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Abstract. The goal of this study is to find a way to statisti-
cally estimate the Hall to Pedersen conductance ratioα from
ground magnetic data. We use vector magnetic data from the
CHAMP satellite to derive this relation.α is attained from
magnetic satellite data using the 1-D Spherical Elementary
Current Systems (SECS). The ionospheric equivalent current
density can either be computed from ground or satellite mag-
netic data. Under the required 1-D assumption, these two
approaches are shown to be equal, which leads to the advan-
tage that the statistics are not restricted to areas covered by
ground data. Unlike other methods, using magnetic satel-
lite measurements to determineα ensures reliable data over
long time sequences. The statistical study, comprising over
6000 passes between 55◦ and 76.5◦ northern geomagnetic
latitude during 2001 and 2002, is carried out employing data
from the CHAMP satellite. The data are binned according to
activity and season. In agreement with earlier studies, val-
ues between 1 and 3 are typically found forα. Good com-
patibility is found, whenα attained from CHAMP data is
compared with EISCAT radar measurements. The results
make it possible to estimateα from the east-west equiva-
lent current densityJφ [A/km]: α=2.07/(36.54/|Jφ |+1) for
Jφ<0 (westward) andα=1.73/(14.79/|Jφ |+1) for Jφ>0
(eastward). Using the same data, statistics of ionospheric and
field-aligned current densities as a function of geomagnetic
latitude and MLT are included. These are binned with respect
to activity, season and IMFBZ andBY . For the first time, all
three current density components are simultaneously studied
this way on a comparable spatial scale. With increasing ac-
tivity, the enhancement and the equatorward expansion of the
electrojets and the R1 and R2 currents is observed, and in the
nightside, possible indications of a Cowling channel appear.
During southward IMFBZ, the electrojets and the R1 and R2
currents are stronger and clearer than during northwardBZ.
IMF BY affects the orientation of the pattern.
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1 Introduction

Ionospheric conductances and current distributions, in addi-
tion to being important to ionospheric studies, also reflect the
dynamics of the entire magnetosphere through its coupling
to the ionosphere. Ground-based measurements provide an
ionospheric projection of the magnetosphere along the geo-
magnetic field lines, which can be used, for instance, to place
magnetospheric satellite observations in context within the
large-scale magnetospheric structures, and to distinguish be-
tween spatial and temporal gradients in satellite data.

In order to discern the often weak ionospheric signatures
of the magnetospheric processes in ground measurements,
the data need to be further processed. The “method of char-
acteristics” (Amm, 1995) is a technique for obtaining distri-
butions of the ionospheric conductances and currents from
ground magnetic data and ionospheric electric field data. In
addition to these data, the method requires an estimate of the
Hall to Pedersen conductance ratio. The goal of this study is
to provide such an estimate based on ground magnetic field
data. The studies byLester and Davies(1996) andDavies
and Lester(1999) using EISCAT (Folkestad et al., 1983)
radar data have already suggested that although the Hall and
Pedersen conductances themselves do not follow the east-
west directed current density, their ratio does, and could
therefore be determined from the current density. To build up
statistical relations between the two parameters, long time se-
quences of conductance ratio observations are needed. These
are difficult to obtain from ground-based radars, but using
magnetic field data from a satellite to determine the conduc-
tance ratio ensures reliable data over long time sequences.

Apart from its use with the method of characteristics, the
precipitation-related part of the conductance ratio provides
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Fig. 1. The structure of the paper and the applied techniques.Section 2:Under the 1D condition,Jφ determined from magnetic data from the
CHAMP satellite using the 1D SECS method is shown to be equal toJφ,eq, theφ component of the equivalent current density determined
from IMAGE magnetometer data using the 2D SECS method (Jeq,θ is theθ component of the equivalent current density).Section 3:Under
the 1D condition,α is shown to equal−Jφ/Jθ. Section 4:Magnetic vector data from the CHAMP satellite during 2001–2002 is used to
make statistical maps of the ionospheric and field-aligned current densitycomponents, and to establish a relationship betweenJφ andα.
This makes it possible to estimateα from ground magnetic data. In a 1D case,Jθ = Jcf andJφ = Jdf . jr is the field-aligned component.
In a 2D case,Jdf = Jθ,eqêθ + Jφ,eqêφ.

Fig. 2. Determining ionospheric currents from magnetic satellite data using the 1D SECS method:Bφ givesjr andJθ, andBr givesJφ.
1D:ness of the current distribution can be estimated from the difference between the 1D SECSBθ, attained by fittingBr, and that measured
by the satellite. The optimal location for the 1D SECS pole can be found by minimizing theBθ error (Section 3.2).

Fig. 1. The structure of the paper and the applied techniques. Sec-
tion 2: Under the 1-D condition,Jφ determined from magnetic data
from the CHAMP satellite using the 1-D SECS method is shown
to be equal toJφ,eq , the φ component of the equivalent current
density determined from IMAGE magnetometer data using the 2-
D SECS method (Jθ,eq is theθ component of the equivalent cur-
rent density). Section 3: Under the 1-D condition,α is shown to
equal−Jφ/Jθ . Section 4: Magnetic vector data from the CHAMP
satellite during 2001–2002 is used to make statistical maps of the
ionospheric and field-aligned current density components, and to
establish a relationship betweenJφ andα. This makes it possible
to estimateα from ground magnetic data. In a 1-D case,Jθ = Jcf

and Jφ=Jdf . jr is the field-aligned component. In a 2-D case,
J df =Jθ,eq êθ + Jφ,eq êφ .

information on the altitude-dependence of the horizontal cur-
rents. In addition, it can be used to determine the characteris-
tic energy of electron precipitation in the ionosphere (Robin-
son et al., 1987).

The ionospheric currents, like any vector field, can be ex-
pressed as a sum of divergence-free and curl-free compo-
nents. Field-aligned currents (FAC) are then associated with
the divergence of the curl-free component. For uniform con-
ductances, the divergence-free and curl-free currents equal
the Hall and Pedersen currents, respectively.Fukushima
(1976) showed that for any 3-D current system, consisting of
ionospheric and field-aligned currents, there exists an iono-
spheric sheet current distribution, called the equivalent cur-
rents, which causes the same magnetic field below the iono-
sphere as the original 3-D distribution. He also showed that
the combined magnetic field of the curl-free currents and ra-
dial FACs is confined above the ionosphere. Therefore, this
part of the field can only be measured by low-orbit satellites.
The magnetic field caused by the divergence-free currents,
on the other hand, can be attained either by ground or satel-
lite measurements, and therefore the divergence-free currents
equal the equivalent currents. A draw-back with data from
only one satellite is that the current distribution has to be
assumed both 1-D (independent of longitude in spherical ge-
ometry) and stationary during the satellite pass. This restricts
useful data mostly to electrojet dominated cases.

In this study, the divergence-free ionospheric currents are
used to represent the ground magnetic field. The Hall to Ped-
ersen conductance ratio (α) is attained from the ratio of the

divergence-free and curl-free current densities (Jdf /Jcf ). 1-
D Spherical Elementary Current Systems (SECS,Vanham̈aki
et al., 2003; Juusola et al., 2006) have been used to deter-
mine bothJdf andJcf from magnetic data from the CHAMP
(CHAllenging Minisatellite Payload;Ritter et al., 2004; http:
//op.gfz-potsdam.de/champ/) satellite.

We begin by showing that in 1-D cases, the divergence-
free currents determined from satellite data with the rela-
tively new 1-D SECS method equal the equivalent currents
obtained from ground measurements with the already well-
established 2-D SECS method (Amm, 1997; Amm and Vilja-
nen, 1999; Pulkkinen et al., 2003; Viljanen et al., 2004). For
this purpose, we have used 124 1-D passes of the CHAMP
satellite over the IMAGE (International Monitor for Auroral
Geomagnetic Effects;Lühr et al., 1998; http://space.fmi.fi/
image/) magnetometer network during 2001 and 2002. In
Sect.3, the conditions under whichJdf /Jcf can be used
to representα are discussed, andJdf /Jcf is compared toα
measured by EISCAT.

Once the ability of the satellite-basedJdf to represent the
ground-based magnetic field and that ofJdf /Jcf to repre-
sentα have been validated, useful data can be extended from
the 124 IMAGE overpasses to 6112 1-D overpasses between
55◦ and 76.5◦ magnetic latitude during 2001 and 2002. In
Sect.4.3, these data have then been used to establish a sta-
tistical estimate forα as a function ofJdf . The data have
been binned according to the level of activity and season.
In Sect.4.2, we have included statistical maps of the iono-
spheric current densities and FACs during the two years as a
function of MLT and geomagnetic latitude. Those have been
binned with respect to activity, season and IMFBZ andBY .
Fig.1 illustrates graphically the structure of the paper and the
applied techniques.

2 Comparing ground- and satellite-based equivalent
currents

Throughout this paper we use a spherical coordinate system
(r,θ ,φ) with its origin in the center of the Earth. The pole
(θ=0), however, varies. In this section, for instance, it is
chosen to coincide with the geomagnetic north pole at 79.5◦

geographic latitude and−71.6◦ longitude. In a 1-D case,
that is, when the current distribution is independent ofφ, the
divergence-free ionospheric currents are then in theφ direc-
tion and the curl-free currents in theθ direction. The field-
aligned currents are assumed to flow radially.

When using the 1-D SECS method, ther component of
the magnetic field (Br ), gives theφ component of the iono-
spheric current density (Jφ), whileBφ givesJθ and the FACs.
Vanham̈aki et al. (2003) applied the 1-D SECS method to
ground data and therefore determinedJφ by fittingBθ , which
on ground is less anomalous thanBr . With satellite data, on
the other hand, we useBr , because FACs that in reality are
never completely 1-D, affectBθ while leavingBr practically
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1D:ness of the current distribution can be estimated from the difference between the 1D SECSBθ, attained by fittingBr, and that measured
by the satellite. The optimal location for the 1D SECS pole can be found by minimizing theBθ error (Section 3.2).

Fig. 2. Determining ionospheric currents from magnetic satellite
data using the 1-D SECS method:Bφ givesjr andJθ , andBr gives
Jφ . 1-D:ness of the current distribution can be estimated from the
difference between the 1-D SECSBθ , attained by fittingBr , and
that measured by the satellite. The optimal location for the 1-D
SECS pole can be found by minimizing theBθ error (Sect.3.2).

intact. The difference between the 1-D SECSBθ and that
measured by the satellite can be used to determine how 1-D
the current distribution is. Respective tests have shown that
passes over 55◦–76.5◦ latitude with an error

Bθ error=
|Bθ

measured
− Bθ

1−D SECS
|

|Bθ
measured

|

× 100%. (1)

less than 60% are adequately 1-D to give reliable results.
|Bθ | stands for the average of the absolute values of the com-
ponents of the vector. Figure2 illustrates graphically the ap-
plication of the 1-D SECS method to magnetic satellite data
to obtain ionospheric and field-aligned currents and to deter-
mine the 1-D:ness of the current distribution.

Figure 3 shows the track of the satellite on 6 Novem-
ber at 05:04–05:08 UT, along with the schematic equivalent
currents, attained by rotating the IMAGE ground horizontal
magnetic field vectors 90◦ clockwise.Bθ along the satellite
track, as measured by CHAMP, is shown in the top left hand
side panel of Fig.4, along with the 1-D SECSBθ attained
by fitting Br . The top right hand side panel displays simi-
lar data for 20 November 2001, at 03:59–04:04 UT. The first
overflight is the same that was used byJuusola et al.(2006)
as an example when first introducing the use of 1-D SECS
to satellite data. The second one passed close to the EISCAT
radar. In Sect. 3, we want to compare the Hall to Pedersen
conductance ratio determined from CHAMP data with that
determined from EISCAT data, and therefore this case has
been selected as an example here and again later in Sect. 3.

In both cases, except for small scale variations, the mea-
suredBθ and theBθ resulting from theBr fit have very sim-
ilar shapes, which indicates that both cases are adequately 1-
D. In the lower panels of the figure are shown the divergence-
free current densityJφ determined from CHAMP data using
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Fig. 3. Schematic equivalent currents, attained by rotating the IMAGE ground horizontal magnetic field vectors 90◦ clockwise and the track
of CHAMP on 6 November 2001, at 05:04–05:08 UT.
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Fig. 4. Left: Top: Bθ measured by CHAMP on 6 November 2001 at 05:04–05:08 UT above IMAGE, and the 1D SECSBθ attained by fitting
Br. The similar shapes of the two curves (error 45%) imply that the currentdistribution is reasonably 1D during the overflight.Bottom:Jφ

determined from CHAMP data by the 1D SECS method and from IMAGE data by the 2D SECS method. As expected in a 1D case, the two
profiles are almost the same.Right: The same as on the left hand side, but on 20 November 2001 at 03:59–04:04 UT.

Fig. 3. Schematic equivalent currents, attained by rotating the IM-
AGE ground horizontal magnetic field vectors 90◦ clockwise and
the track of CHAMP on 6 November 2001, at 05:04–05:08 UT.

the 1-D SECS method and from IMAGE data using the 2-D
SECS method. The current density determined from IMAGE
data is averaged over the approximately four minutes it takes
for the satellite to pass the network. Again the curves are
very similar, as expected in a 1-D case.

A more comprehensive view is gained from Fig.5, which
shows a scatter plot of ground-based versus satellite-based
Jφ for Bθ error <60% (124 overpasses). Each point in the
plot corresponds to one measurement in the 1 Hz CHAMP
data. During the IMAGE overflight on 6 November 2001,
for instance, the total number of measurement points was
275. Hence, the total number of points in the figure is ap-
proximately 124×275. A line fitted to the points using the
least-squares method is shown in red, and the linear corre-
lation coefficient is denoted byr. In blue is drawn a line
passing through the origin with a unit slope.

Similar plots (not shown here) were also made for other
degrees of 1-D:ness (Bθ error <80%: 435 passes;>0%:
1073 passes;>80%: 638 passes). The more 1-D the
overflights are, the better correlation there is between the
ground- and satellite-basedJφ (error<60%:r=0.90;<80%:
r=0.86; all data: r=0.82; >80%: r=0.67). These re-
sults are in agreement with those attained byRitter et al.
(2004). They compared equivalent currents determined from
CHAMP data using the method devised byOlsen(1996) with
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Fig. 4. Left: Top: Bθ measured by CHAMP on 6 November 2001 at 05:04–05:08 UT above IMAGE, and the 1-D SECSBθ attained by
fitting Br . The similar shapes of the two curves (error 45%) imply that the current distribution is reasonably 1-D during the overflight.
Bottom: Jφ determined from CHAMP data by the 1-D SECS method and from IMAGE data by the 2-D SECS method. As expected in a
1-D case, the two profiles are almost the same. Right: The same as on the left hand side, but on 20 November 2001 at 03:59–04:04 UT.
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Fig. 5. Scatter plot ofJφ determined from ground-based measure-
ments (IMAGE) by the 2-D SECS method with respect toJφ de-
termined from satellite-based measurements (CHAMP) by the 1-D
SECS method. The ground-basedJφ is averaged over the approx-
imately four minutes it takes for the satellite to pass over IMAGE.
In red is shown a line fitted to the points, and the linear correlation
coefficient is denoted byr. A line passing through the origin with
a unit slope is drawn in blue. To create this plot, data from 124
satellite passes over IMAGE with an error smaller than 60% during
2001 and 2002 were used.

those determined from IMAGE data using the 2-D SECS
method. They found a high degree of correlation (correla-
tion coefficient of 0.96 between 65◦ and 70◦ geographic lat-
itude) between the results from the two methods, and con-
luded that this current component can indeed be determined
reliably both from ground and satellite data.

When the error is approximately less than 60%, ground-
and satellite-basedJφ can be considered to be equivalent.
This means, in addition to confirming the reliability of the
1-D SECS method, that in our pursuit for an estimate for
the conductance ratio as a function of ground-based mag-
netic data, we no longer need to consider the actual ground
data at all, but instead can rely solely on CHAMP data with
Jφ representing the ground data. Not being restricted to IM-
AGE passes extends the number of useful overflights in our
statistical analysis of the following sections from 124 to 6112
(between 55◦ and 76.5◦ geomagnetic latitude).

3 Determining the Hall to Pedersen conductance ratio

3.1 Relation betweenα and−Jφ/Jθ

Assuming that the geomagnetic field is radial
(B=−B êr ), and the convection electric field horizontal
(E=Eθ êθ+Eφ êφ), Ohm’s law in the ionosphere

J = 6P E − 6H

E × B

B
(2)
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becomes

J = (6P Eθ + 6H Eφ︸ ︷︷ ︸
=Jθ

)êθ + (6P Eφ − 6H Eθ︸ ︷︷ ︸
=Jφ

)êφ . (3)

This gives the Hall to Pedersen conductance ratio in the
Northern Hemisphere as

α =
6H

6P

=

Eφ

Eθ
+

(
−

Jφ

Jθ

)
1 −

(
−

Jφ

Jθ

)
·

Eφ

Eθ

, (4)

which reduces to

α = −
Jφ

Jθ

, (5)

whenEφ=0. It is obvious that ifEφ 6=0, −Jφ/Jθ may dif-
fer significantly fromα. For example, if−Jφ/Jθ=1 and
Eφ/Eθ=0.3, α≈2. Therefore, it is clear that−Jφ/Jθ can
only be used to determineα if the direction of the con-
vection electric field is known. Fortunately in 1-D cases,
Eφ/Eθ≈0 is a good approximation: for uniform conduc-
tances,Jdf =JH and Jcf =JP . On the other hand, in 1-D
cases,Jdf =Jφ andJcf =Jθ (Vanham̈aki et al., 2003; Juusola
et al., 2006). Combining these two givesJθ êθ=JP =6P E

andJφ êφ=JH =−6H E×B/B, which means thatE=Eêθ .
Although this result was attained by assuming uniform con-
ductances in addition to 1-D:ness, it should be reason-
ably safe to state that in 1-D cases,Eφ/Eθ≈0 and hence,
α=−Jφ/Jθ .

3.2 Optimizing 1-D:ness

The 1-D:ness of a certain current distribution depends on the
location of the 1-D SECS pole. For instance, the 1-D:ness
of a slightly tilted current distribution could be improved by
moving the pole in such a way that in the new coordinate
system the tilt disappears. In order to get the best possible
results from our two years of CHAMP data, we optimized
the location of the 1-D SECS pole for each overflight in the
following way:

1. One satellite pass between 55◦ and 76.5◦ geomagnetic
latitude, as defined in Sect.2, was termed an “over-
flight”. Most electrojets can be expected to fall within
this latitude range.

2. The location of the 1-D SECS pole was restricted in
such a way that in the new coordinates, the entire over-
flight fitted within −77◦...77◦ latitude, the 1-D SECS
applicability region (Juusola et al., 2006), and the over-
flight spanned at least 10◦ in latitude.

3. Starting from the geomagnetic pole, the optimal loca-
tion for the 1-D SECS pole (θ0,φ0) was found by min-
imizing theBθ error (Eq.1) using the Powell method
(Press et al., 1992).

The Powell method can be used to minimize a function
f (P ), whereP is a point inN -dimensional space with unit
vectorsêi , i=1, . . . , N . The basic idea of the method is:

1. Start minimization at a pointP 0.

2. For i=1, . . . , N , P i= minimum along directionêi ,
starting atP i−1.

3. The new value forP 0= minimum along direction
P N−P 0, starting atP N .

Steps 1–3 are repeated untilf stops decreasing.
Figure 6 shows a typical example of the optimization

process for the overflight on 20 November 2001 at 03:59–
04:05 UT. The black line with time stamps shows the track of
the CHAMP satellite with the 1-D optimized overflight high-
lighted in magenta. The color coding according to the color
bar on the right hand side of the plot displays theBθ error
(Eq.1) for the overflight with the 1-D SECS pole at each lo-
cation. 1-D pole locations that are rejected due to the restric-
tion that in the new coordinate system the overflight must fit
within −77◦...77◦ 1-D latitude and span at least 10◦ in lati-
tude are automatically assigned an error of 100%, which is
why most of the plot appears reddish-brown. The yellow dot
shows the starting-point for the optimization with the Pow-
ell method at the geomagnetic pole and the magenta dot the
resulting 1-D SECS pole at 79◦ latitude and−103◦ longi-
tude with aBθ error of 23%. The 1-D SECS pole is found
in the dark blue minimum, which supports the suitability of
the Powell method for the task. The bottom panel of Fig.6
shows the steps taken during the Powell method optimiza-
tion. The magnetic field fits and current densities for the new
1-D coordinate system are displayed in Fig.7 (see Sect.3.3
for details).

The optimization process resulted altogether in 6112 1-D
overflights (Bθ error<60%, average 46%, standard deviation
11%). The upper left hand panel of Fig.10 shows the num-
ber of data points as a function of geomagnetic latitude and
MLT. Most of the overflights take place at dawn and dusk,
which implies that the 1-D SECS method prefers electrojet
dominated cases, as expected.

3.3 Comparison with EISCAT

Out of the 6112 1-D overflights, only five passed near EIS-
CAT with α data available. The overflight of 20 November
2001 presented in the previous section was the one passing
closest to the radar (∼50 km). Figure7 displays the three
components of the magnetic field (Br ,Bθ ,Bφ) and current
density (jr ,Jθ ,Jφ) as a function of the 1-D latitude for the
abovementioned overflight. The pole of the 1-D system is
located at 79◦ geographic latitude and−103◦ longitude.Jφ

has been determined fromBr , andjr andJθ from Bφ . The
1-D SECSBθ results from theBr fit, and has an error of
23% compared to the measuredBθ , which implies excellent
1-D:ness.−Jφ/Jθ -basedα andα determined from EISCAT
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Fig. 6. Top: A typical example of the 1D:ness optimization. The black line with the time stamps shows the track of the CHAMP satellite.
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displays theBθ error (Eq. 1) for the overflight with the 1D SECS pole at each location. The yellow dot shows the starting-point for the
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23%.Bottom:A zoom in of the top panel showing also the steps taken during the optimization as red dots connected by a black line.

Fig. 6. Top: A typical example of the 1-D:ness optimization. The
black line with the time stamps shows the track of the CHAMP
satellite. The 1-D optimized part (overflight) is highlighted in ma-
genta. The color coding according to the color bar on the right
hand side of the plot displays theBθ error (Eq.1) for the overflight
with the 1-D SECS pole at each location. The yellow dot shows
the starting-point for the optimization at the geomagnetic pole and
the magenta dot the resulting 1-D SECS pole at 79◦ latitude and
−103◦ longitude withBθ error of 23%. Bottom: A zoom in of the
top panel showing also the steps taken during the optimization as
red dots connected by a black line.

electron density measurements (with neutral collision fre-
quencies from the MSIS-86 model,Hedin, 1987) as a func-
tion of geographic latitude are shown in the upper panel of
Fig. 8. The lower panel illustrates the location of the satellite
relative to the radar. Relative error of−Jφ/Jθ andα above
EISCAT is 26%, which signifies a relatively good compat-
ibility, when taking into account the different resolutions of
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Fig. 7. The three components of the magnetic field (Br ,Bθ ,Bφ) and
current density (jr ,Jθ ,Jφ) as a function of the 1-D latitude on 20
November 2001, at 03:59–04:04 UT. The pole of the 1-D system is
located at 79◦ latitude and−103◦ longitude.Jφ is determined from
Br , andjr andJθ from Bφ . The 1-D SECSBθ results from theBr

fit and has an error of 23%.
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Fig. 8. Top: −Jφ/Jθ andα measured by EISCAT as a function
of geographic latitude. The vertical, blue, slashed line denotes the
location of the radar. The relative error between the 1-D SECS and
EISCAT α at that location is written in blue. The current densities
and magnetic fields are displayed in Fig.7. Bottom: The black
curve denotes the track of the satellite, with the part displayed in
the upper panel higlighted in magenta. The black dot in the cyan
square denotes the location of the radar, and the blue line denotes
the closest distance between the radar and the satellite.
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Fig. 9. Relative error between 1D SECS and EISCATα as a function of distance between the satellite and the radar for all five CHAMP
overflights passing close to EISCAT with data from the radar available. From left to right, the times of the overflights are: 20/11/2001
04:01:16 – 04:01:34 UT, 09/10/2002 22:06:59 – 22:07:15 UT, 13/12/2001 02:14:02 – 02:14:20 UT, 06/10/2002 23:07:22 – 23:07:38 UT, and
23/11/2001 17:06:45 – 17:06:30 UT.
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Fig. 9. Relative error between 1-D SECS and EISCATα as a
function of distance between the satellite and the radar for all five
CHAMP overflights passing close to EISCAT with data from the
radar available. From left to right, the times of the overflights
are: 20 November 2001 04:01:16–04:01:34 UT, 9 October 2002
22:06:59–22:07:15 UT, 13 December 2001 02:14:02–02:14:20 UT,
6 October 2002 23:07:22–23:07:38 UT, and 23 November 2001
17:06:45–17:06:30 UT.

the two methods (1-D SECS:∼150 km,Juusola et al.(2006);
EISCAT:∼1 km, which is the width of the radar beam in the
ionosphere), and the fact that the satellite did not pass di-
rectly above the radar. Figure9 shows the relative error be-
tween 1-D SECS and EISCATα for all the available cases
as a function of distance between the satellite and the radar.
The occurrence probability of equal alpha values as recorded
by CHAMP and EISCAT should decrease with increasing
distance. However, with the data set of only five points,
we cannot appropriately demonstrate this trend. Figure9
suggests that under favourable conditions, the two methods
are indeed consistent with each other, with the relative er-
ror <40%. In two cases out of the total five, however, the
two methods give completely different results. Resolving the
reasons for these discrepancies (besides the abovementioned
differences in spatial resolution) would require a more thor-
ough EISCAT-CHAMP comparison study with a larger data
set, which could be a topic for a future study.

The results of this section, combined with those of
Sect.3.1, indicate that in 1-D cases, using−Jφ/Jθ for α

should be a good approximation.

Table 1. The number of 1-D overfligts between 55◦ and 76.5◦ ge-
omagnetic latitude during 2001 and 2002 with|Iφ |=0...0.15 MA
(quiet), |Iφ |=0.15...0.30 MA (moderate),|Iφ |>0.30 MA (active),
as well as the number of overflights for each season (winter: Jan-
uary, February, November, December; equinox: March, April,
September, October; summer: May, June, July, August).

overflights

Quiet 2117
Moderate 1914
Active 2081
Winter 1733
Equinox 1938
Summer 2441

4 Statistical study

4.1 Data overview

For this study, we have employed altogether 6112 1-D (Bθ

error<60%) overflights of CHAMP between 55◦ and 76.5◦

geomagnetic latitude in the Northern Hemisphere. The data
have been binned according to the level of activity, repre-
sented by the absolute value of the total current in theφ direc-
tion (|Iφ |), and season. It should be noted that both sunlight
and geomagnetic activity can increase|Iφ | and that, naturally,
the effect of sunlight on|Iφ | is strongest on the dayside. We
have divided the year into three seasons: winter (January,
February, November, December), summer (May, June, July,
August) and equinox (March, April, September, October).

Table1 shows how many overflights fall into each cate-
gory. The different activity ranges (quiet:|Iφ |=0...0.15 MA,
moderate: |Iφ |=0.15...0.30 MA, active: |Iφ |>0.30 MA)
were chosen in such a way that an approximately equal num-
ber of overflights would fall into each one. However, since
the 1-D assumption restricts the data mainly to electrojet
cases, they are all relatively quiet or moderately disturbed.
For comparison, an infinitely long line current of 0.15 MA at
100 km altitude would cause a magnetic field of 300 nT on
ground directly below, and a line current of 0.3 MA a mag-
netic field of 600 nT.

4.2 Maps ofJφ , Jθ and FACs

Before going toα-statistics, we have included in this section
plots of averagejr , Jθ andJφ as a function of geomagnetic
latitude and MLT during the 6112 overpasses. To our knowl-
edge, this is the first time that all three components are si-
multaneously studied this way on a comparable spatial scale.
Due to the distance between the satellite and the ionosphere
(∼ 300 km), the spatial resolution ofJφ , which is not associ-
ated with FACs, is limited to∼150 km. In order to be able to
compare the different current components meaningfully, and
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Fig. 9. Relative error between 1D SECS and EISCATα as a function of distance between the satellite and the radar for all five CHAMP
overflights passing close to EISCAT with data from the radar available. From left to right, the times of the overflights are: 20/11/2001
04:01:16 – 04:01:34 UT, 09/10/2002 22:06:59 – 22:07:15 UT, 13/12/2001 02:14:02 – 02:14:20 UT, 06/10/2002 23:07:22 – 23:07:38 UT, and
23/11/2001 17:06:45 – 17:06:30 UT.
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Fig. 10.Distribution of data points (top, left) for the 6112 1-D over-
flights as a function of geomagnetic latitude and MLT. Here, one
data point refers to one measurement in the 1 Hz CHAMP data, with
the total number of points 2195327.jr (top, right: field-aligned
component, positive up),Jθ (bottom, left: north-south component,
positive south) andJφ (bottom, right: east-west component, posi-
tive east) as a function of MLT and magnetic latitude. The number
of data points or the magnitude and direction of the current density
in each cell is given according to the color bar on the right hand
side of the plot. Resolution of the plots is 0.5 h in MLT and 1◦

in latitude. On the top of the figure is written the total number of
overpasses used to construct the set of four plots.

to computeα=−Jφ/Jθ , alsoJθ and FACs are determined
at the same scale. This is accomplished by placing the 1-D
SECSs 0.5◦ apart in the ionosphere. As a result, the small
scale components in the measured magnetic field in Fig.7
(blue, slashed line) are not reproduced in the 1-D SECS fits
and resulting current densities (magenta line).

Figure10 shows the distribution of data points (one data
point refers to one measurement in the 1 Hz CHAMP data),
the averagejr (field-aligned component, positive up),Jθ

(north-south component, positive south) andJφ (east-west
component, positive east) as a function of geomagnetic lat-
itude and MLT. The plot is constructed out of cells with di-
mensions of 0.5 h in MLT and 1◦ in latitude, and the number
of data points or the magnitude and direction of the currents
in each cell is given according to the color bar on the right
hand side of the plot. On the top of the figure is written the
total number of overpasses used to construct the set.

As expected due to the 1-D assumption, most data points
are concentrated in the electrojet dominated regions at dawn
and dusk, and thus the reliablity of the current density plots
is also best in these regions. The number of data points at
noon and midnight is about 1/10 of the number of points at
dawn and dusk, suggesting that the statistical error ofjr , Jθ

andJφ at noon and midnight is about
√

10≈3 times larger

than at dawn and dusk. The field-aligned currents display the
typical pattern of Region 1 and Region 2 currents (Iijima and
Potemra, 1976), with the amplitude of the poleward Region 1
currents clearly stronger than that of the equatorward Region
2 currents. On the nightside the upward (yellow and red)
Region 1 currents are connected to the upward Region 2 cur-
rents in a configuration typical for the Harang discontinuity
(Untiedt and Baumjohann, 1993). Of the horizontal currents,
Jθ mainly corresponds to the curl-free currents and therefore
connects the upward and downward field-aligned currents.
Jφ , on the other hand, mostly corresponds to the divergence-
free (equivalent) currents. The distribution shows the typical
eastward and westward electrojets located between the Re-
gion 1 and 2 field-aligned currents.

Figure11 shows the data binned with respect to activity
and season. The bin and the number of overpasses used to
construct the four plots are denoted on top of each set. With
increasing activity, the enhancement of the amplitude and the
expansion of the pattern toward the equator are clearly vis-
ible. On the nightside, on the other hand, a more interest-
ing feature occurs. With increasing activity, the westward
electrojet (blue) appears to penetrate deeper into the evening
side, while there are no corresponding changes inJθ . This
might be an indication of a Cowling channel (Baumjohann
et al., 1981). In a Cowling channel, the total current is west-
ward directed, not just the Hall current. The penetration of
Jφ might also be explained by non-zero IMFBY , but Fig.12
indicates that in such a case there should also be a corre-
sponding change inJθ . The binning with respect to season
shows that in the post-noon sectorJφ andjr become stronger
from winter to equinox to summer. This could be caused by
sunlight, but since there is no corresponding enhancement to
be seen on the morning side, it seems more likely that the ef-
fect is at least partly due to relatively strong cusp-related cur-
rents. In agreement withWeimer(2001), the winter patterns
are clearly weaker than those during equinox or summer. Ac-
cording toRussel and McPherron(1973), an enhancement in
magnetic activity is expected during equinox. In agreement
with Ritter et al.(2004), the effect appears to be mostly con-
fined in the nightside.

In Fig. 12 the data are binned with respect to IMFBZ and
BY . There are three bins for negative (<−3 nT), around zero
(<|3| nT) and positive (>3 nT) values of both components.
For negativeBZ, the basic pattern is clearer and stronger than
for zero or positiveBZ, in agreement with the results ofPa-
pitashvili et al.(2002). For northward IMF the convection
pattern is in general more complex than the basic two-cell
configuration (e.g.Schunk and Nagy, 2000), which is domi-
nant for southward IMF. Averaging over all these cases might
be the cause for the rather faint and broken pattern in the plot,
in addition to the relatively low number of data points used
to construct this plot. The effect of binning with respect to
IMF BY shows most clearly in the FAC plots. On the day-
side, the strongest Region 1 currents form an arc centered
at 13:00 MLT forBY <−3 nT, at 09:00 MLT for|BY |<3 nT,
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Fig. 11. The same as Fig. 10 except that the data are binned with respect to activityand season. The bin and the number of overpasses used
to construct the four plots are denoted on top of each set. The plots in the left hand side column show the binning with respect to activity
(quiet: |Iφ| < 0.15 MA, moderate:0.15 ≥ |Iφ| < 0.30 MA, and active:|Iφ| > 0.30 MA) and the plots in the right hand side column with
respect to season (winter, equinox, and summer).

Fig. 11. The same as Fig.10 except that the data are binned with respect to activity and season. The bin and the number of overpasses used
to construct the four plots are denoted on top of each set. The plots in the left hand side column show the binning with respect to activity
(quiet: |Iφ |<0.15 MA, moderate: 0.15≤|Iφ |<0.30 MA, and active:|Iφ |≥0.30 MA) and the plots in the right hand side column with respect
to season (winter, equinox, and summer).
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Fig. 12. The same as Fig. 10, except that the data are binned with respect to the IMF BZ andBY . There are bins for negative (< −3 nT),
around zero (< |3| nT) and positive (> 3 nT) values of both components. The bin and the number of overpasses used to construct the four
plots are denoted on top of each set.

Fig. 12. The same as Fig.10, except that the data are binned with respect to the IMFBZ andBY . There are bins for negative (<−3 nT),
around zero (<|3| nT) and positive (>3 nT) values of both components. The bin and the number of overpasses used to construct the four
plots are denoted on top of each set.
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and at 08:00 MLT forBY >3 nT. InJφ plots, westward cur-
rent (blue) on nightside ends at∼24:00 MLT forBY <−3 nT,
at ∼23:00 MLT for |BY |<3 nT, and at∼22:00 MLT for
BY >3 nT.

4.3 Statistical estimate forα as a function ofJφ

Our goal is to find a way to estimateα from the east-west
current density, which can be determined from ground-based
magnetic data. To accomplish that, we display the occur-
rence probability of different values ofα=−Jφ/Jθ as a func-
tion of Jφ in the four panels in the left hand side column of
Fig. 13. Summing up each column in one plot gives 100%.
For instance, if a westward current of 500 A/km is measured,
the probability of havingα=2, without specifying the ac-
tivity conditions or season, can be determined from the left
hand side branch of the top left hand side plot. The resolu-
tion of the plots is 25 A/km in Jφ and 0.1 inα. The different
panels of the figure correspond to the different levels of ac-
tivity: 0 MA ≤|Iφ | (top), 0 MA≤|Iφ |<0.15 MA (second from
the top), 0.15 MA≤|Iφ |<0.30 MA (second from the bottom),
0.30 MA≤|Iφ | (bottom). The four panels in the right hand
side column of the figure are similarly arranged. It should
be noted here that we are not separating substorm events
from non-substorm events. The points in the figures rep-
resent the median, and the errorbars the 15.9 and 84.1 per-
centiles, calculated from the left hand side panels. Using the
least-squares method, to the points is fitted the curve

α = −
Jφ

Jθ

=
C2

C1
|Jφ |

− 1
, (6)

which corresponds to

Jφ = C1 + C2Jθ , (7)

whereC1 andC2 are constants estimated in the fitting pro-
cess. Whereas Eq. (5) suggests thatC2 alone should be
enough to describe the relationship between the two current
density components,C1 is needed in Eq. (6) to correctly de-
scribe the behavior ofα in the region where|Jφ | is small. The
curves have been fitted separately in the regions whereJφ<0
andJφ>0. The constantsC1 andC2 resulting from the fit
along with the residual (r) are denoted in the plots. The same
curves have also been included in the four left hand side pan-
els of the figure. With increasing|Jφ |, α approaches−C2,
and whenJθ≈0, Jφ≈C1. For small|Jφ |, |Jθ | gets small as
well. Figure14shows the data binned according to season.

In both figures, there is a clear asymmetry ofα with re-
spect toJφ . ForJφ>0, corresponding mainly to the eastward
electrojet,α is in general a little lower and less scattered than
for Jφ<0 (on the right hand side branch in the color pan-
els, theα values are more concentrated (red), than on the
left hand side branch (green and yellow)). This indicates an
asymmetry in the electron precipitation in the dusk and dawn
sectors of the auroral oval. The asymmetry is largest in the

Table 2. CoefficientsC1 andC2 resulting from the fitting of Eq. (6)
into the data displayed in Figs.13and14.

Bin C1 (Jφ<0) C2 (Jφ<0) C1 (Jφ>0) C2 (Jφ>0)

All −36.54 −2.07 −14.79 −1.73
Quiet −20.35 −2.19 −46.16 −2.53
Moderate −21.68 −1.95 −19.35 −1.84
Active −80.63 −2.22 −26.05 −1.74
Winter −21.87 −1.99 −13.79 −1.42
Equinox −49.36 −2.10 −16.55 −1.63
Summer −18.64 −1.86 −5.88 −1.76

winter, becoming smaller during the equinox and almost dis-
appearing in the summer. In all cases, the fitted curve follows
closely the data points, giving a simple means for approxi-
matingα once the equivalent current density is known. The
fitted coefficientsC1 andC2 from Figs.13 and14 are sum-
marised in Table2.

Schlegel(1988) used two years of EISCAT data (1985–
1986) to compute histograms of the Hall to Pedersen conduc-
tance ratio. He found values between 0.25 and more than 4
for α, with a mean of 1.64. The values forα in the uppermost
left panel of Fig.13(mainly between 1 and 3) appear consis-
tent with these results. He also determined that the mean
value ofα grows with increasing activity (Kp). Although the
curves resulting from the binning with respect to activity in
Fig. 13 do not differ significantly, our results agree with his,
sinceJφ , and therefore alsoα, gets on average higher with
increasing activity. In the dawn side,Schlegel’s histograms
are more spread out and with a higher mean value (∼1.9 at
06:00 MLT) than in the dusk sector (∼1.2 at 18:00 MLT).
Our results are also consistent with these.

Davies and Lester(1999) calculated median values forα
as a function of MLT. Between 18:00 and midnight they ob-
tainedα≈1.8, whereas after midnightα was larger, at times
exceeding 2. Our results are in good agreement with these
findings.

As an application, Fig.15 illustrates distributions ofα, de-
rived from the east-west component of the divergence-free or
equivalent current density using Eq. (6) and the constants dis-
played in Table2. In the uppermost plot, all data are incorpo-
rated, in the plots in the middle row, the data are binned with
respect to activity, and in the plots in the bottom row, with
respect to season (the bin is denoted on the left hand side of
each plot). The colorbar on the right hand side of each plot
gives the scaling. During low activity,α is also low. Increas-
ing activity raises the conductance ratio especially around
midnight and at dawn. Since activity is determined using
the total current, part of the effects brought along with its in-
crease, especially on dayside, are actually due to increased
sunlight, not real geomagnetic activity. In winter, the con-
ductance ratio is quite low, only on the dawn side there are
slightly higher values. This is probably caused by substorm
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Fig. 13. Left: The probability for different values ofα = −Jφ/Jθ as a function ofJφ (summing up each column gives 100%). Columns with
less than 500 data points are rejected (white). The resolution of the plots is25 A/km in Jφ and 0.1 inα. The different panels correspond to
the different levels of activity:0 ≤ |Iφ| MA (top), 0 ≤ |Iφ| < 0.15 MA (second from top), 0.15 ≤ |Iφ| < 0.30 MA (second from bottom),
0.30 ≤ |Iφ| MA (bottom). Right: The four panels on the right hand side column of the figure are arranged similar to those on the left hand
side. The points represent the median, and the errorbars the 15.9 and84.1 percentiles. Using the least-squares method, to the points is fitted
the curve of Eq. (6). The resulting constantsC1 andC2 are denoted in the plots along with the residualr of the fit.

Fig. 13. Left: The probability for different values ofα=−Jφ/Jθ as a function ofJφ (summing up each column gives 100%). Columns with
less than 500 data points are rejected (white). The resolution of the plots is 25 A/km in Jφ and 0.1 inα. The different panels correspond to
the different levels of activity: 0 MA≤|Iφ | (top), 0MA≤|Iφ |<0.15 MA (second from top), 0.15 MA≤|Iφ |<0.30 MA (second from bottom),
0.30 MA≤|Iφ | (bottom). Right: The four panels on the right hand side column of the figure are arranged similar to those on the left hand
side. The points represent the median, and the errorbars the 15.9 and 84.1 percentiles. Using the least-squares method, to the points is fitted
the curve of Eq. (6). The resulting constantsC1 andC2 are denoted in the plots along with the residualr of the fit.
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Fig. 14. The same as Fig. 13, except that instead of activity, the data are binned with respect to season: winter (top, left), equinox (top, right)
and summer (bottom, left).
Fig. 14. The same as Fig.13, except that instead of activity, the data are binned with respect to season: winter (top), equinox (middle) and
summer (bottom).

events, during which particle precipitation is higher in the
morning sector (Opgenoorth et al., 1994). Towards summer,
α becomes higher, especially on the sunlit side of the polar
cap. The small scale pattern in the plots prior to midnight
may not be entirely reliable due to the relatively small num-
ber of data points in that region (see the top left hand side
panels of the sets in Fig.11). Outside the auroral oval,α is
quite low in all bins.

5 Conclusions

Two years of magnetic data from the CHAMP satellite have
been employed to determine statistical estimates for the Hall
to Pedersen conductance ratioα as a function of the iono-
spheric equivalent current density. Under the required 1-D
assumption, the equivalent currents determined from ground
and satellite magnetic data were shown to be equal, which
increased the amount of data available for the statistics by
extending it outside ground-based coverage. The conduc-
tance ratio was attained from magnetic satellite data by using
the 1-D SECS method. This was justified by the assumption
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Fig. 15. Averageα during 2001–2002 as a function of magnetic latitude and MLT. The resolution of the plots is 1◦ in latitude and0.5 h in
MLT, andα is given according to the color bar on the right hand side of each plot. Themaps have been determined from theφ component
of the divergence-free current density (cf.Jφ in Figs 10 and 11) using Eq. (6) withC1 andC2 from Table 2. The upmost plot is constructed
using all available data, the plots in the middle row are binned with respect to activity and those in the bottom row with respect to season (the
bin is denoted on the left hand side of each plot).

Fig. 15. Averageα during 2001–2002 as a function of geomagnetic latitude and MLT. The resolution of the plots is 1◦ in latitude and 0.5 h
in MLT, andα is given according to the color bar on the right hand side of each plot. The maps have been determined from theφ component
of the divergence-free current density (cf.Jφ in Figs.10and11) using Eq. (6) with C1 andC2 from Table2. The upmost plot is constructed
using all available data, the plots in the middle row are binned with respect to activity and those in the bottom row with respect to season (the
bin is denoted on the left hand side of each plot).

that in 1-D cases, the ionospheric electric field inφ direction
vanishes. If this is not the case, then, depending of the real
electric field direction,α produced by the 1-D SECS method
may be too large or too small.

To further justify the 1-D SECS method,α obtained this
way was compared with EISCAT measurements. However,
there are some problems with such a comparison. One was
that we found only five overflights that passed relatively close
to the radar with EISCAT data available. None of them
passed exactly above EISCAT, with distances varying from
50 to 300 km. If the current distribution really were 1-D, this
should not be a problem, but in reality the reliability of the
currents produced by the 1-D SECS method decreases away
from the satellite. To support this, the relative error between

α from CHAMP and EISCAT data increased with increasing
distance between the satellite and the radar. In two cases out
of the total five, however, the two methods gave completely
different results. This might be explained by another prob-
lem related to this kind of comparison: spatial resolutions
of the two methods are different. EISCAT is able to detect
structures down to scales of a few kilometers while the res-
olution of the 1-D SECS method applied to CHAMP data is
∼150 km. The radar measures only at a single point, which
can understandably produce very different results from the
1-D SECS method. Unfortunately, EISCAT is the only way
to obtain direct measurements ofα from ground.

Compared to other methods, using magnetic field data
from a satellite to determine the conductance ratio ensures
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reliable data over long time sequences. The statistical study
was carried out employing over 6000 1-D overpasses of the
CHAMP satellite between 55◦ and 76.5◦ geomagnetic lati-
tude. To get a view of the ionospheric currents during those
overflights, maps of all three components were included. A
simple relationship (Eq.6, Table2) was established between
the equivalent current density andα during different con-
dition (activity, season). The relationship between current
density andα was observed to be asymmetric for eastward
(Jφ>0) and westward currents (Jφ<0), or dusk and dawn,
and this feature was accommodated by having different co-
efficients for these two types in Table2. Since the resulting
curves are quite similar for all bins, the only one actually
needed is the “all” bin:

α =
2.07

36.54
|Jφ |

+ 1
, Jφ < 0 (8)

α =
1.73

14.79
|Jφ |

+ 1
, Jφ > 0, (9)

where the current densities are given in A/km. Finally as an
application, Eq. (6) and Table2 were used to produce maps
of the conductance ratio as a function of geomagnetic latitude
and MLT.

Although the data used in establishing the relationship be-
tweenα and the equivalent current density were required to
fulfil the 1-D condition, the same estimates could also be
used as the first approximation in 2-D cases. Even in 2-D
cases, there is practically always a background electrojet, and
α could be estimated from that. A draw-back is that since 1-
D cases are not very active, the statistics only apply when
the east-west current density does not exceed 1000 A/km. It
should also be borne in mind that since the method is based
on statistics, it cannot be applied to get the exact value ofα

for an event, only the most likely one under the given condi-
tions.
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