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Abstract The Fourier slice theorem for the standard Radon transform generalizes to a
Laplace counterpart when considering the exponential Radon transform. We show how
to use this fact in combination with algorithms for the unequally spaced fast Laplace
transform to construct fast and accurate methods for computing both the forward
exponential Radon transform and the corresponding back-projection operator.
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1 Introduction

One of the most popular ways of computing the standard two-dimensional Radon
transform for parallel beam geometry relies on Fourier transforms via the Fourier
slice theorem. A standard discretization with equally spaced samples in the spatial
variables yields a relation between the sampled spatial data and its Fourier transform
on a polar lattice. This can be rapidly evaluated by using a combination of standard
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FFT and algorithms for unequally spaced FFT. In this way the time complexity is
essentially reduced by one order, from O(N?) to O(N?log N). The main purpose of
this paper is to show that a similar reduction in computational cost can be obtained for
the exponential Radon transform, by relying on algorithms for unequally spaced fast
Laplace transforms instead of the counterpart for Fourier transforms. The same holds
for the adjoint operator, sometimes called the exponential back-projection operator,
which in particular enables us to implement a fast algorithm for the inverse exponential
Radon transform, based on a formula by Tretiak and Metz [21]. The need for fast
transforms is particularly important when employing iterative schemes for the solution
of (ill-posed) inverse problems, arising e.g. from incomplete angular coverage in the
measurements, or for employing noise reduction techniques.

Upon discretization, the Radon transform becomes an operator on finite dimensional
space, having a matrix representation. The same goes for the inverse and adjoint Radon
transform, and these discretizations are associated with approximation errors which
depend on the choice of specific parameters etc. On top of that, there are errors that
arise when replacing the discrete operator with its fast counterpart, which is the topic
of this paper. We show that the errors that come from the latter part can be controlled
to arbitrary precision level € at a computational cost that is in practice proportional to
—log(e). In this way, reconstruction issues concerning for instance noise sensitivity
can be isolated to the (standard) sampling setup, with only minor influence coming
from the proposed fast computational algorithms.

The inverse problem of reconstructing data modeled by the exponential Radon
transform is ill-posed, meaning that additional regularization techniques often need to
be applied in order to obtain suitable reconstructions of data. There are several differ-
ent regularization approaches in the literature, and the particular type of regularization
will typically depend on the structure of the sample measured on. We therefor restrict
our attention to how to construct fast algorithms for computing the exponential Radon
transform and its adjoint, and only briefly mention some regularization techniques
that could be useful. In particular, we include a description on how to include a dis-
cretized version of the filter operator present in the filtered back-projection type of
reconstruction formula for the inversion of Radon data, as it is the most commonly
used reconstruction method used for standard Radon data.

Lets € Rand & € S', where S! denotes the unit circle. The standard two-
dimensional Radon transform is defined as

Rf(s,e)z/ f(x)dx:/oo f(s6 +t61) dt,
x-0=s —00

and the parameters s and 6 are used to parameterize the set of lines in R?. The atten-
uated Radon transform in R? describes the mapping from functions f and p to line
integrals of the form

0o 00
Rai f(s,0) = / £(56 4 101ye~ [ niso+otydT 4y
—00
Integrals of this type appear for instance in medicine, where f describes the intensity

distribution of isotopes or radiopharmaceuticals inside a tissue, and where the function
u(x) > 0describes the attenuation of the tissue. For the case where y is constant within
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a known convex body, then the data obtained from the attenuated Radon transform
can be modeled by the simpler exponential Radon transform [20],

Ry f(s,0) =/ f(s6 + t61)et dt. (1)

The adjoint operator associated with the exponential Radon transform (1) can be
written as

Rig(x) = /1 M0 o (x .6, 60)do, )
S

cf. [13,21]. It is a weighted integral of g over lines passing through the point x, and
with u = 0 this operator is typically referred to as the back-projection operator.

In [13] a generalization of the Fourier slice theorem is derived for the exponential
Radon transform along with an integral equation for the reconstruction problem of
obtaining f given R, f. A similar integral equation is also derived in [5]. There also
exist integral equations for the attenuated Radon transform, where the function x has
certain constraints. An explicit inversion formula is given by Novikov [15], and a
generalization is given in [7] for a somewhat larger class of functions. In [14] a result
closely related to Novikov’s formula is derived, using a different approach. Yet another
approach for inversion for arbitrary realistic attenuation was presented by Arbuzov et.
al [4].

In [21] properties of the exponential Radon transform are derived, along with an
inversion formula of filtered back-projection type. In Sect. 2 we recast this formula in a
particularly simple format, see Theorem 2.1. Since then, the exponential Radon trans-
form and the associated inversion problem have been discussed by several authors.
For instance, in [1] range conditions of operator R, are shown using Paley-Wiener
type theorems. Cormack-type inversion formulas are based on the circular harmonic
expansion of the transform and solving integral equations of special type (general-
ized Cormack equations) and they are discussed in [16] with generalization for the
attenuated Radon transform in [17]. An explicit integral formula for 180-degree data
reconstruction is obtained in [18] along with numerical tests for the approximation of
the integrals. Another approach to reconstruct data from 180-degree measurements is
proposed in [11], the approach is analytical except for the pre-calculated inverse kernel,
where the least-squares method is utilized. In [2] the exponential Radon transform is
extended to various spaces of distributions. In [22,23] it was shown that the exponen-
tial Radon transform inversion can be expressed as a convolution on Euclidean motion
group (the rigid motion on R?). Fourier-based approaches are proposed in [10,12].
Here, the Fourier series expansion in the angular variable allow to increase the stability
of the inverse transform. In this paper we address a method for the exponential Radon
transform, i.e., for the case where the attenuation parameter w is constant.

2 The Fourier-Laplace Slice Theorem and Inversion in the Continuous
Case

The Fourier slice theorem which relates the one-dimensional Fourier transforms of
Radon transformed data with the two-dimensional Fourier transform of data is fairly

Birkhauser



434 J Fourier Anal Appl (2018) 24:431-450

straightforward to generalize to the exponential Radon transform. To see this, we intro-
duce the transform R, as the one-dimensional Fourier transform of the exponential
Radon transform with respect to the first variable s of R, f, i.e.

o0 o o0
Ruf(o,0) = / Ry f(s,0)e 5 ds = / f F(s0 + 101 e 2 ISTTI gg gy
—0Q —00 J —00
_ /Oo /oo f(s0 +teL)e—zm‘(s9+r9i).(aa)+u(se+zei).eﬂ ds dt
—00 J —00

— / f(x)e—ZHl'x(gU)-‘er-eJ‘ d.x,
R2

where the dot denotes scalar product in R?. Since f by assumption has support in the
bounded domain 2, its Fourier transform extends to an analytic function in (Cz, and
hence we can express the outcome of the above calculation as

R, f(0,0) = f(w + ;—’;GL> . 3)

which is a generalization of the Fourier slice theorem, sometimes referred to as the
Fourier—Laplace slice theorem. For more details, see [13,21].

Note that 7% maps compactly supported smooth functions to rapidly decaying
smooth functions in L?(Z) where Z = (R \ {0}) x S! is a polar-type coordinate
system, except for the fact that we allow negative radii. We now wish to express this
as a transform acting into a space of functions on Cartesian-type coordinates. We
therefore let R> denote the two copies of the punctured plane on top of each other.
Concretely, we set Ry = (R%\ {0}) x {1, —1} and define a bijectiont : Z — R, via

(06, 1) if o>0,

59 =
@O=V0o._1 i o<o.

We will use the notation & = (&, ) for the independent variable in R», where & is
the Cartesian part of £ and « simply the sign of o in the identity & = ((o, 6). For a
function g on Z or R> we will employ the standard convention of suppressing ¢ in the
notation, writing g (o, #) when the former (polar type) coordinate system is used, and
g(§ ) when the latter (Cartesian type) coordinate system is used.

Given any non-zero x = (x1,x2) € R? we introduce notation x+ = %
moreover we define

and

£t =att, EcR.
Note that with this notation we always have §J- = 01 whenever é = (0o, 0). Finally,

we let H be the measure on R that coincides with the Lebesgue measure on each of
the two planes. For © > 0 set

E(x, é) — eux~§L+2nix~§-'
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and .
E*(x, B) = ¢mnrE 2mict,

Then i
Ru(f)E) = / F)e E it gy — (£ (- B)). )

Using this notation, we shall show that the inversion formula by Tretiak and Metz
takes a simple form given in the following theorem:

Theorem 2.1 Let f be a compactly supported smooth function. Then for u > 0, we
have

1 - - -
fx) = §/|g| . (fLEC.8)E*(x,6)dH (&) (5)
2

or, expressed differently,

o= fm . / S () cosh(u(x = y) - E1)e™™ T dyde.

2

Proof The inversion formula by Tretiak and Metz (see Corollary 1 of [21]) is written
as an integral formula involving a family of kernels depending on two parameters
o, €, and a limit as these approach zero. The reason for the parameters o, € is that the
corresponding integrals for 0 = ¢ = 0 may be divergent. For compactly supported
smooth functions it is easy to see that this is not the case and the formula takes the
following simpler form

=R, WRL S, (©6)

where W is a convolution (in s) with the inverse Fourier transform of the func-
tion w(o) = |o/2|1{|(,|>zi}, and 1{|‘7|>2L} denotes the characteristic function of
{lo] > %}, (the normalization of the Fourier transform is different in [21], so the
kernel looks slightly different there). This leads to

[ =R, FMyFRuf =RE, MyRy f @)

where M,, is multiplication by w. Note that, for a smooth rapidly decaying function
g on Z we have

(R_yf. g) =/'//2f(96)6_27T”"9"_“"'9L dxg(o, 0)dodd
R

= /Rz f(x)//eZJTixﬁa—p,x-Glg(O_’ 0)dodd dx

SO
ﬁiﬂ(g)(X) = //ezﬂi)f-ea—p,x»glg(o” G)dade,
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which gives
* _ o —ux»0l+2m'ax~0
R* (ng)(x)—/ f (—(g(a, f)e dodd
” St Jlo|>4= 2

1 = z , -
B "/ﬁ g S TG )
2 Jig1= 4

= %/ . gE)E*(§)dH (8). (3)
[E1> 57

The formula (5) now follows by (4), (7) and the above computation. The subsequent

formula is an immediate consequence since H equals Lebesgue measure on each

copy of the punctured plane, and £+ = (&, @) has opposite directions depending on

whether o equals 1 or —1, so the evaluation of (5) reduces to

/ /'f()’) n(y— x)SJ- —2mi(y— x)Edyd%-
&> 4=
+/ /f()’) —(y—x)-E+—=2mi(y— X)dedg
|E]> 4
=/ /f(y)cosh(u(y x) - ED)e T8 dy g,
€1> 4=

m}

By the formulas (4) and (5) it is clear that both R, and the inversion formula can be
evaluated by using Laplace transforms. To use the continuous formulas derived in this
section, we will need to make use of discretization schemes, and this will be discussed
in the next section.

To illustrate how the fast Laplace transform work, let us consider a one-dimensional
discrete counterpart of the Laplace integrals above, and specifically the rapid evaluation
of sums of the form

J
D fieth
=1

where {; = (a; — 2mi&;). Let ¢ be a Gaussian with a fixed width, and define ¢,
through the Fourier relation @, (x) = ¢**@(x). It then holds for a single exponential
that

. 1 o0 )
e / Ga; (5 = §))e” 2T d,
Pa; () Jooo

which can be expressed as
. 1 o0 .
e(dj*Zﬂléj)x — A_/ (paj (é _ é:j)efzﬂlxé dx.
P(x) J_oo
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By applying this relationship to the discrete Laplace sum above, we obtain that

J . | o [ 7 _
DSy = = / D Sty (€ = &)) | €7 ds.
j=1 PR o \ 20

Due to the presence of the (modulated) Gaussians, the integrand above will be smooth
and it can be approximated (to arbitrary precision) with the trapezoidal rule. This
implies that it can be evaluated rapidly at equally spaced points in x by using FFT. To
make this work in practice, the Gaussian ¢ must be comparatively wide in order to avoid
loss of accuracy (it cannot be too close to zero). This means that the ¢ (and ¢,;) will
have comparatively short support. An additional practical requirement is to use some
amount of oversampling compared to the set of equally spaced point (x) at which
the discrete Laplace transform is evaluated. We will make use of an oversampling
factor v to describe this level of oversampling. A typical value is v = 2. Moreover,
the inner sum in the expression above contains discrete convolution between the data
values f; and the modulated Gaussians ¢,;. As these Gaussians decay rapidly, only
a few of terms will contribute (within given precision), and we may therefor truncate
the Gaussians. We will use the parameter M to denote where we can truncate the
Gaussian. Specifically, this means that the discrete convolution above is performed
over at 2M + 1 terms, and the contribution from the other terms can be discarded. The
width parameter M (and the choice of the Guassian g) is related to the desired level
of accuracy as well as the oversampling parameter v. For more details, see Appendix.

3 Discretization

We will now consider discretized versions of the exponential Radon tranform and its
adjoint. The discretization will be fairly standard, using an equally spaced sampling
in the spatial coordinates as well as in the (s, 6)-coordinates. We assume that f has
compact support. Without loss of generality we assume that it has support on the disc
{x : |x] < 1/2}, and we represent it by sampling on the Cartesian lattice

O 20000 | B OO

N N

for N even, and let IIlx denote the operator that samples functions on X. We also
discretize R, f (s, 0) atequally spaced points in 6 that cover the whole interval [0, 27r).
Specifically, let us assume that we have samples at a grid with N number of points in
the s-direction and Ny points in the 6-direction

—_N N _
, m=-3,...5 1,

O =2mr—, [ =0,...Ng—1.
and define
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N N
S:{(sm,el):m:—E,...i—1,[:0,...N9—1}.

Via the discrete Fourier transform, the nodes s,, are associated with frequency nodes

N N
ox=k, k=——,...——1
2 2
as well as a corresponding polar grid,
N N
o) ik=——,...——=1,1=0,...Ng—1¢.
{(Uk 1) 2 2 0 }

We let Il g and IIIx; denote the sampling operators on the two sets. As us customary in
this field, we identify 6; with the point (cos(6;), sin(6;)) on S ! wherever convenient.

3.1 Fast Computation of the Discretized R ,

We now compute a discretized version of the exponential Radon transform (1) in two
steps using two-dimensional Laplace transforms [3] and FFT. A discrete counterpart
for computing Iy, f (00 + OJ-) using Iy f is given by the operator £, : RX —
CZ, defined by

L

Lol o, o) = Y 1 (20 12) el it (3, g

N
nyp,n2=—y

If © = 0O then sums of the above type can be approximately evaluated (with precision
€)in O(N?log N + N Ny log(1/€)) by using unequally spaced fast Fourier transforms
(USFFT): [6,8,9]. To account for the case where ;& # 0, we will instead use unequally
spaced fast Laplace transforms [3] (USFLT), at the same computational cost and
the same precision dependence as for the USFFT. We will denote the corresponding
operator EESFLT. See Appendix for more information on this topic in two dimensions.

Once f(o’kél + é—’;@f-) is (approximately) computed, a discrete version of
R (f)(Sm, 61) can be obtained by a one-dimensional discrete inverse Fourier trans-
form

L

Mf(sm, 0) ~ — Z f(o-k91+ QJ-)ezm(fkém
k_,,

L

— Y La(lllg f)(ox, 6.
k==%
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We denote the one-dimensional discrete inverse Fourier transform acting on the first
variable by 7 : C* — C5, i.e.

N
¥

f;g(sm’el): Z g(ak,91)6277i0ksm.

N
k=—%

Summing up, we can approximately compute IlIgR, f by F; EESFLTHI x f. An anal-
ysis of the errors involved in this approximation is found in Appendix.

3.2 Error Analysis

The total error of our discretization/approximation is
LR, f — Fi L35 Iy £l (10)

which by the triangle inequality and the fact that DFT is isometric can be estimated
by the sum of the error caused in the discretization of the one-dimensional Fourier
integrals,

HIIISRMf — Fillls f(o6 + Mel)( i a1
the discretization error for the Laplace transform
|15 70 + uot) - caauix ) (12)
and the error due to the fast evaluation of the discrete Laplace transform
| ca— BNy - (13)

The first two errors are due to the discretization, and the third one is due to the
proposed fast computational algorithm. As mention above, the error in (13) will be
bounded by the choice of precision parameter €, see Appendix. We will now show
that the errors in (11) and (12) bear similarities to standard sampling results about
essentially bandlimited functions.

To this end we introduce

o1 o)
— +nN,wr + —,+n2N)‘ .
i 2mi

Bun(f) = sup > | (o5

N
max(loi|,lo2)<7, | ny,n€Z,
max(|oy],lo2)<p  n1,n2#0
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as a measurement of the frequency content of f outside [—N /2, N/2]>. Note that for
bandlimited functions whose frequency support is contained in the central square with
side length N it holds that By y(f) = 0.

Proposition 3.1 Assume that f has supportin [—1/2, 1/21>. The errors (11) and (12)
are then both bounded by a constant times By, y(f).

Proof By (3) it follows that

Ry f 5. 00) = F (L2 F(06 + 6" ) (510,61

= Ty (F@0 + 16)) (5 00 = Fj (W5 (@0 + 16)) (5, 60). (14)

Setg(o) = f(a@ + u6+) and note that its frequency support lies within (—1/2, 1/2).
The Poisson summation formula yields

9]

Fiogls)= Y g™

k=—00

where the summation from —N /2 to N /2 — 1 corresponds to ;. It is now easy to see

that the difference (14) is bounded by B, v (f), yielding an £*° estimate of (11). The

corresponding ¢ estimate follows by the equivalence of finite dimensional norms.
The estimate for (12) is similar. By the two-dimensional Poisson summation for-

mula (applied to f (x)e’“glL'x) we have

1 ny np i . np on
2 : 2 : (—pbi-—2mibof)- N
_N2 f(—N’—N)e 1 [k(N N)

n1=—00 np=—00
00 00 R MQZL
=y > f Ok + 5=+ N(ni.na) |
n|=—00 np=—00 T

By the assumption on the support of f, the first double sum can be replaced by

Z,I,vl/zz :11\, P Z;Vz/:z :]lv /25 SO the first line equals £, (Illx /) (ox, 0;). It follows that

| F(ox6 + 16") = La (Ul (o, 60)

—~ ubi-
= Z > f<910k+?li+N(n1,nz)> ;

n17#0 ny#0

which yields a pointwise estimate of the difference in (12). The desired conclusion
again follows by the equivalence of finite dimensional norms. O
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3.3 Fast Computation of the Discretized Adjoint

The back-projection operator R;’; in (2) can be discretized in a similar way. Note that

o0 o0
R;8(x) :/ / / (s, 0)e~2mis g o (mico+udt) g g — (Riifs%g) (x)
St J—c0 /-0

(15)
which follows from (2) and the fact that

8x-0,0) =F; , 4Fim0o(8(s,0)).

In the discretized setting, the inner integral (i.e. F;_, ) corresponds to F,; whereas the
two outer integrals (i.e. 7%;) correspond to (EESFLT)*. We remark that the latter do
not correspond to a two-dimensional Fourier—Laplace integral (since the factor |o| is
missing), but it can still be evaluated fast, i.e., in O(N? log N) time. In the terminology
of the Appendix, the USFLT operation changes from a Z?> — C? operation (for
E};SFLT) to a C?> — Z? operation (for (ﬁIdJSFLT)*), designed to rapidly evaluate sums
of the type

Z Fk’,e(“‘)ll’z’””kel)'(%x"WZ), (16)

k.l

for all values (’}\} ’]’\}) in X, where Fy; can be arbitrary numbers. For the evaluation

of MIgR,*g via (EUSFLT)*]-"dIIIsg, we obviously have F = F;Illgg, but we shall
see in the next section that other choices also will be relevant. An error analysis of this
approximation can be done in a similar way as in Sect. 3.2, but we omit this.

3.4 Inversion from Complete Measurements

To invert measurements of the exponential Radon transform on the polar grid S, we
use the formula (7);

f=R:,FMyFRuf =R ,MyR,, f (17)

A discrete approximation g of R wf on X is easﬂy computed by applying F, to the
available data IIIgR, (f), and the operation R corresponds to (LUSFLT)* Since

M, is multiplication by the weight w, the inversion could in principle be done via
f ~ (»C}]JSFLT)*ng,

but the discontinuities of w will introduce large errors for low-frequency components
of f. Tocompensate for this, we will evaluate R .« f onapolar grid ¥ with a more dense
radial sampling near the singularities 0 = + ’J‘T The operator (,CUSFLT)* computes
sums of the type (16) over unequally spaced grids, and in particular there is no need
to have equally spaced sampling in . However, if we increase the sampling near
the singularity, the corresponding sum (16) will not be a good approximation of the
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corresponding integral in Rfﬂ, and we therefore need to compensate for this by
modifying the weight w, using composite rules for quadratures. We briefly outline
this in more detail below.

In practice, the bottleneck of the reconstruction algorithm lies in evaluating
(EESFLT)*, and hence it is desirable to keep the total number of grid points low.
We therefore propose to use a dense sampling in o near the singularities :t%. We
remark that values of 7 £ — typically are less than 2, and that the original grid X is sam-
pled with radial samphng distance of unit length. An increased sampling near 2 can
thus be achieved by increasing the amount of grid points in ¥ near the origin. Recall
that f is assumed to have support on the unit circle, which implies that R, (f)(s, 6)
is supported on [—1/2, 1/2] in the s-variable. By zero-padding of R, (f)(s, 0) in the
s-direction and application of FFT, an oversampled representation of g(o, ) can be
obtained (on an equally spaced grid in o, but not all values will be used).

To derive appropriate weights, it is sufficient to consider accurate quadratures for

/a>2‘;

€L ; . .
where we fix 6 and set h(a) ég(o Q) Hx 0" +2miox-0 . Concerning the region
around the singularity o = 2 , we construct a composite quadrature by considering

%‘ g(O', 0)67Mx'9l+2ﬂi”x'9d0' — / |O'| h(U),

lo|> 4

b
/ oh(o)do, (18)

for several small intervals [a, b], containing, say, M < 10 grid points. On each such
interval there are coefficients ¢ = {cm}%:_o1 such that

h(o) ~ Zcmom (19)

is an Mth-degree polynomial approximation of & on the interval. These coefficients
can be found by solving h(ox) = ) cpop" (for k ranging in the relevant range for
[a, b]), or in matrix form 2 = V¢, where matrix V = V (m, k) is the Vandermonde
matrix built up by o;".

Upon inverting V, which is independent of 4, we do not need to compute the
coefficients explicitly. Inserting this approximation in (18) gives

b b
/ oh(a)do%/ ZZV_I(m,k)h(Uk)adea

m+2 am+2

= ZZ V=Y m, k)h(oy) < oy 2) = Zwkh(ak).
k

In this way, we obtain quadrature weights wy for the equally spaced approximation
of (18). The weights can be combined to form composite quadrature rules that take
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-pl2m pl2w -pl2m pl27

Fig. 1 Weights for the approximation of the integral fl alz 4 lo|h(o)do, scaling by layers. Left panel
—

weights after trapezoidal rule correction near singularities |o| = % Right panel total weights with under-
sampling for high frequencies. The black and red dots use values at every fourth sample (corresponding to
the first two terms in the approximation (20)), while the blue dots use every second sample (corresponding
to the third term in (20)) (Color figure online)

the singularity at 0 = Lﬂ into account. The same procedure can be performed when
dealing with the singularity at 0 = —%. The left panels of Fig. 1 demonstrate the
effect of the correction with the weights wy near both the singularities.

In order for the approximation step in (19) to be accurate, & has to be sufficiently
oversampled. However, this is only needed in a vicinity of the singularity, and a regular
sampling is sufficient away from the singularity. A direct usage of a trapezoidal rule
would, however, use a sampling that is determined by the needed sampling rate around
the singularity. We therefore split the integral as

b c b
/u oh(o)do = /ﬂ oh(o)v(o)do + / oh(o)(1 —v(o))do,

i3 i3 d
where d < ¢, v is a smooth function satisfying 0 < v(o) < I, v(o) = lifo < d,
v(o) = 01if 0 > c. Now, the derived quadrature rule with a dense sampling can
be used for the left integral in the right-hand side above, while a reduced sampling
density can be used on the right integral. This procedure can also be used several
times to gradually decrease the sampling rate. In the numerical simulations presented
in Sect. 4, we use an oversampling factor of four to account for the singularity at %,
and make sampling reduction in two steps, i.e., by a quadrature rule of the form

/ lolh(o)do ~ Y wach(on) + Y waiah(omi) + Y warih(omns).
lol= 47 k|<K] lk|<K> k|<K3

(20)
where K3 < K> << K. The setup is illustrated in the right panels of Fig. 1.
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4 Numerical Simulations

In this section reconstruction results and computational speed tests are presented. C++
routines were written for the fast exponential Radon transform and the fast Laplace
transform along with MEX interfaces to MATLAB. For accelerations we used the
tools from Intel Composer XE 2016, including the Intel Math Kernel Library (MKL),
Intel Performance Primitives (IPP), and OpenMP API. For the simulation we used a
standard desktop with an Intel 17-3820K processor and eight OpenMP threads, and
the computations were performed in single precision.

To begin with, accuracy tests were performed on the Shepp—Logan [19] phantom,
where we use the modified version available in MATLAB. The phantom consists of
linear combinations of characteristic functions of ellipses, and its support is inscribed
in a circle, see the left panel of Fig. 2. The red line is depicted with correspondence to
a specific angle 8 and polar sample s. Values through this line multiplied by factor e*!
are plotted in the left panel of Fig. 2. The upper part of Fig. 3 show the exponential
Radon transform for different values of the exponential parameter (.

In order to make accuracy comparisons, we do not carry out comparisons with the
original function, but use instead a slightly smoothed out version of the phantom. This
is to account for the fact that the characteristic function of the ellipses does not decay
rapidly in the frequency domain, and hence high-frequency errors would be dominant
in the error plots. A reconstruction method using only a finite frequency range should
have as aim to recover that frequency range accurately, and it is therefore natural to
measure the accuracy in this way. The minor smoothing effect can be noted in the
plots of Fig. 2.

The lower part of Fig. 3 illustrates reconstruction errors for different values of u
chosen to be the same as for the corresponding projection from the upper part of the
same figure. To show how the choice of p affects the reconstruction we compute
reconstructions using the fast Laplace based filtered back-projection. In the filtered
back-projection method the high-frequency components are boosted, and boosting of
high frequent noise is also caused by the exponential factor in the back-projection

1 0 |
0.5 0 05 -05 0 05
8 t t
s pw=0 @ =1n(10)
.4 30
20
.2 10
| |
0

5 0 05 -05 0 0.5
t t

1 = In(100) 4 = In(1000)

o o o
SO - N w

o

bo w o ©

Fig. 2 Weighting with factor e#! for a line through the phantom image. Exponential weight y(t) = e/
is plotted by the dashed line, ratios between maximal and minimal weights equal to 1, 10, 100, 1000,
respectively

Birkhduser



J Fourier Anal Appl (2018) 24:431-450 445

x10%

11 = In(100)

w= ln(lO)

Fig.3 Exponential Radon data of the Shepp—Logan phantom for different values of the exponential param-
eter . Corresponding reconstruction with the FBP method

n=0 = 1n(10) = 1n(100) = 1n(1000)
Fig. 4 Influence of the Gaussian noise (SNR = 20) on the inversion with the FBP method for different
attenuation parameter j

operator. In particular for high attenuation parameters, this reconstruction technique
becomes sensitive to noise. This is illustrated in Fig. 4, which shows filtered-back-
projection reconstruction results for varying values of the attenuation parameter p.
The Radon data for these different attenuation values are contaminated with white
Gaussian noise with a signal-to-noise ratio (SNR) of 20 dB.

Let us now turn our attention to the computational speed of the reconstruction
method. Tables 1 and 2 show the total times of the simulations and the times per
operation (to verify the time complexity) of applying the exponential Radon transform
and backprojection, respectively, for different image sizes.

The time complexity of USFLT is O(v N?log N + 2M + 1)(2M + 1)N?) (see
Appendix), and that is the main computational part of the exponential Radon transform.
Typically M is about 810 for single precision in the case where u represents variations
of up to a factor of In(1000), therefore in practice the factor 2M + 1)(2M + 1) will
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Table 1 Computational times for the exponential Radon transform for images of size (N x N) with

Ny = [7N]
Time Ratio

N tWUSFLT tDirect tysFrr/(N*log N) tysFLT/N? tpirect/N?
27 1.8e-02 1.4e-01 2.3¢-07 1.1e-06 6.5¢-08
28 3.5e-02 7.4e-01 9.6¢-08 5.3¢-07 4.4¢-08
29 1.2¢-01 5.8¢+00 7.6e-08 4.8e-07 4.3e¢-08
210 5.2¢-01 4.9¢+01 7.1e-08 4.9e-07 4.5¢-08
2l 2.2¢+00 3.9¢+02 7.0e-08 5.3¢-07 4.6e-08
212 8.7e+00 3.2e+03 6.3¢-08 5.2¢-07 4.7e-08
213 3.5e+01 2.7e+04 5.7¢-08 5.2e-07 4.9¢-08

Table 2 Computational times for backprojection of the exponential Radon transform for images of size
(N x N)with Ny = [7N]

Time Ratio
N tUSFLT tDirect tysFrr/(N*log N) tysFLT/N? tpirect/N?
27 42e-02 1.2¢-01 5.3¢-07 2.6e-06 5.8¢-08
28 9.1e-02 7.6e-01 2.5¢-07 1.4¢-06 4.5¢-08
29 2.5¢-01 6.3e+00 1.5¢-07 9.5¢-07 4.7¢-08
210 7.5¢-01 5.2¢+01 1.0e-07 7.1e-07 4.9¢-08
21 2.9¢+00 43e+02 9.1e-08 6.9¢-07 5.0e-08
212 1.1e+01 3.8¢+03 7.6e-08 6.4¢-07 5.5¢-08
213 4.6e+01 3.1e+04 7.7e-08 6.9¢-07 5.6e-08

dominate the v? log N factor. This effect can be seen in the ratio columns of Tables 1
and 2. We also verify that the USFLT-based method outperforms the direct method as
expected.

5 Conclusions

We have shown how to construct fast algorithms for the computation of the exponen-
tial Radon transform and the associated (adjoint) back-projection operator by using
algorithms for fast Laplace transforms. In addition, we have included estimates for the
discretization errors that arise, and shown how to separate them into parts where one
bears similarities to standard sampling arguments of (almost) bandlimited functions,
and where the other part is due to the approximation errors arising in the fast Laplace
transform. The latter part can be controlled at arbitrary numerical precision.
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Computation of L',};SFLT

For the sake of completeness, we present algorithms for fast evaluation of two-
dimensional discrete Laplace transforms. These algorithms are analogous to the
one-dimensional ones presented in [3], but in this appendix they are adapted for com-
puting the exponential Radon transforms.

Letny, ny and § j be as in Sect. 3. We describe how to fast evaluate the operations

gL jE1 )L EL _oqpie, )2
f=Leopp(F): foymy = Z Fje(lislj—%né'l/) N +(ués;—2midsj) ¥ , (@3]

J
EL _opig, ML EL _opig, )12
P Lo By o Y o R ()

ny,nz

where f,,| ,, and F ; represent any complex numbers. Note that with f,, ,, = f (%, 5)
-
and Fj =f (E i+ %) the operation (22) corresponds to the evaluation of (9) in

Sect. 3, whereas (21) is needed in (16).

Methods for unequally spaced fast Laplace transforms (USFLT) utilize convolution
style operations with FFT to achieve approximations of the sums (21,22) with arbitrary,
but fixed, accuracy. We make a heuristic description of how USFLT works, for a more
precise formulation along with error estimates, see [3].

Let F denote the Fourier transform and introduce the Gaussian ¢(x) = e~ +x3)

péixi+pk

and modulated Gaussian Pzl (x)=e¢e ¢(x), where « is a parameter which

we discuss how to choose below. Note that in the frequency domain it holds that

. 2 - 2
2 ,uéf‘- ,/AEZJ‘-
& ((vl—l TJ) +<”2—’ -

ie. g?)‘g 1 is a frequency modulated Gaussian. Next, by choosing g = % one can derive

. T
;L (v, v2) = —e
§ o

the relation
A - , EL_oxit). f PN
Pt —amigy) = [ o0 = f(_qu;) (&) = & %5 &)
R2 (V) J
oo o
= / / g(vr, UZ)@’?,J-(UI — &1j,v2 — &j)dviduy, (23)
00 J—00 .
The integral in (23) can be approximated by the trapezoidal rule because of the fact
that g’ig 1 are smooth functions that decay rapidly to zero (the amount of oscillation
J

is limited by the parameter ). It turns out that accurate results can be obtained by
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(v1, v2) on an equally spaced lattice with some oversampling parameter v. Crucial
for the construction of fast algorithms is that the function g?g 1 has small (numerical)
support, since this will keep down the computational times for convolutions with ag L
It turns out that the (numerical) width of @z, is proportional to — log e, where € is
the desired precision. More precisely, values of ’(p‘g,; that are smaller than a certain

threshold level

2

1 a2
T. = — [—al o
¢ n\/“°g6+4+4

can be omitted. In practice we thus replace @g; by
J

e Pz (1, v2), if Juy] < Te and Jvp| < Te.
<p§L(v1, V) =1 " ]
J 0, otherwise,

Now, if we assume that the discrete Fourier transform (realized by FFT) provides an
accurate approximation of ¢ at this oversampled grid, the evaluation of (22) can be
approximated in three steps:

1. Division in the space domain
2. FFT
3. Convolution-type operation in the frequency domain

We refer to [3] for proofs and more details, and remark that 4 = log A in the notation
of that paper.

The approximations to prescribed precision € can be achieved by a suitable choice
of @ in combination with proper oversampling v. It then holds that the difference
between the sum of (21) and that described by the above algorithm can be bounded
for instance by

Cell flle,

where C is a constant that is independent of f. A similar result can also be obtained
for the approximation of (22).
Following [3], the parameter « should be chosen as

B 2v—1 n
e WY S T

(—loge),

where v is an oversampling factor for Fourier transform (usually v = 2). In practice
this means that the integral (23) is replaced by a summation over k1, k> € 7Z using

@EJL (l% — &, k—‘f — §2j>. Note that for each j = 1...J, these values will be non-
zero only for values of kp, kp such that |k; — v&1;| < vT, and |ky — v&j| < vTe.
By introducing M = [vT.] we find that the contributing values of ki, kp satisfy
[V&1j]1 =M < ky < [v&1j]+ M and [v&y;] — M < kp < [v&;;] + M. The notations
[x], [x] denote the nearest integer to x and the smallest integer less or equal to x,
respectively.
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Finally, we have an approximation formula for (22) with accuracy e:

1 N T N
— E fnl nze(ﬂ%‘lj_27”%‘1_/)W+($2j_27”§2/)ﬁ
niy,n2
M—l vN

Z Z Z&e—zﬂi(%ﬁ%)
2N2 "WZ)

kl:—ﬂ ko= u ny,ny QO(
k1
x’quj (— — &1, " —Ezj) ,

where the sums over kp, kp variables consist each of (2M 4+ 1) non-zero terms, respec-
tively. The constant M is typically equal to 8-10 for single precision of computations,
depending on the choice of w and v. Algorithm L2, 2(f) describe these com-
putational steps, with the assumption |£;| are inside a circle with radius slightly
smaller than % The first operation (division) has O(N?) computation cost, the second

Algorithm C(C?—> 72
L G = Xfo lF,ng( —a.2-8;), W sk <)

N _ L(kyny | konp
! ~2mi (Ml + 27

2. h _ L yP z Gy hre vy
ny,ny = N2 Zkl:_% Zkzz—% ki .,k >)

(4 <npm <

hni.n N N
3. fnl.nzzﬁ (=3 <np.ny < 75).

operation is evaluated by FFT in O(v2N?log(N)) time, and the third operation cost
O(2M + 1)2NNp) operations, since for each j there are only (2M + 1)2 non-zero
contributions. The total time complexity is thus O(V2N?log(N) + (2M + 1)>N Ng).
In terms of time complexity, this is dominated by FFT part, while in practice most
time is typically spent on the third step.

The algorithm for Lc2_, 72 (f) (21) can be also constructed by applying the above
operations in reverse order, since Lc2_, 72 (f) is adjoint to L72_, 2 (f). These steps
are gathered in Algorithm L>_, 2 below.

Algorithm £Zz NG E

Jn R
L. gninp = m, G

=

=ng,ny < %)

kin kon

1 —2mi( Ll 2222

2. Gy = 2N2 an_,% 2’722_7% 8ny,np€ ( VN TTVN )’ _M <k ky < vN)
M [vé2, 1+ M .

3. Fj =2k =gy j1-M kg=ivey;1-m Chi, kZ(pgi (% -& % -8). a=i=n.
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