angular flux calculations we are using were
obtained by running the code for 25 June 1994 at
14:00 UT over Tromse assuming an A, index of 3 and
a F10.7 index of 75. The ionospheric parameters used as
input to the code have been computed by the IRI 90
model (Bilitza, 1990).

Figures 2 and 3 show two examples of calculation of
the distribution function for an eight-point angular
quadrature. Figure 2 shows only the flux for one angle,
the flux at this height is nearly isotropic and one could
not separate the flux. From a height of about 200km and
above, the velocity distribution starts to develop an
anisotropy mostly in the direction of the magnetic field,
i.e. for |u|~1. This feature is clearly seen in Fig. 3: the
two angular distributions in the lowest plate are for
nearly parallel and anti-parallel directions to the mag-
netic field and they clearly present differences in inten-
sity, while in the highest plate (angular distributions for
the directions nearly perpendicular to the magnetic
field), the two curves cannot be separated.

An interesting function which illustrates the regions
in phase space where the heat flux is predominantly
carried is the ratio of the integrated heat flux up to
velocity v = xv, and normalized to the total net heat flux
gs (Gray and Kilkenny, 1980). We define in this way the
function a(v/v,)

vl

o) = 52 [ [ JwnP - o 2w e, (15)
sJ0J-1

where uy is the mean drift velocity of the suprathermal

velocity distribution. Note that with the symmetry

around the magnetic field both the mean drift velocity

ug and ¢, are vectors parallel to the magnetic field of

component u, and ¢y, respectively.

Figure 4 shows the values of the parameter o at
different altitudes for a standard set of suprathermal
distribution function calculated by the transport code
for an eight-stream run. At high altitudes (see Fig. 4 at
246 km for example), the local skewness is more than the
net skewness for velocity v ~ 30v,, which means that
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Fig. 2. The suprathermal angular velocity distribution function
calculated by the transport code for an eight-stream calculation at
151 km and for a pitch angle of 86° (i.e. £=0.0694). The distribution
is nearly isotropic, and the data at the other pitch angles would not be
distinguishable on the same plate

locally the distribution can have skewness of opposite
sign compared to the total skewness of the distribution.

We now have a representation for the ambient and the
suprathermal distributions, the next operation consists in
the treatment of the transition region between the
suprathermal and the ambient electrons. Sophisticated
methods such as the numerical resolution of the non-
linear Boltzmann equation (Ashihara and Takayanagi,
1974; Jasperse, 1976), as well as full analytical treatment
such as the one proposed by Krinberg (1973) have been
studied to solve this problem. However, it has been shown
later that a good approximation for the complete
distribution function can be obtained by joining the two
distribution functions at the energy for which the two
distributions have equal intensities (Krinberg and Aka-
tova, 1978; Stamnes and Rees, 1983). For simplicity we
choose this method and in the rest of this paper the
terminology truncated distribution refers to a distribu-
tion cut at the velocity where the ambient population
equals the suprathermal population.

4 Numerical two-dimensional plasma dispersion

In linear theory the differential scattering cross-section
d*c/dQ dw per angular frequency and per solid angle for
a multi-component, uniform, stationary, along the
magnetic field and non-relativistic plasma with the
collisions effects included through a BGK model is
given by (Sheffield, 1975; Bjernd and Trulsen, 1986;
Ichimaru, 1992)

Lo ! 2ln % (n % p)|*S(k, ) (16)
A7 . = —=Ner 9 )
dQdew e P
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Fig. 3. The suprathermal angular velocity distribution function for the
same eight-stream calculation at 249 km. Each plate contains two
curves corresponding to two angles symmetric around the direction
perpendicular to the magnetic field, i.e the upward angular flux (thin
solid line) and the downward one (thick solid line). The upper
horizontal scale on each plate is energy expressed in eV

where the spectral density function S is defined as

|y Gl )P P, ) — vk, @)
Sth, ) = '1 * D<k,w>‘ VA (k)
+ S ) |
Im Py(k, ) — vlngk,wN , (17)
VTIlX;(k, )]
with
Dik,w) = 1Y Cylk, ), (18)
Cylk, ) = Zy(k, )/ X, (k, o), (19)
Xy(k,w) = 1+ iv,Py(k, o), (20)
) = > Zu(k,0), (21)
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Fig. 4. The coefficient of location of the heat flux o of Eq. (15) for five
different altitudes for the eight-stream calculation of the transport
code of the 25 June 1994

naznuk/#()iv“d?’v' (23)

fak = fouk/nqi denotes the velocity probability distribu-
tion function for the ™ component of the part1cle species
o (e for the electrons and j for the ions). v, is the collision
frequency of the particle species a, 73 = e*/(4negm,c?) is
the electron radius, n is the unit vector pointing from the
scattering volume towards the receiver and p is the unit
polarization vector of the incident radiation; w is the
frequency shift between the transmitted radio wave w
and the received frequency w,, k is the wave vector shift
defined as the difference between the returned wave
vector and the transmitted radio-wave vector k.

w = w, — wy, (24)
k=2n—k. (25)
c

D and Z, are respectively the dielectric function and the
opposite of the susceptibility function for the particle
species o.

In order to calculate the dispersion relation, we need
to calculate integrals of the P and Z types defined by
w? k-Vof(v)

Z(k,w) = =%

3
2
k2 Lk~v—w—ivdv (26)

and
Pko) = [ @

for velocity probability distribution f defined in a
cylindrical coordinate system along the magnetic field
(which is the same direction as the temperature gradi-
ent), and when the scattered wave vector k is aligned to
the local magnetic field line.

When v =0, one can note by applying the Plemelj
formula that the imaginary part of P is proportional to
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When the collision frequencies are very small, we found
that P can be expressed in the form

1 1p w
kv, "\kv, /)’
xzﬁvgf(xveaﬂi)

n/2
F0) = 2n[ 2 Wi/xl wox =/

i=—n/2
i#0

Pk, w) ~ (29)
with

dx

where w; and y; are respectively the weights and points
of a m-points double-Gauss quadrature. In the same
way, Z can be formulated

k2 w
Z(k,w) ~ —<i> Z, <E>’ (31)
with
n/2 X
Z,(y) = — / / 21 Vof (e, )
" l—fn/Z x| K e x_y/:ul

l
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Fig. 6. On the left, the real and imaginary parts
of the Z, function for same complex argument as
in Fig. 5. On the right, their relative error with
the real and imaginary parts of the W function
(Ichimaru, 1992). The normalized Doppler shift
of the Maxwellian distribution is x4 = 0.5
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S (x = »/w)* +n? ’
of (v, ) | 1= 42 9f (v, ) 1
“Vof (v, p) = . 33
Vol (o) = p=p =+ — =5 (33) (35)

When collisions are not negligible, the P, and Z,
functions are modified to the following expressions

n/2

P,(y+in) = 2n Z w;

i=—n/2

X2 X2 3
X —U,
X1 lui

f(xveﬂui)(x _y/lul + ”7) dx (34)
(x—y/w)* +n? 7
and

The integral over the normalized velocity is either of
Cauchy principal values type or integral of rational
functions. Two different quadratures are used to calcu-
late these integrals.

4.1 Test of P, and Z, on a Maxwellian

We performed tests on the numerical evaluation of the
P, and Z, functions for a Doppler-shifted two-dimen-
sional Maxwellian distribution. The result for the Z,
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Fig. 7. On the left, the real and imaginary parts
of P, for real argument (y = 0) and for Knudsen
number e7 = 5- 1072 and ¢z = —3ery7/4y5. On
the right the difference between P, and
Z(x/\/2)/V/2 for the four different values of
xmax Of Table 1
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function is compared with the W function of a reduced
Doppler-shifted Maxwellian (Ichimaru, 1992). The re-
sult for the P, function is compared with Z(x/v/2)/v2
where Z is the plasma dispersion function defined by
Fried and Conte (1961).

The input for the code consists of a two-dimensional
array filled with sampled data in both pitch angle and
velocity. The velocity points are normalized to the
mean drift velocity v.. The parameters used for our test
(Figs. 5 and 6) are, for the velocity space: 250 points
ranging from 0 to 20v,. It is much more than required and
it is seen that the accuracy is not improved by increasing
the sampling rate, nor by taking more points in the tail of
the distribution function. On the other hand, the test
shows that the precision is highly dependent on the
number of points in the pitch angle quadrature for the
calculation in the near thermal region, i.e. for |v| < 4ve,
but not too much for velocities |v| > 4ve.

0
X = o/(kvg)

10

In the thermal region, the accuracy is drastically
improved by going from an eight-point double-Gauss
quadrature (the relative error is about 107!), to a 32-
point quadrature where the relative error is better than
10~*. For larger velocities the accuracy is quite stable
and is better than 1077,

4.2 Test of P, and Z, on the Spitzer-Hdrm distribution

We also performed tests on the Spitzer-Harm distribu-
tion function. We looked at the influence of the upper
boundary of integration xp.x of the Xz and X7 functions
when evaluating P, and Z,. The values of xq,,x we used
are the ones listed in Table 1.

For our test we used ey = 5-1072, although the
linear theory of heat conduction breaks down for such
large values of ey, that is these values give negative
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values of the velocity distribution function (Forslund,
1970). We used the same velocity grid as for the
Maxwellian distribution while we increased the number
of points in the pitch angle grid to 256 points. The results
are shown in Figs. 7 and 8. One can see in the real part of
the difference between Z, and W in Fig.8, the artifact of
the discontinuity of the distribution function at xj.x.
This effect is larger for the lowest value x,,x = 2.8 of the
boundary i.e. w/kv, = +2.84/2. For larger values of
Xmax the discontinuity of the thermal distribution is
pushed down at higher velocities and is attenuated due
to the Maxwellian behaviour at large velocities.

4.3 Test of P, and Z, on the suprathermal distribution

We used a 32-stream suprathermal calculation at an
altitude of 202 km as input. The transport code

Re Z, (x)

calculation of the distribution function was then inter-
polated over a 1024 double-Gauss points. The P, and Z,
functions were then computed using the distribution
function evaluated on this denser u-grid. The supra-
thermal velocity distribution used are very much
identical to the one presented in Fig. 3. When comparing
with the P, and Z, functions of a Maxwellian or a
Spitzer-Harm distribution, it is interesting to see how
the characteristics of the distribution function are
mapped on the P, and Z, shape. In order to integrate
correctly the irregularities or ‘spikes’ corresponding to
the discrete solar emission lines, we have to increase the
order of the pitch angle quadrature up to 512 or even
1024 points. Increasing further the number of points in
the p-grid space does not improve the results for large
values of w/kv,, i.e. above |w/kv.| > 5. On the other
hand, for |w/kv,.| < 5 the code is probably not so robust
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Fig. 8. On the left, the real and imaginary parts
of Z, for real argument and for ez = 5- 1072 and
eg = —3eryy/4yg. On the right the difference

between Z, and W for the four different values of

-0.02
-10

xmax Of Table 1
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to the spikes, as can be seen in the upper left plate in
Fig. 9, and further developments need to be made.
There are several remarks to be made about the P,
and Z, functions. First about the imaginary part of the
P, function (lower left plate in Fig. 9) which is
proportional to the reduced distribution function as is
seen in Eq. (28). If the distribution were isotropic the flat
part around zero should be equal on both sides of zero
up to the value corresponding to the minimum energy of
the suprathermal distribution. The effect of the aniso-
tropy on the reduced velocity distribution function is to
create a discontinuity at zero velocity and thus introduce
a zero-order skewness. Secondly, on both the real and
imaginary parts of the Z, functions (right plates in Fig.
9.), one can observe the signature of the distribution
function itself. In particular, the typical N, dip above 2
eV which corresponds to excitation of the vibrational

Re Z, (x)

levels in Ny (see Fig. 2) can clearly be identified around
|w/kv,| = 6.5.

5 Results

We have used the two-dimensional code of the P, and Z,
functions to calculate the frequency of the up- and
downshifted Langmuir waves which are the high-
frequency solutions of the plasma dispersion equation
with the function D(k,w) given in Eq. (18). We have
performed these calculations for two different distribu-
tions, one that takes into account the deviation from the
Maxwellian on the ambient part with the Spitzer-Harm
distribution and the other one on the suprathermal part
with the distribution calculated from the electron
transport code.

Re P, (x)
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Fig. 9. On the left, the real and imaginary parts
of Z, for real argument and on the right, the
real and imaginary parts of P, for real argument
of a suprathermal distribution at the altitude of
202 km. These calculations were performed
using a 32-stream calculation of the transport
code and the distribution function was then
recalculated over 1024 double-Gauss points in
order to perform the calculations of P, and Z,
over this p-grid
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x = o/(Kkvg)
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We used the simulated data for 25 June 1994 at 14:00
UT over Tromsg assuming again an A, index of 3 and an
F10.7 index of 75. The ionospheric parameters of the
thermal part are shownin Fig. 10 and the velocity moments
ofthe suprathermal distribution, as well as the moments of
the Spitzer-Héarm distribution, are shown in Fig. 11.

The lowest right plate in Fig. 10 shows the Knudsen
number e7 and eg. The largest value is about 4.5 1073,
Such values are reasonable and allow the use of the
linear theory of Spitzer-Harm. The corresponding po-
larization electric field E of e is also of the order of the
expected value i.e. under 1072pV m™" .

Figure 11 shows the calculated suprathermal centred
velocity moments up to the third order, i.e the heat flow,
for both the raw distribution as calculated by the
transport code and the truncated distribution we use in

Thermal moments

our calculations and which have been processed accord-
ing to the strategy described at the end of Sect. 3. The
lower right plate in Fig. 11 also shows the heat flow ¢, of
the ambient Spitzer-Harm distribution function calcu-
lated numerically and the heat flow used by Kofman et
al. (1993) which was originally given by Banks (1966)

qp = ~7710°T3VT, eVem s, (36)

assuming a Coulomb logarithm logA =15 and or
calculated by Spitzer and Harm (see Table 1). We note
that the heat flow given by Eq. (36) has larger values by a
factor up to 1.5 than the heat flow g, we calculated. The
reason for this is that the approximation given by Eq. (36)
is valid for a fully ionized gas only. We have taken into
account the electron-neutron collisions in the mean free
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Fig. 10. The parameters for the ambient part
of the distribution function, i.e. the electron
density n,, the electron and ion temperatures
150 150 T, and T; (solid line and dashed line,
respectively), the gradient of temperature
: : VT, and the two Knudsen numbers er (solid
100 i i 100 line) and e (dashed line)
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Supra-thermal moments
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path (Eq. 10) and the effect is to decrease the two Knudsen
numbers and thus the net heat flow (Banks, 1966).

Figures 12 and 13 show the frequencies of the
upshifted Langmuir waves of the plasma lines and the
frequency difference for the three EISCAT radars: VHF
(224 MHz), ESR (500 MHz) and UHF (931 MHz).
Figure 12 shows the calculation for a deviation on the
ambient part, i.e. the Spitzer-Harm distribution. The
frequency asymmetry calculated is compared with the
heat flow approximation of Eq. (9) of Kofman et al.
(1993), Figure 13 shows the calculation in the presence
of a suprathermal part and assuming that the ambient
part is Maxwellian. The frequency asymmetry calculated
is also compared with the results given by the heat flow
approximation, assuming that the total distribution does
not deviate dramatically from Maxwellian.

The best agreement between the full dispersion
estimation and the heat flow approximation for the
Spitzer-Hdarm distribution is for low-frequency radars
like VHF radars. For these radars the phase veloci-
ty vy is between 12v, and 25v, as shown in Fig. 14. At
such high velocities the moment approximation can
be safely used, i.e. the classic expansion (1—x) '=
1+x4x>4---+x" is to be valid at the third order. For
the UHF radar the phase velocity vy is between 3v, and
6v, (see Fig. 14) and the approximation breaks and we
note a large deviation between the two calculations.
This deviation can be observed on the real part of
the difference between Z, and W (upper right plate
in Fig. 8) and has to be compared with the asymptot-
ic behaviour in (w/kv.) > that we would get by subtr-
acting W to the heat flow approximation of Eq. (9) in
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Spitzer-Harm and Maxwellian distributions (940625)
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Fig. 12. The upper plate presents the calculated upshifted plasma
frequency for the Spitzer-Hédrm distribution for the three different
EISCAT radars. In the lower plate we present the frequency difference
between up- and downshifted lines for the three radars. The
Maxwellian approximation is shown with circles, the full two-
dimensional dispersion estimation is the solid line and the heat flow
approximation (Kofman et al., 1993) is shown with the dashed line

Kofman et al. (1993), especially for values of w/kv,
smaller than 5.

Another remark is about the very large asymmetry
observed around 250 km, which is over 10 kHz for the
full dispersion calculation. We can see that due to the
behaviour of the dispersion function at 4 < w/kv, < 5,
we do not need large heat flow values to observe large
asymmetry between the up- and downshifted plasma line
frequencies. This is very satisfying in that we do not
need to invoke larger heat flow values through processes
such as the electron thermal runaway (Mishin and
Hagfors, 1994; Nilsson et al., 1996) to explain the large
deviation which were reported by Kofman ez al. (1993),
especially during 12 May 1992. On the contrary, our
smaller heat flow values corrected for partially ionized
plasma are in good agreement with the theory of Schunk
and Walker (1970) and Banks (1966) and are able to
create frequency asymmetry of the order of that
observed by Kofman et al. (1993).

In the presence of a suprathermal distribution we can
make the following remarks. For UHF radars, i.e. at
phase velocity vg between 3v, and 6v,., we note that the
full dispersion calculation gives similar results as the
Maxwellian approximation while the heat flow approx-
imation gives larger deviation. In order to understand the
small effect of the suprathermal distribution for high-
frequency radars, we note that the real part of Z, of the
thermal distribution (Fig. 6) has much larger amplitude

Suprathermal and Maxwellian distributions (940625)
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Fig. 13. Same plates as in Fig. 12. The compared distribution
functions are a Maxwellian and a Maxwellian superposed with a
suprathermal. The line codes are identical to the codes used in Fig. 12

than the one of the suprathermal distribution (Fig. 9) at
the considered phase velocity. At large phase velocities
vy, 1.6. for VHF radars, the thermal Z, is very small,
whereas the one of the suprathermal is still not negligible.
This is seen clearly when comparing the mean width of the
real part of Z, in Fig. 6 and the real part of Z, in Fig. 9.
Thus the effect of the suprathermal is important and
should be taken into account. Another remark to be made
is that if all the fine structures observed on the supra-
thermal Z, in Fig. 9 in the region |w/k| < 6v, are real and
not artifacts of our calculations, they should map on the
frequency asymmetry as it appears in Fig. 13.

6 Conclusion

We developed and tested a computer code to calculate
the plasma dispersion function and the reduced distri-
bution function for any arbitrary distribution function
given in two dimensions: velocity and pitch angle. This
code has been applied for two types of electron velocity
distribution deviating from the Maxwellian distribution,
one in the ambient part through a temperature gradient
and the other one assuming the presence of a supra-
thermal electron population.

We used the code to estimate the frequency asym-
metry between the up- and downshifted plasma lines
which can be observed by incoherent-scatter radar
technique. For high-frequency radars such as UHF
radars we showed that the frequency asymmetry be-
tween the plasma lines is mostly due to a deviation from
the Maxwellian in the ambient part of the electron
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distribution. On the other hand, for low-frequency
radars such as VHF radars the Doppler frequency of
the plasma lines is more influenced by the presence of a
suprathermal electron population.

We also pointed out a discrepancy between the full
estimation of the plasma dispersion function and the heat
flow approximation for waves with phase velocity such
that the moment expansion is not valid. The discrepancy
is in the right direction and allows to explain large
Doppler asymmetry of the plasma lines without need to
increase the value of the heat flow. An analytic model of a
distribution deviating from the Maxwellian distribution
would be a very useful tool to study the difference
between the exact calculation and the moment approx-
imation of the plasma dispersion function.
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