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We present a study of semiblind (SB) estimation for a frequency-selective (FS) multiple-input multiple-output (MIMO) wireless
channel using a novel Fisher-information matrix (FIM) based approach. The frequency selective MIMO system is modeled as a
matrix finite impulse response (FIR) channel, and the transmitted data symbols comprise of a sequence of pilot symbols followed
by the unknown blind symbols. It is demonstrated that the FIM for this system can be expressed as the sum of the blind FIM Jb

and pilot FIM J p. We present a key result relating the rank of the FIM to the number of blindly identifiable parameters. We then
present a novel maximum-likelihood (ML) scheme for the semiblind estimation of the MIMO FIR channel. We derive the Cramer-
Rao Bound (CRB) for the semiblind scheme. It is observed that the semi-blind MSE of estimation of the MIMO FIR channel is
potentially much lower compared to an exclusively pilot-based scheme. Finally, we derive a lower bound for the minimum number
of pilot symbols necessary for the estimation of an FIR MIMO channel for any general semi-blind scheme. Simulation results are
presented to augment the above analysis.

1. Introduction

Multiple-input multiple-output (MIMO) communication
systems [1] have gained widespread popularity as technology
solutions for current and future wireless systems such as
3G/4G, WBA (wireless broadband access), and 802.11n for
high-speed WLAN (wireless local area network) applications
amongst others. The detection performance of the designed
MIMO receivers depends on the accuracy of the available
channel estimate. Accurate estimates are also valuable for
feedback-based schemes such as water-filling power alloca-
tion to enhance capacity [2] or design optimum precoders
for MIMO transmission [3]. Channel estimation thus plays
a key role in the performance gains achievable through
deployment of MIMO systems.

In current signal processing research, there are two
dominant and widely prevalent approaches for channel
estimation. The first one is termed as pilot-based estimation
[4, 5] and employs exclusively pilot symbols. These schemes

have a low complexity of implementation and are robust in
nature which makes them amenable for implementation in
wireless systems. A downside to the employment of pilot-
based schemes is that they cause a significant bandwidth
overhead since pilot symbols convey no information. This
overhead is higher in MIMO systems where the number of
channel parameters to be estimated grows as the product
of the number of receive and transmit antennas, requiring
the transmission of an increasing number of pilot symbols,
thus reducing the effective spectral efficiency (defined as
the ratio of information bearing bits to total bits per unit
bandwidth). The alternative to pilot-based estimation, is
blind estimation [6, 7] which employs exclusively the sta-
tistical information available about the input symbols and
channel. Since, in principle, it employs no training symbols,
blind schemes have maximum effective spectral efficiency
(ratio of information to total bits equals unity). However,
blind schemes are computationally complex and typically
identify a channel only up to a scaling, phase or permutation
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Figure 1: Schematic representation of an SB system.

indeterminacy. To avoid the shortcomings of the above
schemes, semi-blind (SB) techniques [8–10], which utilize
both pilot and blind symbols (Figure 1), have gained pop-
ularity. These schemes utilize the statistical information
available in the data symbols, thus enhancing the accuracy
of the channel estimate, while employing a few pilot symbols
to greatly reduce overhead and improve robustness. For in-
stance, in the context of a SIMO wireless channel, it has been
shown that with just one pilot symbol placed anywhere in the
transmitted data block, the channel can be estimated with-
out any residual indeterminacy [11]. Other interesting semi-
blind schemes can be found in works such as [12, 13].

The focus of this work is to present a new semi-blind
MIMO estimation scheme and quantify the improvements
in bandwidth efficiency and robustness of SB estimation
schemes in general. For this purpose, it is necessary to
address multiple aspects of SB estimation. The problem of
identifiability from blind symbols forms a cornerstone of SB
estimation, since SB schemes rely on estimating a significant
component of the wireless channel from the blind symbols.
Thus, by leveraging the blind statistical information to the
greatest extent, they reduce the dependence on pilots or,
in other words, achieve a greater accuracy of estimation
from the limited pilot data. Therefore, we present a novel
approach based on the Fisher information matrix (FIM) to
characterize the blind identifiability of the MIMO channel.
In a key result presented in this work, we demonstrate that
the number of blindly identifiable parameters of the MIMO
FIR system is equal to the rank of the FIM. This observation
has been employed intuitively in literature without formal
justification, such as in [14] where the authors make this ob-
servation in the context of a SIMO channel. Identifiability
results in the context of SIMO and MIMO channels have
been presented in works such as [11, 15], respectively. Such
results in the context of systems employing space-time block
codes (STBC) can be found in works such as [16, 17]. Our
general FIM result can be employed as a unifying framework
in such a wide variety of scenarios to characterize the identi-
fiability of the underlying system.

Further, most works on identifiability such as [18] and
others consider the transmitted blind symbols to be deter-
ministically unknown in nature, due to the relative ease of
analysis of such models. However, in our analysis, we assume
that the blind symbols are stochastic in nature for the follow-
ing reason. In the context of direction of arrival (DOA) esti-
mation, it has been demonstrated in [19] that if Cs,Cd denote
the Cramer-Rao bounds (CRB) on the covariance matrices
of the stochastic and deterministic estimation schemes, then

Cd ≥ Cs. In other words, the stochastic model is statistically
more efficient and has a lower mean square error (MSE)
of estimation than its deterministic counterpart since the
stochastic signal model has the advantage that the number
of unknown parameters in the system no longer grows
with the number of transmitted data symbols. Hence, our
estimation schemes which are based on stochastic rather than
deterministic blind symbols achieve a lower MSE of esti-
mation by exploiting the statistical information available in
the blind symbols.

For the context of MIMO frequency selective channel
estimation, consider an r×t MIMO system (r = no. of receive
antennas, t = no. of transmit antennas) with Lh channel taps.
This system has 2rtLh real parameters (i.e., rtLh complex
parameters) to be estimated. The FIM-based approach can
be used to demonstrate the result that the above MIMO
FIR system has t2 parameters that cannot be identified from
exclusively employing blind data. This is a central result for
the estimation of MIMO FIR matrices and is derived from
the MIMO identifiability results in [15, 20], wherein it has
been shown that these t2 blindly unidentifiable parameters
correspond to a t × t unitary matrix indeterminacy. Moti-
vated by this observation, we present an SB estimation
scheme for a FIR MIMO channel, which achieves the dual
objective of robustness and spectral efficiency. This scheme
employs a whitening-rotation-like decomposition of the FIR
MIMO channel, where the whitening matrix is frequency
selective. We then utilize the work in [7] where Tugnait
and Huang have elaborated a blind algorithm based on
linear prediction for the estimation of the frequency-selective
whitening matrix of the MIMO frequency selective channel.
Utilizing this scheme, in conjunction with an orthogonal
pilot sequence-based maximum-likelihood (ML) scheme for
the estimation of the unitary matrix indeterminacy [21], we
describe a scheme for the semi-blind estimation of a MIMO
FIR channel. Thus, we present a novel procedure for SB esti-
mation of the MIMO FIR channel.

The final concern in this endeavor of SB channel estima-
tion is to quantify the estimation accuracy of such schemes
for a given number of pilot symbols. Once again, using
the FIM-based approach above, a concise result can be
found for the MSE of estimation of the SB scheme. We
demonstrate that asymptotically, as the block length of data
symbols becomes very large, the MSE of SB estimation is
directly proportional to the number of blindly unidentifiable
parameters or t2. Hence, while for exclusively pilot-based
estimation the MSE grows proportional to the total number
of parameters 2rtLh, the MSE bound for SB estimation is
only related to a much smaller set of t2 blindly unidentifiable
parameters. Thus, in summary, by exploiting the available
blind symbols to the greatest possible extent, that is, by
estimating all but a small fraction t2 of the total 2rtLh
parameters from the blind symbols, one can achieve a
much lower MSE performance compared to exclusively pilot-
based schemes. Finally, we consider the issue of minimum
number of pilot symbols necessary for the estimation of the
FIR MIMO channel. Indeed, the answer to this question
is inherently related to the question of identifiability of
the MIMO FIR channel, and, using the FIM approach, we
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demonstrate the key result that at least t pilot symbols are
necessary for the estimation of the MIMO FIR channel.

The rest of the paper is organized as follows. The
MIMO FIR estimation problem is formulated in Section 2.
In Section 3, we present results on the SB-FIM followed
by Sections 4 and 5 which describe the semi-blind scheme
for channel estimation and MSE analysis, respectively.
Simulation results are presented in Section 7 followed by
conclusions in Section 8. In what follows, i ∈ m,n represents
m ≤ i ≤ n; i,m,n ∈ N, where N denotes the set of
natural numbers, rank(·) is the rank of a matrix, and N (·)
represents the null space of a matrix.

2. Problem Formulation

Consider an Lh tap frequency-selective MIMO channel. The
system input-output relation can be expressed as

y(k) =
Lh−1∑

i=0

H(i)x(k − i) + η(k), (1)

where y(k), x(k) are the kth received and transmitted symbol
vectors, respectively. η(k) is spatiotemporally white additive
Gaussian noise of variance σ2

n , that is, E{η(k)η(l)H} =
σ2
nδ(k − l)Ir , where δ(k) = 1 if k = 0 and 0 otherwise. Let
t, r be the number of transmitters, receivers, and, therefore,
y(k) ∈ Cr×1 and x(k) ∈ Ct×1. Each H(i) ∈ Cr×t, i ∈
0,Lh − 1 is the MIMO channel matrix corresponding to
the ith lag. Also, we assume r > t, that is, the number
of receivers is greater than the number of transmitters. Let
{xp(1), xp(2), . . . , xp(Lp)} be a burst of Lp transmitted pilot
symbols. The subscript p in the above notation represents
pilots. Let H ∈ Cr×Lht be defined as

H � [H(0),H(1), . . . ,H(Lh − 1)],

H(i) � [h1(i), h2(i), . . . , ht(i)].
(2)

Let the unknown blind information symbols (which yield
only statistical information at the receiver) be stacked as
N > Lh transmitted symbol vectors in X(k) described by the
system model given below as

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

y(kN)

y(kN − 1)

...

y((k − 1)N + Lh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
Y(k)

=H

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

x(kN)

x(kN − 1)

...

x((k − 1)N + 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

︸ ︷︷ ︸
X(k)

+

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

η(kN)

η(kN − 1)

...

η((k − 1)N + Lh)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

,

(3)

where the matrix H ∈ C(N−Lh+1)r×Nt is the standard block
Sylvester channel matrix often employed for the analysis of
MIMO FIR channels [14] and is given as

H �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

H(0) H(1) H(2) · · · H(Lh−1) 0 · · ·
0 H(0) H(1) · · · H(Lh−2) H(Lh−1) · · ·
0 0 H(0) · · · H(Lh−3) H(Lh−2) · · ·
...

...
...

. . .
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(4)

The input vector X(k) ∈ CNt×1 is the data symbol block,
where the length of each input block of data is N symbols
long. Such a stacking of the input/output symbols into blocks
results in loss of a small number of output information sym-
bols (Lh−1 symbols per block) due to interblock interference
(IBI). This model is frequently employed in FIR system
studies such as in [22] and is adapted because eliminating
the IBI makes the analysis tractable by yielding simplistic-
likelihood expressions. Let the transmitted data symbols x(k)
be spatiotemporally white, that is, E{x(k)x(l)H} = σ2

s δ(k −
l)It and the normalized source power σ2

s � 1. Hence, the
covariance of the block input vector X(k) is given as RX �
E{X(i)X(i)H} = INt. The MIMO transfer function of the
FIR channel being defined asH(z) =∑Lh−1

i=0 H(i)z−i is assum-
ed to satisfy the following conditions.

(A.1) H(z) is irreducible, that is, H(z) has full column
rank for all z /= 0 (including z = ∞). It follows
that if H(z) is irreducible, the leading coefficient
matrix [h1(0), h2(0), . . . , ht(0)] has full column rank
(substitute z = ∞ in H(z)).

(A.2) H(z) is column reduced, that is, the trailing coefficient
matrix [h1(Lh−1), h2(Lh−1), . . . , ht(Lh−1)] has full
column rank.

In practical applications, since the fading coefficients of
the wireless channel matrices arise from the random scat-
tering effects of the ambient propagation environment, the
above assumptions are satisfied with very high probability.
For a discussion about special scenarios where the above
conditions are not satisfied, the reader is referred to works
[7, 23]. Next, we present insights into the nature of the above
estimation problem.

3. Semiblind Fisher Information Matrix (FIM)

In this section, we formally setup the complex FIM for the
estimation of the channel matrix H and provide insights into
the nature of semi-blind estimation. The parameter vector
to be estimated θH ∈ C2Lhrt×1 is defined by stacking the
complex parameter vector and its conjugate as suggested in
[21, 24] as

θH �

⎡
⎢⎢⎢⎢⎢⎣

θH(0)

θH(1)

...

θH(Lh−1)

⎤
⎥⎥⎥⎥⎥⎦

, where θH(i) �
[

vec(H(i))

vec (H(i))∗

]
∈ C2rt×1,

(5)

and vec(·) denotes the standard matrix vector operator
which represents a column-wise stacking of the entries of
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a matrix into a single column vector. In what follows, k ∈
0,Lh − 1, i ∈ 1, rt. Observe also that θ∗H (2krt+i) = θH ((2k+
1)rt + i). Let Lb blocks of data symbols X(p), p ∈ 1,Lb be
transmitted. In addition, let the data symbol vectors x(l), l ∈
Lp + 1,NLb + Lp be Gaussian. Then, RY, the correlation
matrix of the output Y defined in Section 2 is given as

RY = E
{
Y(l)Y(l)H

}
=HHH + σ2

nI, (6)

where Ry ∈ C(N−Lh+1)r×(N−Lh+1)r . Hence, employing the zero
IBI assumption as defined in the section above, the log-like-
lihood expression for the semi-blind scenario is given by a
sum of the blind and pilot log-likelihoods as

L
(
Y; θH

) = Lb + Lp, (7)

where Lb, the Gaussian log-likelihood of the blind symbols,
is given as

Lb = −
Lb∑

k=1

tr
(
Y(k)HR−1

Y Y(k)
)
− Lb ln det RY, (8)

and Lp, the least-squares log-likelihood of the pilot part, is
given as

Lp = − 1
σ2
n

Lp∑

i=1

∥∥∥∥∥∥
yp(i)−

Lh−1∑

j=0

H
(
j
)

xp
(
i− j

)
∥∥∥∥∥∥

2

. (9)

Hence, the FIM for the sum likelihood is given as

JθH = Jb + J p, (10)

where Jb, J p ∈ C2rtLh×2rtLh are the FIMs for the blind and
pilot symbol bursts, respectively, which are defined by the
likelihoods Lb, Lp [21, 25]. This splitting of the FIM into
pilot and blind components is similar to the approaches em-
ployed in [26, 27] and can be considered as representing the
blind and pilot information components available for the
estimation of the wireless channel. In the semi-blind scheme,
we wish to make complete use of the blind and pilot in-
formation for channel estimation, as against an exclusively
pilot-based scheme which employs only pilot information.
This forms the central basis for the development of semi-
blind estimation schemes. Next, we present a general result
on the properties of the FIM before we apply it to the pro-
blem at hand in the succeeding sections.

3.1. FIM: A General Result. In this section, we present an in-
teresting property of an FIM-based analysis by demonstrat-
ing a relation between the rank of the FIM and the number
of unidentifiable parameters. Let α ∈ Ck×1 be the complex
parameter vector of interest. As described in [21, 24], for esti-
mation of complex parameters, we employ a stacking of α as

θ = [αT ,αH]
T ∈ Cn×1 where n � 2k. Let p(ω; g(θ)) be the

pdf of the observation vector ω parameterized by g(θ), where
g(θ) : Cn×1 → Cl×1 is a function of the parameter vector
θ. Similar to stacking α,α∗, let the function f (θ) : Cn×1 →
Cm×1,m � 2l be defined as

f
(
θ
)
=
⎡
⎣ g

(
θ
)

g∗
(
θ
)

⎤
⎦. (11)

Given the log-likelihood L(ω; θ) � ln p(ω; f (θ)), the FIM
Jθ ∈ Cn×n is given [25] as

Jθ � −E

⎧
⎨
⎩
∂2L

(
ω; θ

)

∂θ∂θ
H

⎫
⎬
⎭. (12)

Let f (θ) be an identifiable function of the parameter θ, that
is, the FIM with respect to f (θ) has full rank. We then have
the following result.

Lemma 1. Let p(ω; f (θ)), be the pdf of the observation vector
ω, and let f (θ) : Cn×1 → Cm×1 be a function of the parameter
vector θ satisfying the following conditions.

(C.1) Let f (θ) itself be an identifiable function of the para-
meter θ, that is, the FIM with respect to f (θ) has full
rank.

(C.2) Let rank(N (∂ f (θ)/∂θ)) = d, or, in other words, the
dimension of the null space of ∂ f (θ)/∂θ is d.

Under the above conditions, the FIM J(θ) ∈ Cn×n is rank de-
ficient and, moreover,

rank
(
J
(
θ
))
= n− d. (13)

Proof. Let p(ω; f (θ)) be the pdf of the observations ω. The
derivative of the log-likelihood with respect to the parameter
vector θ is given as

∂

∂θ
ln p

(
ω; f

(
θ
))
= ∂

∂ f
(
θ
) ln p

(
ω; f

(
θ
))∂ f

(
θ
)

∂θ
. (14)

The unconstrained FIM for the estimation of the parameter
vector θ is given as

J
(
θ
)
= E

{(
∂

∂θ
ln p

(
ω; f

(
θ
)))T ∂

∂θ
ln p

(
ω; f

(
θ
))}

=
⎛
⎝
∂ f
(
θ
)

∂θ

⎞
⎠
T

E

⎧
⎪⎨
⎪⎩

⎛
⎝ ∂

∂ f
(
θ
) ln p

(
ω; f

(
θ
))
⎞
⎠
T

∂

∂ f
(
θ
) ln p

(
ω; f

(
θ
))
⎫
⎪⎬
⎪⎭

︸ ︷︷ ︸

∂ f
(
θ
)

∂θ
.

J( f (θ))

(15)



ISRN Signal Processing 5

Hence, from the condition C.2 above, it follows that
rank(J(θ)) = n− d.

Thus, the rank of the FIM is deficient by d, which is
the number of unidentifiable parameters. We now provide a
deeper insight into the above result that connects the nature
of the FIM to the number of unidentifiable parameters. Ex-
plicitly, let θ be reparameterized by the real parameter vector

ξ � [ξ
T

1 , ξ
T

2 ]
T

, ξ1 ∈ Rd′×1, ξ2 ∈ Rd×1 as θ(ξ). Let f (θ(ξ)) ∈
Cm×1 satisfy the property

∂ f
(
θ
(
ξ
))

∂ξ2

=
∂ f
(
θ
)

∂θ

∂θ

∂ξ2

= 0m×d, (16)

or, in other words, the function f (θ) remains unchanged
as the parameter vector θ varies over the d dimensional
constrained manifold θ(ξ2), and thus ∂ f (θ)/∂θ has at least
a d dimensional null space. The parameter vector ξ2 is the
unconstrained parameterization of the constraint manifold
and represents the unidentifiable parameters. This implies
that each parameter θi in θ is identifiable only up to d
degrees of freedom owing to the unidentifiability of the
ξ2 component which is of dimension d. This result has
interesting applications, especially in the investigation of
identifiability issues in the context of blind and semi-blind
wireless channel estimation. The implications of this result
in the context of semi-blind MIMO channel estimation are
explored in the next section where we examine the rank of the
semi-blind FIM and derive further insights into the nature of
the estimation problem.

3.2. Blind FIM. We now apply the above result to our pro-
blem of MIMO FIR channel estimation. We start by in-
vestigating the properties of the blind FIM Jb. Let the block
Toeplitz parameter derivative matrix E(k) ∈ C(N−Lh+1)r×Nt

be defined employing complex derivatives as

E(krt + i) � ∂H

∂θ2krt+i
H

. (17)

From the results for the Fisher information matrix of a
complex Gaussian stochastic process [28], Jb defined in (10)
above is given as

Jb2krt+i,2lrt+ j=Jb(2l+1)rt+ j,(2k+1)rt+i

=Lb tr
(
E(krt + i)HHR−1

Y HE
(
lrt + j

)H
R−1

Y

)
,

Jb2krt+i,(2l+1)rt+ j=
(
Jb(2l+1)rt+ j,2krt+i

)∗

=Lb tr
(
E(krt + i)HHR−1

Y E
(
lrt + j

)
HHR−1

Y

)
,

(18)

where Jbk,l denotes its (k, l)th element. We can now apply
the result in Lemma 1 above to this FIM matrix Jb, and
we have the following result on the rank of the blind FIM
for the MIMO FIR channel. Under the assumptions above,

it is known [15, 20] that H(z) can be identified up to a
constant t × t unitary matrix from second-order statistical
information. Such a unitary matrix has t2 real parameters,
[21]. Hence, from Lemma 1 above, we have the following
result.

Theorem 2. Let the MIMO FIR channel transfer function
H(z) satisfy (A.1) and (A.2) above. Then, the rank upper-
bound on the blind FIM Jb ∈ C2rtLh×2rtLh defined in (18) above
is given as

rank
(
Jb
)
= 2rtLh − t2. (19)

In fact, a basis for the t2 × 1 null space N (Jb) is given by
U(H) ∈ C2rtLh×t2

as

U(H) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

U(H(0))

U(H(1))

...

U(H(Lh))

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

, (20)

where the matrix function U(H) : Cr×t → C2rt×t2
for the

matrix H = [h1, h2, . . . , ht] is defined as

U(H) =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

−h∗1 −h∗2 −h∗3 · · · 0 0 · · ·
0 0 0 · · · h∗1 −h∗2 · · ·
0 0 0 · · · 0 0 · · ·
...

...
...

. . .
...

...
. . .

h1 0 0 · · · h2 0 · · ·
0 h1 0 · · · 0 h2 · · ·
0 0 h1 · · · 0 0 · · ·
...

...
...

. . .
...

...
. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (21)

Proof. See Appendix A.

Thus, it is clear that MIMO FIR impulse response of
the channel can be estimated up to an indeterminacy of t2

real parameters from the statistical or blind information.
This result has significant implications for estimation of
the MIMO channel. As r,Lh increase, the number of real
parameters in the system, which is equal to 2rtLh (the
dimension of matrix JθH ), increases manyfold. However, the
number of parameters that cannot be identified from blind
symbols may be as small as t2 implying that a wealth of
data can be identified from the blind symbols without any
need for pilots. This reduction in the number of parameters
to be estimated from pilots results in a significant decreases
in the MSE of estimation, a result which will be rigorously
justified in Section 5. Next, we present an algorithm for the
SB estimation of the MIMO FIR channel matrix.

4. Semiblind Estimation: Algorithm

As shown above, since only t2 (of the total 2rtLh) parameters
cannot be identified from blind data, they can be identified
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from the pilot symbols. These t2 parameters correspond to
a unitary matrix. More precisely, Let H(z) ∈ Cr×t(z) be the
r×t irreducible channel transfer matrix. let the input-output
system model be as shown in Section 2. Then, H(z) can be
identified up to a unitary matrix from the blind statistical
information, that is, without the aid of any pilots. In the

following discussion, let θ̂ denote the estimate of the quantity
θ. The matrix H ∈ Cr×Lht can be expressed as

H = W
(

ILh ⊗QH
)

,

where W � [W(1),W(2), . . . ,W(Lh − 1)].
(22)

From the above result, the matrices Ŵ(i), i ∈ 0,Lh − 1
can be estimated from the blind second-order statistical
information, that is, from the correlation lags Ry( j) �
E{y( j)y(0)H}, j ∈ 0,Lh − 1, without the aid of pilot sym-
bols. In the flat fading channel case (Lh = 1), this can be done
by a simple Cholesky decomposition of the instantaneous
output correlation matrix Ry(0) (as Ry(0) = Ŵ(0)Ŵ(0)H).
However, for the case of frequency selective channels,
estimating the matrices W(i) is not straight forward and a
scheme based on designing multiple delay linear predictors is
given in [7] (Set na = 0, d = nb = Lh − 1 and it follows that
Ŵ(i) = F̃i). It thus remains to compute the unitary matrix
Q̂ ∈ Ct×t, that is, Q̂ is such that Q̂Q̂H = Q̂HQ̂ = I and
Q has very few parameters (t2 real parameters, [21]). In the
next section, we present algorithms for the estimation of this
unitary Q indeterminacy from the transmitted pilot symbols.

4.1. Orthogonal Pilot ML (OPML) for Q Estimation. We now
describe a procedure to estimate the unitary matrix Q from
an orthogonal pilot symbol sequence Xp. Let Xp(i), i ∈
0,Lh − 1 be defined as Xp(i) � [xp(Lh − i), xp(Lh − i +
1), . . . , xp(Lp − i)]. Let Xo

p the pilot matrix be defined as

Xo
p �

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

Xp(0)

Xp(1)

...

Xp(Lh − 1)

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

. (23)

The least squares cost function for the constrained estima-
tion of the unitary matrix Q can then be written as

∥∥∥∥∥∥
Yp −

Lh−1∑

i=0

W(i)Q̂HXp(i)

∥∥∥∥∥∥

2

, subject to Q̂Q̂H = It . (24)

Let the pilot matrix Xo
p be orthogonal, that is, Xo

p(Xo
p)H =

LpILht. The cost minimizing Q̂ is then given as

Q̂ = UVH , where UΣVH = SVD

⎛
⎝
Lh−1∑

i=0

X(i)YHW(i)

⎞
⎠.

(25)

Proof. It follows from an extension of the result in [21].
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Figure 2: Paley Hadamard matrix.

Finally, Ĥ is given as Ĥ � Ŵ(ILh ⊗ Q̂H). It now remains
to demonstrate a scheme to construct the orthogonal pilot
matrix Xo

p which is treated next.

4.2. Orthogonal Pilot Matrix Construction. An orthogonal
pilot matrix in the context of MIMO FIR channels can
be constructed by employing the Paley Hadamard (PH)
orthogonal matrix structure shown in Figure 2, and such a
scheme has been described in [29]. Another scheme based
on signal constellations derived from the roots of unity
is presented in [5]. The PH matrix has blocks of shifted
orthogonal rows (illustrated with the aid of rectangular
boundaries), thus giving it the block Sylvester structure. Each
transmit stream of orthogonal pilots for the FIR system can
be constructed by considering the “L”-shaped block shown
in the figure and removing the prefix of Lh (channel length)
symbols at the receiver. Thus, the pilot matrix for orthogonal
pilots Xo

p is given as

Xo
p �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp(Lh) xp(Lh + 1) · · · xp

(
Lp

)

xp(Lh − 1) xp(Lh) · · · xp

(
Lp − 1

)

...
...

. . .
...

xp(1) xp(2) · · · xp

(
Lp − Lh + 1

)

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

.

(26)

Orthogonal pilots have shown to be optimally suited for
MIMO channel estimation in studies such as [30, 31].
However, the Sylvester structure of FIR pilot matrices further
constrains the set of orthogonal pilot symbol streams com-
pared to flat-fading channels. As the number of channel taps
increases, employing a PH matrix to construct an orthogonal
pilot symbol stream implies choosing a PH matrix with a
large dimension. This in turn implies an increase in the
length of the pilot symbol sequence and hence a larger
overhead in communication. This problem can be alleviated
by employing a nonorthogonal pilot symbol sequence which
results in slightly suboptimal estimation performance but
enables the designer to choose any pilot length desired. This
iterative general maximum-likelihood (IGML) scheme for
channel estimation using nonorthogonal pilots is described
in [21] for flat-fading channels and can be extended to FIR
channels in a straight forward manner. Experimental results
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have shown its performance to be comparable to the above
OPML scheme.

5. Semiblind MSE of Estimation

Consider now the asymptotic performance of the semi-
blind scheme from an FIM perspective. As the amount of
blind information increases (which does not increase the
pilot overhead of the system), the variance of estimation
of the the covariance matrices Ry(i) progressively decreases
to zero, implying that the blindly identifiable parameters
(such as the whitening matrix) can be estimated accurately.
Thus, intuitively, the SB estimation problem reduces to
the constrained estimation of the t2 blindly unidentifiable
parameters from the pilot symbols, a proposition which is
rigorously justified below. Hence, the limiting MSE is equal
to the MSE for the complex constrained estimation of the t2

blindly unidentifiable parameters. SB techniques can there-
fore yield a far lesser MSE of estimation than an ex-clusively
pilot-based scheme as illustrated by the following result.

Theorem 3. Let J p = (Lp/σ2
n)I2rtLh , which is achieved by

the orthogonal pilot matrix Xo
p. Then, as the number of blind

symbol transmissions increases ( Lb → ∞), the semi-blind CRB
JθH

−1 approaches the CRB for the exclusive estimation of the t2

blindly unidentifiable parameters. Further, the semi-blind MSE
bound, given by the trace of the CRB matrix, converges to

lim
Lb→∞

E
{∥∥∥Ĥ−H

∥∥∥
2

F

}
≥ 1

2
tr
(
JθH

−1
)
=
(

σ2
n

2Lp

)
t2, (27)

which depends only on t2, the number of blindly unidentifiable
parameters.

Proof. Given the fact that J p = (Lp/σ2
n)I2rtLh , the semi-blind

FIM can be expressed as

JθH =
Lp

σ2
n

I2rtLh×2rtLh + LbJ̃
b, (28)

where J̃ b is the blind FIM corresponding to a single observed
blind symbol block Y and is given as J̃ b � (Jb/Lb), where the
blind FIM Jb is defined in (18). From Lemma 1, it can be seen
that J̃ b is rank deficient and rank(J̃ b) = rank(Jb) = 2rt − t2.
Let the eigen-decomposition of J̃ b be given as J̃ b = EbΛbEb

H ,
where Λb ∈ C(2rt−t2)×(2rt−t2) is a diagonal matrix. Then,

J(θH ) = Lp

σ2
n

[
E⊥b ,Eb

][
E⊥b ,Eb

]H
+ LbEbΛbE

H
b

=
[
Eb,E⊥b

]

⎡
⎢⎢⎢⎣

Lp

σ2
n

I + LbΛb 0

0
Lp

σ2
n

I

⎤
⎥⎥⎥⎦

[
Eb,E⊥b

]H
.

(29)

Hence, the CRB J−1(θH ) is given as

J−1(θH ) =
[
Eb,E⊥b

]

⎡
⎢⎢⎢⎢⎣

(
Lp

σ2
n

I + LbΛb

)−1

0

0
σ2
n

Lp
I

⎤
⎥⎥⎥⎥⎦

[
Eb,E⊥b

]H
.

(30)

As the number of blind symbols Lb → ∞, the diagonal
matrix ((Lp/σ2

n)I + LbΛb)−1 → 0(2rt−t2)×(2rt−t2) in the above
expression. Thus the semi-blind bound approaches the com-
plex constrained Cramer-Rao bound (CC-CRB) [21] given
as

lim
Lb→∞

J−1(θH ) = σ2
n

Lp
E⊥b E

⊥
b
H . (31)

In fact, the bound on the MSE is clearly seen to be given as

E
{∥∥∥θ̂H − θH

∥∥∥
2

F

}
≥ σ2

n

Lp
tr
(
E⊥b E

⊥
b
H
)

=⇒ 2
(

E
{∥∥∥Ĥ−H

∥∥∥
2

F

})
≥ σ2

n

Lp
tr
(
E⊥b E

⊥
b
H
)

E
{∥∥∥Ĥ−H

∥∥∥
2

F

}
≥ 1

2
σ2
n

Lp

(
2rt − (2rt − t2))

=
(

σ2
n

2Lp

)
t2,

(32)

which is the constrained bound for the estimation of the
MIMO channel matrix H.

Thus, the bound for the MSE of estimation and hence
the asymptotic MSE of the maximum-likelihood estimate of
the channel matrix H with the aid of blind information, are
directly proportional to t2.

Contrast this result with the MSE of estimation exclu-
sively using an exclusively pilot-based scheme (i.e., a scheme
which does not leverage the blind data like the semi-
blind scheme). This MSE is given as (1/2) tr({J p}−1) =
(σ2

n/2Lp)2rtLh and is proportional to 2rtLh, the total number
of real parameters. Hence, the SB estimate which has an
asymptotic MSE lower by a factor of 2(r/t)Lh can potentially
be very efficient compared to exclusive pilot only channel
estimation schemes. For instance, in a MIMO system with
r = 4, t = 2, and Lh = 2 channel taps, the potential
reduction in MSE by employing a semi-blind estimation
procedure is 2(r/t)Lh = 9 dB as demonstrated in Section 7.
Thus, the SB estimation scheme can result in significantly
lower MSE. Finally, it is worth mentioning that the above
results, which are derived employing the Gaussian data
symbol distribution in Section 3, are in close agreement with
the performance of a system employing a discrete signal
constellation such as quadrature phase-shift keying (QPSK),
as illustrated in the simulation results of Section 7.

6. Pilots and FIM

In this section, we obtain a lower bound for the minimum
number of pilot symbols necessary to achieve regularity or
a full rank FIM JθH , that is, for the SB identifiability of the
MIMO channel H(z). Recall that {xp(1), xp(2), . . . , xp(Lp)}
are the Lp transmitted pilot symbols. Then, the FIM of the

pilot symbols J p is given as J p = ∑Lp

i=1 J
p(i), where J p(i) is

the FIM contribution from the ith pilot symbol transmission.



8 ISRN Signal Processing

Given complex vectors in Ct×1, let the matrix function iVj :
(Ct×1,Ct×1) → C2rt×2rt be defined as

iVj �
⎡
⎣

xp(i)xp
(
j
)H ⊗ Ir 0

0 xp(i)∗xp
(
j
)T ⊗ Ir

⎤
⎦, if i, j > 0,

(33)

and iVj = 02rt×2rt if i ≤ 0 or j ≤ 0. After some
manipulations, it can be shown that the FIM contribution
J p(i) ∈ C2rtLh×2rtLh is given as

J p(i) = 1
σ2
n

⎡
⎢⎢⎢⎢⎢⎢⎢⎣

iVi
iVi−1 · · · iVi−Lh+1

i−1Vi
i−1Vi−1 · · · i−1Vi−Lh+1

...
...

. . .
...

i−Lh+1Vi
i−Lh+1Vi−1 · · · i−Lh+1Vi−Lh+1

⎤
⎥⎥⎥⎥⎥⎥⎥⎦

.

(34)

The following result bounds the rank of the semi-blind (pilot
+ blind) FIM JθH .

Theorem 4. Let Lp ≤ t pilot symbols xp(1), xp(2), . . . , xp(Lp)
be transmitted and let the matrix H(0) be full column rank as
assumed above. A rank upper bound of the sum (pilot + blind)
FIM JθH defined in (10) above is given as

rank
(
JθH

) ≤ 2rtLh −
(
t − Lp

)2
, 0 ≤ Lp ≤ t (35)

or, in other words, a lower bound on the rank deficiency is given
as (t − Lp)2.

Proof. See Appendix B.

The above result gives an expression for the rank upper
bound of the MIMO FIR Fisher information matrix for each
transmitted pilot symbol. Since identifiability requires a full
rank FIM, it thus presents a key insight into the number of
pilot symbols needed for identifiability of the MIMO FIR
system as shown next.

6.1. Pilots and Identifiability. From the above result, one can
obtain a lower bound on the number of pilot symbols nece-
ssary for SB identifiability of the MIMO channel. This result
is stated below.

Lemma 5. The number of pilot symbol transmissions Lp

should at least equal the number of transmit antennas t for the
FIM JθH to be full rank and hence the MIMO FIR system in (1)
to be identifiable.

Proof. It is easy to see from (35) that, for Lp < t,

rank
(
JθH

) = 2rtLh −
(
t − Lp

)2
< 2rtLh, (36)

that is, strictly less than full rank. As the number of pilot
symbols increases, for Lp = t, rank(JθH ) ≤ 2rtLp, where
2rtLp is the dimension of JθH and therefore represents full
rank. Hence, at least t pilot symbols are necessary for the
identifiability of the MIMO FIR wireless channel.
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Figure 3: Rank deficiency of the complex MIMO FIM versus num-
ber of transmitted pilot symbols (Lp) for a 6× 5 MIMO FIR system
of length Lh = 5.

Thus at least t pilot symbols are necessary for the system
to become identifiable. One has to observe that in the case
of semi-blind estimation potentially fewer number (t2) of
parameters need to be estimated. Hence, even though semi-
blind schemes necessitate the transmission of t pilot sym-
bols, the accuracy of estimation of such a scheme can be
higher owing to the fact that they estimate fewer parameters
from the limited pilot symbols. This improvement in MSE
performance has been quantified in Section 5 where we pre-
sented results about the asymptotic performance of the SB
estimator using the above FIM framework. Next, we present
results of simulation studies.

7. Simulation Results

In this section, we present results of simulation experiments
to illustrate the salient aspects of the work described above.
In a majority of our simulations below, we consider a 4 × 2
MIMO FIR channel with 2 taps, that is, Lh = 2, r = 4, and
t = 2. Each of the elements of H is generated as a zero-mean
circularly symmetric complex Gaussian random variables of
unit variance, that is, a Rayleigh fading wireless channel.
The orthogonal pilot sequence is constructed from Paley
Hadamard matrices by employing the scheme in Section 4.1.
The transmitted symbols, both pilot and blind (data), are
assumed to be drawn from a quadrature phase shift keying
(QPSK) symbol constellation [32].

Experiment 1. In Figure 3, we plot the rank deficiency of the
FIM of a 6× 5 MIMO FIR system (r = 6, t = 5) with Lh = 5
channel taps as a function of the number of transmitted pilot
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Figure 4: MSE versus SNR in a 4 × 2 MIMO channel with Lh = 2
channel taps, Lp = 20 pilot symbols.

symbols Lp. The rank was computed for 100 realizations of
randomly generated Rayleigh fading MIMO channels, and
the rank deficiency observed was precisely [25, 16, 9, 4, 1, 0]
for Lp = [0, 1, 2, 3, 4, 5] transmitted pilot symbols, respec-
tively. Hence, rank deficiency 25 for Lp = 0 verifies that
the assumptions (A.1), (A.2) (in turn Lemma 1) hold with
overwhelming probability in the case of randomly generated
MIMO channels. Further, for 1 ≤ Lp ≤ 5, the rank deficiency
is given as (5− Lp)2 which additionally verifies the bound in
(35) for FIM rank deficiency as a function of number of pilot
symbols.

Experiment 2. In Figure 4, we plot the MSE versus SNR
when the whitening matrix W(z) is estimated from NLb =
1000, 5000 blind received symbols employing the linear pre-
diction-based scheme from [7]. The Q matrix is estimated
from Lp = 20 orthogonal pilot symbols employing the semi-
blind scheme in Section 4.1. For comparison, we also plot
the MSE when H is estimated exclusively from training using
least-squares [21, 25], the asymptotic complex constrained
CRB (CC-CRB) given by (27), and the MSE of estimation
with the genie-assisted case of perfect knowledge of W(z).
It can be observed that the MSE progressively decreases to-
wards the complex constrained CRB as the number of blind
symbols increases. Also observed as illustrated in Theorem 3,
the asymptotic SB estimation error is 10 log(32/4) = 9 dB
lower than the pilot-based scheme as illustrated in Section 5.

In Figure 5(a), we plot the MSE performance of the
competing estimation schemes above for different transmit-
ted pilot symbol lengths Lp and 5000 transmitted QPSK

20 40 60 80 100 120 140
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NLb = 5000
Training
Asymp CRB

M
SE

Semiblind

MSE versus Lp , Lh = 2, r × t = 4× 2, SNR = 5 dB

Pilot length (Lp)

(a)
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M
SE

SNR = 5 dB, Lh = 2, r × t = 4× 2, Lp = 20

Imperfect W(z)
Semiblind

MSE versus (NLb) (no. of blind symbols),

NLb (no. of blind symbols)

(b)

Figure 5: MSE performance for estimation of a 4 × 2 MIMO
frequency-selective channel. (a) MSE versus Lp and (b) MSE versus
number of blind symbols.

data symbols (blind received symbols). As illustrated in
Section 4.1, we employ Paley Hadamard matrices to con-
struct the orthogonal pilot sequences. Since such matrices
exist only for certain lengths Lp, we plot the performance for
Lp = 12, 20, 48, 68, 140 pilot symbols. The asymptotic semi-



10 ISRN Signal Processing

2 4 6 8 10 12 14 16

10−8

10−7

10−6

10−5

10−4

10−3

Training
Asymp SB

SNR

SE
R

SER versus SNR, Lh 2, r × t 4× 2= =

Figure 6: Symbol error rate (SER) versus SNR for QPSK symbol
transmission of a 4×2 MIMO frequency selective channel with Lh =
2 channel taps.

blind performance is 9 dB lower in MSE as seen above. Also,
for a given number of blind symbols, the performance gap
in MSE of performance of the semi-blind scheme with W(z)
estimation and that of the training scheme progressively de-
creases. This is due to the fact that more blind symbols are
required to accurately estimate the whitening matrix W(z)
for the MSE performance of the semi-blind scheme to be
commensurate with the performance improvement of the
pilot-based scheme. Finally, in Figure 5(b), we plot the per-
formance of the competing schemes for different number of
blind symbols in the range 1000–5000 QPSK symbols and
Lp = 12 pilot symbols. The performance of the SB scheme
with W(z) estimated can be seen to progressively improve as
the number of received blind symbols increases.

Experiment 3. We compare the symbol error rate (SER) per-
formance of the training and semi-blind channel estimation
schemes. At the receiver, we employ a stacking as in (3) of 7
received symbol vectors y(k) followed by a MIMO minimum
mean-square error (MMSE) detector [1] constructed from
the MIMO channel matrix H . In Figure 6, we plot the SER
of detection of the transmitted QPSK symbols versus SNR in
the range 2–16 dB. It can be seen that the asymptotic semi-
blind estimator has a 1-2 dB improvement in detection per-
formance over the exclusive training-based scheme. The SER
drops from around 1×10−1 at 2 dB to 1×10−8 at 16 dB. Thus,
an SB-based estimation scheme can potentially yield signifi-
cant throughput gains when employed for the estimation of
the wireless MIMO frequency-selective channel.

8. Conclusion

In this work, we have investigated the rank properties of
the semi-blind FIM of a Lh tap r × t (r > t) MIMO FIR
channel. The MIMO channel transfer function H(z) can
be decomposed as H(z) = W(z)QH , where the whiten-ing
transfer function W(z) can be estimated from the blind sym-
bols alone. A constrained semi-blind estimation scheme has
been presented to estimate the unitary matrix Q from pilot
symbols along with an algorithm to achieve an orthogonal
pilot matrix structure for MIMO frequency selective chan-
nels using Paley Hadamard matrices. From an asymptotic
MSE analysis, it has been demonstrated that the semi-blind
scheme achieves a significantly lower MSE than an exclusively
pilot-based scheme. It has also been demon-strated that at
least t pilot symbol transmissions are necessary to achieve a
full-rank FIM (and hence identifiability). Simulation results
demonstrate the performance of the proposed semi-blind
scheme.

Appendices

A. Proof of Theorem 2

Proof. Consider the result for the simpler case of the flat fad-
ing channel, that is, Lh = 1. Then, H = H = H(0) = H ∈
Cr×t. Let the system be parameterized as α = vec(H) and,
hence, from the discussion above,

θ �
[

vec(H)
vec (H)∗

]
. (A.1)

From the system model described in (1), the pdf of the ob-
servation vector y ∈ Cr×1 is given by y ∼ N (0, g(θ)),
where g(θ) ∈ Cr2×1 is the output correlation defined as
g(θ) � vec(HHH + σ2

nI). Consider a reparameterization of
the channel matrix H by the real parameter vector ξ as
H(ξ) = W(ξ1)Q(ξ2), where W(ξ1) ∈ Cr×t is also known as
a whitening matrix and Q(ξ2) ∈ Ct×t is a unitary matrix.
g(θ) is now a many to one mapping since g(θ(ξ)) =
vec(W(ξ1)W(ξ1)

H
+ σ2

nI) and

f
(
θ
(
ξ
))
=

⎡
⎢⎢⎣

vec
(
W
(
ξ1

)
W
(
ξ1

)H
+ σ2

nI
)

(
vec
(
W
(
ξ1

)
W
(
ξ1

)H
+ σ2

nI
))∗

⎤
⎥⎥⎦, (A.2)

which is independent of the parameter vector ξ2. Hence, it is
a many to one mapping since for all unitary matrices Q(ξ2)
we have

∂ f
(
θ
(
ξ
))

∂ξ2

= 0r2×t2 , (A.3)

since ξ2 ∈ Rt2×1 (t2 is the number of real parameters to
characterize a t× t unitary matrix). Hence, d = t2, and, from
Lemma 1, the first result follows. The proof for the general
frequency selective case follows from the result in [15].
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For the second result, let Φ � (HHH + σ2
nI)

−1
. Let the

blind FIM Jb be block partitioned as

Jb �
⎡
⎣
Jb11 Jb12

Jb21 Jb22

⎤
⎦. (A.4)

It can be verified from (18) that Jb21 = Jb12
H

and Jb22 = Jb11
T

.
The block components of the FIM are given as

Jb11 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

hH
1 Φh1Φ11 hH

1 Φh1Φ21 · · · hH
1 ΦhtΦr1

hH
1 Φh1Φ12 hH

1 Φh1Φ22 · · · hH
1 ΦhtΦr2

...
...

. . .
...

hH
1 Φh1Φ1r hH

1 Φh1Φ2r · · · hH
1 ΦhtΦrr

hH
2 Φh1Φ11 hH

2 Φh1Φ21 · · · hH
2 ΦhtΦr1

hH
2 Φh1Φ12 hH

2 Φh1Φ22 · · · hH
2 ΦhtΦr2

...
...

. . .
...

hH
t Φh1Φ1r hH

t Φh1Φ2r · · · hH
t ΦhtΦrr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.5)

which can be written succinctly as (HHΦH)⊗ΦT . Similarly,
Jb12 is given as

Jb12 =

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

χ11χ11 χ12χ11 . . . χ11χ21 . . . χ1rχt1

χ11χ12 χ12χ12 . . . χ11χ22 . . . χ1rχt2

...
...

. . . · · · . . .
...

χ11χ1r χ12χ1r . . . χ11χ2r . . . χ1rχtr

χ21χ11 χ22χ11 . . . χ21χ21 . . . χ2rχt1

χ21χ12 χ22χ12 . . . χ21χ22 . . . χ2rχt2

...
...

. . .
...

. . .
...

χ21χ1r χ22χ1r . . . χ21χ2r . . . χ2rχtr

χt1χ11 χt2χ11 . . . χt1χ21 . . . χtrχt1

...
...

. . .
...

. . .
...

χt1χ1r χt2χ1r . . . χt1χ2r . . . χtrχtr

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

, (A.6)

where χ � HHΦ. It can now be seen that JU = 0, where
U is as defined in (21). For instance, the top t elements of
JU(:, 1) (where we employ MATLAB notation and U(:, 1)
denotes the first column of U) are given as [Jb11, Jb12]U(:, 1) =
−(hH

1 Φh1)ΦTh∗2 + (hT
2 Φ)

T
(hH

1 Φh1) = 0, and so on. The
structure of the FIM for the most general case of arbitrary Lh
is complex, but the result can be seen to hold by employing
a symbolic manipulation software tool such as the MATLAB
symbolic toolbox package.

It can be seen that the top part of the null space basis mat-
rix U(H) is U(H(0)). As assumed earlier, rank(H(0)) = t.
Now it is easy to see that if U(H) is rank deficient, U(H(0)) is
rank deficient, and, from its structure, H(0) is rank deficient
violating the assumption. Hence, rank(U(H)) = t2.

B. Proof of Theorem 4

Proof. Jb and J p(i), i ∈ 1, k are positive semidefinite (PSD)
matrices. We use the following property: if A, B are PSD
matrices, (A + B)v = 0 ⇔ Av = Bv = 0. Therefore,
JθH v = 0 ⇔ Jbv = J p(i)v = 02rtLh×1, for all i ∈ 1, k. In other
words,

N (J) = N
(
Jb
) Lp⋂

i=1

N (J p(i)). (B.1)

Let v ∈ N (J). Then, from the null space structure of Jb in
(21), it follows that v = U(H)s, where s ∈ Ct2×1. Also,

J p(i)v = J p(i)U(H)s = 0, ∀i ∈ 1,Lp. (B.2)

From Lemma 6, this implies that iViU(H(0))s =
0, for all i ∈ 1,Lp, where iVi is as defined in (33). Let
the matrix T (u) : Ct×1 → C2t×t2

be defined as

T (u) �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

0 −u∗1 −u∗2 · · ·
−u∗1 0 0 · · ·

...
...

...
. . .

u2 u1 0 · · ·
0 0 u1 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.3)

Recall that H(0) is assumed to have full column rank. Then,
from the structure of U(H(0)) given in (21), it can be shown
that the relation above holds if and only if, Ps = 0, where the
matrix P ∈ C2Lpt×t2

is given as

P �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

T
(

xp(1)
)

T
(

xp(2)
)

...

T
(

xp

(
Lp

))

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.4)

It can then be seen that matrix G ∈ C2tLp×Lp
2

forms a basis
for the left nullspace of P, that is, GTP = 0, where

G �

⎡
⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎢⎣

xp(1) xp(2) 0 · · ·
xp(1)∗ 0 xp(2)∗ · · ·

0 0 xp(1) · · ·
0 xp(1)∗ 0 · · ·
...

...
...

. . .

⎤
⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎥⎦

. (B.5)

Thus, rank(P) ≤ 2tLp − Lp
2, and, therefore, right nullity

(or nullity) of P is dim(N (P)) ≥ t2 − (2tLp − Lp
2). And,

therefore, rank(JθH ) ≤ 2rtLh − dim(N (P)) = 2rtLh − t2 +
(2tLp − Lp

2).
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Lemma 6. Let J p(i)v = 0, for all i ∈ 1,Lp, where v = U(H)s.
Then, iViU(H(0))s = 0, for all i ∈ 1,Lp, where iVi is as
defined in (33).

Proof. Consider J p(1), the FIM contribution of the first
transmitted pilot symbol. It can be seen clearly that J p(1) is
given as

J p(1) =
⎡
⎣

1V1 02rt×(2Lh−2)rt

0(2Lh−2)rt×2rt 0(2Lh−2)rt×(2Lh−2)rt

⎤
⎦. (B.6)

Hence, J p(1)U(H)s = 0 implies that 1V1U(H(0))s =
0. Further, from the properties of the matrix Kronecker
product, one has AB ⊗ CD = (A ⊗ C)(C ⊗ D). Substituting
A = xp(i), B = xp(i)H , C = D = Ir , one can then obtain
that K(xp(1))U(H(0))s = 0

K
(

xp(i)
)

�
⎡
⎣

xp(i)H ⊗ Ir 0

0 xp(i)T ⊗ Ir

⎤
⎦. (B.7)

Since H(0) (and hence H(0)∗) is full rank, after some
manipulation it can be shown that the above condition
implies T (xp(1))s = 0. Now consider the contribution of
the second pilot transmission J p(2). J p(2)U(H)s = 0 implies
that

K
(

xp(2)
)
U(H(0))s + K

(
xp(1)

)
U(H(1))s = 0. (B.8)

Since T (xp(1))s = 0 and U(H(0)),U(H(1)) have the
same structure, it can be shown that K(xp(1))U(H(1))s =
0, and, hence, it follows from the above equation that
K(xp(2))U(H(0))s = 0 which in turn implies that
T (xp(2))s = 0 and hence 2V2U(H(0)) = 0, and so on. This
proves the lemma.
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