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ABSTRACT: 

This paper presents a method which combines the traditional threshold method and SVM method, to detect the cloud of Landsat-8 

images. The proposed method is implemented using DSP for real-time cloud detection. The DSP platform connects with emulator 

and personal computer. The threshold method is firstly utilized to obtain a coarse cloud detection result, and then the SVM classifier 

is used to obtain high accuracy of cloud detection. More than 200 cloudy images from Lansat-8 were experimented to test the 

proposed method. Comparing the proposed method with SVM method, it is demonstrated that the cloud detection accuracy of each 

image using the proposed algorithm is higher than those of SVM algorithm. The results of the experiment demonstrate that the 

implementation of the proposed method on DSP can effectively realize the real-time cloud detection accurately. 

 

 

1. INTRODUCTION 

With the recent rapid developments of optical remote sensor, 

obtaining high resolution remote sensing images is an easy task 

now. The amounts of remote sensing images increase 

explosively every day, and these data have been widely used in 

meteorological observation and forecast, agriculture 

engineering, environmental protection, natural disasters 

monitoring, resource exploration and military reconnaissance. 

However, the cloud covers more than 50% of the surface of the 

Earth, thus the images captured by satellite mostly covered 

with cloud. The object information on the earth will lost 

because of the cloud. Hence cloud detection is an important 

preprocessing for many subsequent manipulations, such as 

object recognition, image retrieval, and image classification. It 

is a meaningful a challenging work. On the other hand, onboard 

real-time cloud detection can reduce the cost of satellite 

resources such as storage capacity and downlink bandwidth.1 

 

A lot of cloud detection methods have been proposed, and most 

of these methods can be summarized in two major categories. 

The first category is based on the difference of spectral 

characteristics of clear and cloudy area. At the day time, the 

reflectivity of cloud area in the visible light band is greater than 

of clear area. At the same time, cloud top temperature is usually 

lower than the surface temperature, and the infrared thermal 

radiation field to outer space in the cloud areas is less than the 

cloud-free areas. Based on the facts mentioned above, a lot of 

cloud detection methods using remote sensing information have 

been developed. As early as 1994, based on the difference of 

clouds’ spectral characteristics in the infrared and visible light, 

Yu Fan investigated the infrared-visible light spectra in 

two-dimensional feature space for about a hundred of cloud 

samples, and presented a method to determine the various types 

of clouds and the corresponding distribution of clusters using 

satellite cloud pictures. However, using this method to identify 
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the multi-layer thin cirrus clouds is not satisfactory. The second 

category is based on the texture features of cloud. The 

mathematical methods include the pattern recognition, the 

clustering algorithm, maximum likelihood estimation method, 

neural network method and so on. Using these methods to 

identify the clouds and low clouds which have more complex 

shapes, the results are not satisfactory. The method using 

spectral characteristics which required a large amount of user 

interactions is not suitable for onboard real-time cloud 

detection. Hence, the method based on the texture features of 

cloud is adopted.   

 

This paper proposed a novel optional cloud detection algorithm. 

This algorithm has two steps: the first step, apply the improved 

minimum cross entropy method to process initially cloud 

detection test image, and then obtain a rough test results. The 

calculate speed of the threshold method can detect cloud 

sub-block quickly and easily. But the detection precision of 

threshold value method is not good; the preliminary test results 

which are under a lot of cushion face blocks have been 

mistaken for clouds. Thus, we need to do more sophisticated 

detection from the rightness rough cloud detection results. The 

second step is using the SVM classifier to do more 

sophisticated detection and obtain a more accurate cloud 

detection results. This algorithm used in this study greatly 

reduces the misjudgment and improves the detection accuracy. 

 

2. AN OPTIONAL THRESHOLD WITH SVM CLOUD 

DETECTION ALGORITHM 

 

There are three methods to detect cloud by using textural 

information: directly using textures; using textures to assist 

detection; and detecting using spectral images and then 

classifying by combining with textures in terms of certain 

hardly distinguished parts． 

 

This paper uses the third method. The image windows size 

directly affects the result of the cloud detection of support 

vector machine. When the image block is larger, the results will 
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have more mistakes. When the block is smaller, the testing 

results of the cloud will be better. However, if the image block 

is too small, the speed of cloud detection will slow down. This 

paper combines the minimum cross entropy and the SVM to 

improve the cloud detection algorithm.  

 

The process of the cloud detection algorithm proposed in this 

paper is shown as Figure 1. Using the threshold method to 

detect cloud will cost a little time, but the result is not good. 

And support vector machine (SVM) method will obtain a high 

accuracy of cloud detection, but the time consumption is higher. 

This paper firstly utilizes the threshold method to get a coarse 

result, and then uses the SVM method to obtain a more 

accurate result. By using this scheme, it not only improves 

calculating speed, but also gets a higher accuracy of detection.  

 
Figure 1. Flowchart of the proposed cloud detection algorithm 

 

2.1 Detection based on threshold method 

 

The cloud regions generally have higher gray values than the 

non-cloud regions, because the reflectivity of cloud is usually 

lager than that of non-cloud regions. This is the basic theory of 

spectrum threshold method, which was applied to distinguish 

the cloud and land (Desbois, 1981). Assuming  ,x y is one pixel 

of the image,  ,f x y represents the gray value of  ,x y . The 

cloud detection result R is defined by 
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where 1 refers to those pixels lying in candidate cloud regions, 

and 0 refers to those pixels lying in non-cloud regions. The 

threshold T is within the range of [0,255]. 

 

The threshold method in this paper is minimum cross entropy 

thresholding method. The cross entropy was proposed by 

Kullback under the name of directed divergence. The cross 

entropy measures the information theoretic distance between 

two distributions  NpLppP ,,, 21  and  NqLqqQ ,,, 21   

by 
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Let  
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
 ),(  be an L-level digital image, 

 Lyxf ,2,1),(   are the set of gray levels. 
ih  is the 

frequency of gray level, and )/( NMhP ii  is the 

probability of occurrence of gray level i  .Suppose T is an 

assumed threshold, the image divide into two regions namely 

the object and the background with the threshold T. We assume 

that gray values in [0-T] constitute the object region, while 

those in [(T+1)-L] constitute the background. The cross entropy 

of a segmented image with threshold T is defined as: 
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The coarse cloud detection result is aim to obtain all cloud 

regions, and a few of non-cloud regions is allowed. The 

detection result using method of Otsu may lose too much cloud 

pixels. An optimal threshold method is proposed to address this 

problem, which is defined by 
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Where T is the global threshold calculated by the minimum 

cross entropy threshold method; 
downT and 

upT  are acquired 

by analyzing the historical image data. The acquisition process 

is given below. 

 

In order to determine the global threshold
optimalT , 200 cloudy 

images from LandSat-8 were collected, and each size of 

sub-cloud image is 200*200. Figure 2(a) are some the extracted 

varied cloud images. Figure 2(b) is the histogram over all cloud 

pixels from cloudy images. Figure 2(c) is the corresponding 

cumulative histogram of Figure 2(b). From the histogram 

results, it shown that over 95% of the cloud pixels have the 

gray value more than 90. To make sure the accuracy of the 

detection, the whole true cloud pixels should be contained in 

the coarse result possibly. A certain amount of non-cloud pixels 

in the coarse result is can tolerated in this step. Thus, 
downT  

set as 90 and 
upT  set as 130, which turn out to be suitable for 

protecting the true cloud pixels with a lot of experiments. So 

the 
optimalT  is defined by 
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(b)                      (c) 

 

Figure 2. Statistics of gray value of cloudy images. (a) Parts of 

collected cloud image from Landsat-8. (b) Histogram of the 

cloud pixels. (c) Corresponding cumulative histogram of (b). 

 

2.2 Optimization of SVM parameters 

 

The SVM classification is utilized to get a finer cloud detection 

result. At the first, we let the Radial Basis Function (RBF) has 

the kernel width parameter C and  in a certain range of 

values. Then, the training set is set as original dataset, and the 

k-fold cross validation method is used to get the accuracy rate 

of the training set under the given parameter C and  . Finally, 

the group of parameters C and which verify the classification 

accuracy of training highest is adopted as the best parameters. 

 

The k-fold cross validation method is described as follow: the 

original sample is randomly partitioned into k equal size 

subsamples. Among the k subsamples, a single subsample is 

retained as the validation data to test the model, and the 

remaining k -1 subsamples are used as training data. The 

cross-validation process is repeated k times, with each of the k 

subsamples used once as the validation data. The k results can 

then be averaged (or otherwise combined) to produce a single 

estimation. The advantage of this method repeated random 

sub-sampling (see below) is that all observations are used for 

both training and validation, and each observation is used for 

validation exactly once. 

 

To train the SVM, a training set should be established. 300 

cloud sub-images and 600 non-cloud sub-images were selected 

from the landsat-8 satellite images as the training set, and the 

size of each sub-image is 64×64. Both the parameter C and  

range from 2^ 10 ~ 2^10 . At first, we get a coarse 

selection of parameters, and then train the SVM again to get 

final selection of parameters from the coarse result. Finally, the 

best parameter calculated is that C=0.01 and 7.0 were used 

in this paper.  

 

After then, the coarse cloud detection result was sent to the SVM 

classification to get final cloud detection result. As seen in the 

binary coarse cloud detection result, some non-cloud regions 

which have high intensity are included. In the second detection 

stage, these non-cloud regions are removed to achieve better 

results utilizing SVM classification. 

 

 
(a) 

 
(b) 

Figure 3. Training samples 

 

 
(a)                    (b) 

Figure 4. (a) Coarse selection of parameters. (b) Final selection 

of parameters 

 

 
(a1)                      (a2) 

 
(b1)                      (b2) 

Figure 5. SVM detection comparisons. (a) Result before 

optimization. (b) Result after the optimization. 

 

3. EXPERIMENT AND RESULT 

 

3.1  Hardware and platform 

 

The whole experiment platform of cloud detection is shown in 

Figure 6. The DSP platform connects emulator through JTAG 

(Joint Test Action Group) interface (IEEE 1149.1) while the 

emulator connects PC through USB interface. The algorithm 

program of cloud detection was developed in CCS (Code 

Composer Studio) develop environment which is provide by 

Texas instruments in PC. This program would be downloaded 

to DSP platform through emulator after the writing process and 

compilation process were completed. Then the program of 

cloud detection is executed by DSP to complete cloud detection 

process. And the execution result would be stored in SDRAM 

of DSP platform. In order to see the detection result clearly and 

directly, the image data sorted in SDRAM could be uploaded to 

PC through emulator and displayed in the CCS develop 

environment in real time (see Figure 6). This platform is 

convenient to develop and debug in real time. 
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Figure 6. (a) The whole experiment platform of cloud detection. 

(b) DSP platform. (c)Emulator 

 

3.1.1 DSP platform：In order to realize the cloud detection 

from satellite image, a real-time onboard system based on DSP 

was presented in Figure 7. The core compute unit of system is 

TMS320DM642, which has the characteristics of modular、
flexible design and scalability and maintainability. 

TMS320DM642 adopts advanced Harvard structure (Figure 8). 

The main characteristic of the Harvard structure is that the 

program memory and data memory are independent, which 

means they have independent buses. So it is possible to address 

the data memory and program memory at the same time. The 

advanced Harvard structure has cross connection between the 

data memory and program memory. Thus the transmission of 

data can be carried out between the program memory and data 

memory; and the CPU can perform the order of reading and 

writing operation in the same cycle. This feature would 

improve the data processing ability greatly. Another feature of 

the DPS is pipelined technology. The pipelined stage of 

TMS320DM642 is 3, which are fetch, decode and execute (see 

Figure 9). Ordinary CPU executes an instruction these three 

stages step by step. Pipelined DSP refers to overlapping 

operations by transferring data or instructions into a conceptual 

pipe with all stages of the pipe processing simultaneously. By 

using the pipeline mechanism, it is insurable that the DSP 

multiplication, addition and multiplication accumulator can be 

completed in a single cycle. It is important to improve the DSP 

operation speed, especially when we need to design a 

sequential algorithm of multiply accumulate operations.  

 

 
Figure 7. Cloud detection hardware system 

 

 
Figure 8. Improved Harvard structure 

 

 
Figure 9. Pipeline 

 

The specification of TMS320DM642 is shown in Table 1. The 

chip can reach 5760 MIPS (Million Instruction per Second) 

when it works at the frequency of 720MHz. It is capable to 

handle huge data at a real time. The whole system is controlled 

by Field Programmable Gate Array (FPGA), which provides 

interrupt and control signals to arrange the input and output of 

the image data. The program of FPGA can be reconfigured 

through JTAG interface to extend the function easily and 

flexibly. This feature improves the adaptability and flexibility 

of the whole system.  

 

L1 Program 

Cache 
16 Kbyte Timers 3 

L1 Data 

Cache 
16 Kbyte MHz 720 

L2 Unified 

RAM 
256 Kbyte MIPS 5760 

EDMA 64 channels McBSP 2 

Core Voltage 1.2 V I/O Voltage 3.3 V 

Table 1 The specification of TMS320DM642 

 

When the system starts to work, FPGA will send a control 

signal to FIFO (First-in First-out memory) to get image data 

from interface. FIFO provides two independent ports with 

separate control, and I/O pins that permit independent, which 

realizes synchronous access for reading or writing. The use of 

FIFO is to store image data efficiently and avoid the conflict in 

data bus. 

 

In the process of data processing, a large amount of data needs 

to transmit between CPU and storage. In order to increase the 

image data processing speed, EDMA (Enhanced Direct 

Memory Access) transmission mode of the DM642 chip was 

used sufficiently. The biggest advantage of EDMA is that it can 

directly access storage when CPU is processing data. The work 

flow of the EDMA is shown as Figure 10. The EDMA waits a 

trigger signal which is generated by FPGA after being 

initialized and configured. Once a trigger signal sends to 

EDMA, it would start to transmit data. Then the EDMA will be 

waiting for the next trigger signal after the transmission has 

been done. The inputting image in FIFO then will transfer to 

Synchronous dynamic random access memory (SDRAM) 

through EDMA, and CPU of DM642 will carry on image 

processing algorithm by accessing the data of SDRAM. At last, 

The processed image in SDRAM transfers to FIFO. 
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Figure 10. Work flow of EDMA 

 

3.1.2 Emulator ： Real-time system needs the real-time 

debugger. Real-time debugger must get the information from 

target CPU and control the program running on target CPU 

without stopping the program running on the target CPU. The 

TDS560USB PLUS emulator manufactured by Wintech Digital 

Systems Technology Corp is utilized to build a real-time 

communication channel between the debugger and the target 

CPU. There are two kinds of interfaces of TDS560USB PLUS 

emulator, JTAG interface for connecting DSP platform and 

USB interface for connecting PC. It fully plugs and plays 

compatibly.  

 

There are many features of the emulator: 1) high speed of 

real-time data exchanging (HS-RTDX) bandwidth is over 

2Mb/s; 2) code download speed is up to 512K/s; 3) wide 

dynamic operating voltage is 1.0 to 5.0 volts 

 

3.2 Data set 

 

A series of experiments have been done to demonstrate the 

effectiveness of proposed cloud detection algorithm. The data 

is acquired from the LandSat-8. The data in B4 band 

(wavelength: 0.63-0.68 m ), B3 band (wavelength: 0.52-0.60

m ) and B2 band (wavelength: 0.45-0.52 m ) were chosen 

to do the experiments. The training samples are trained on PC 

with Intel Quad-Core CPU i5-3450 at 3.1 GHz and 4-GB RAM. 

The proposed cloud detection algorithm executed as 

demonstrated above. In order to evaluate the effectiveness of 

proposed cloud detection algorithm, our method were 

compared with other cloud detection methods. 

 

3.3 The result of cloud detection 

 

3.3.1 Coarse cloud detection result ： The coarse cloud 

detection step is shown as figure 11. The true color image 

firstly was transformed to gray scale image, and then gray 

value is adopted as image feature. Gray value is a key 

parameter to distinguish the cloud and cloud-free pixels 

roughly. Then we utilized the proposed threshold method to get 

a coarse cloud detection result.  

 

 
Figure 11. Procedure of coarse cloud detection 

 

  
(a)                         (b) 

   
(c)                       (d) 

Figure 12. Threshold detection result. (a) Input image. (b) 

Cloud detection result based on tradition threshold method. (c) 

Binary cloud detection result based on proposed threshold 

method (d) Cloud detection result based on proposed threshold 

method 

 

3.3.2  The final cloud detection result 

 

 
(a) 

  
（b）                    （c） 

 
（d）                    （e） 

Figure 13. Procedure of proposed cloud detection algorithm. (a) 
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Input image. (b) Binary coarse detection result. (c) Coarse 

cloud detection result. (d) Final binary cloud detection result. (d) 

Final cloud detection result 

 

3.4 Comparisons 

 

In order to illustrate the performance of cloud detection method, 

the quantitative method is adopted to verify the experimental 

results described above. We use the following two formulas to 

test cloud detection accuracy and detection error.  

 

 
R d

DR
test


                     (6) 

 

where R-d is the cloud detection results of accurate 

identification of cloud samples, the test is the total number of 

samples. 

 

error

CN NC
P

test


                   (7) 

where CN indicates the sample points of the cloud were 

wrongly judged as other features , NC indicates the samples 

points of other features wrongly judged as cloud. 

   
（a1）Input image 1（a2）Input image 2（a3）Input image 3 

 

   
（b1）            （b2）            （b3） 

   
（c1）             （c2）           （c3） 

   
（d1）             （d2）           （d3） 

   
（e1）            （e2）            （e3） 

Figure 14. Detection comparisons. (a) Input image. (b) Binary 

result of SVM. (c) Detection result of SVM. (d) Binary result 

of proposed method (e) Result of proposed method 

 

Using the formula above to calculate the accuracy of each 

figure in the experiments, the results of each algorithm are 

shown as Table 2 

 

Figure 

 

Method 

1st 2nd 3rd 

SVM 86.5% 92.1% 88.3% 

Proposed 

method 
89.9% 94.4% 90.5% 

Table 2  Accuracy for results 

 

As can be seen from table 2, the results of two detection 

algorithms have the accuracy over 84%. However, the accuracy 

of each image in the proposed algorithm is higher than that of 

SVM algorithm. 

 

The detection error is obtained by using Eq.7 is as shown as 

table 3 

 

Figure 

 

Method 

1st 2nd 3rd 

SVM 15.4% 14.5% 16.3% 

Proposed 

method 
5.8% 4.3% 5.6% 

Table 3 Detection error 

 

4 CONCLUSION  

 

This paper presents a real-time onboard cloud detection method 

on basis of DSP. The proposed method combines traditional 

threshold method with the SVM method. The results show that 

the proposed method of this paper can detect cloud more 

accurately and more quickly. Moreover, in most case, the cloud 

region and non-cloud region can be classified efficiently and 

accurately using the proposed method. But the false detection 

and missed detection are still existed. The false detection is 

mainly caused by snow, which is because that the spectral 

feature and the texture feature of snow are strikingly similar to 

those of cloud. The missed cloud detection mainly results from 

cloud edges. The cloud edges change sharply and have more 

details which were more like the feature of the non-cloud 

region.  
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