

City, University of London Institutional Repository

Citation: Bertolino, A. and Strigini, L. (1998). Assessing the Risk due to Software Faults:
Estimates of Failure Rate versus Evidence of Perfection.. Software Testing, Verification and
Reliability, 8(3), pp. 155-166. doi: 10.1002/(SICI)1099-1689(1998090)8:3<155::AID-
STVR163>3.0.CO;2-B

This is the unspecified version of the paper.

This version of the publication may differ from the final published
version.

Permanent repository link: https://openaccess.city.ac.uk/id/eprint/383/

Link to published version: http://dx.doi.org/10.1002/(SICI)1099-
1689(1998090)8:3<155::AID-STVR163>3.0.CO;2-B

Copyright: City Research Online aims to make research outputs of City,
University of London available to a wider audience. Copyright and Moral
Rights remain with the author(s) and/or copyright holders. URLs from
City Research Online may be freely distributed and linked to.

Reuse: Copies of full items can be used for personal research or study,
educational, or not-for-profit purposes without prior permission or
charge. Provided that the authors, title and full bibliographic details are
credited, a hyperlink and/or URL is given for the original metadata page
and the content is not changed in any way.

City Research Online

City Research Online: http://openaccess.city.ac.uk/ publications@city.ac.uk

http://openaccess.city.ac.uk/
mailto:publications@city.ac.uk

This is a preprint of an article accepted for publication in the Journal of Software Testing, Verification and
Reliability.
© Copyright 1998 John Wiley and Sons Ltd

Assessing the risk due to software faults: estimates
of failure rate vs. evidence of perfection

Antonia Bertolino1 and Lorenzo Strigini2

1. Istituto di Elaborazione della Informazione del CNR,
Via Santa Maria, 46, 56126 Pisa, Italy.

E-mail: bertolino@iei.pi.cnr.it

2. Centre for Software Reliability, City University,
Northampton Square, London EC1V OHB, U.K.

E-mail: strigini@csr.city.ac.uk

ABSTRACT

In the debate over the assessment of software reliability (or safety), as applied to critical
software, two extreme positions can be discerned: the "statistical" position, which requires that
the claims of reliability be supported by statistical inference from realistic testing or operation,
and the "perfectionist" position, which requires convincing indications that the software is free
from defects. These two positions naturally lead to requiring different kinds of supporting
evidence, and actually to stating the dependability requirements in different ways, not allowing
any direct comparison. There is often confusion about the relationship between statements about
software failure rates and about software correctness, and about which evidence can support
either kind of statement. This note clarifies the meaning of the two kinds of statements and how
they relate to the probability of failure-free operation, and discusses their practical merits,
especially for high required reliability or safety.

Index terms:

Software reliability and safety, program correctness, software assessment, software safety
standards, statistical testing.

1. Introduction
This paper discusses approaches to the assessment of software reliability before the software is
put into operation. In the debate about how this assessment can be performed, especially for
critical software with high required reliability, there is often confusion about how the evidence
gathered to support trust in a product actually relates to the assurance that is sought. It is useful
to identify two extreme positions in this debate, which can be called the "statistical" approach
and the "perfectionist" approach, compare them and examine how they affect the practice of
software assessment.

In the statistical approach, the software is executed in a test environment reproducing
operational usage. Its failures (or their absence) are monitored, and then statistical inference is
used (Parnas et al., 1990; Miller et al., 1992; Littlewood and Strigini, 1993; Littlewood and
Wright, 1997) to predict its failure rate in operation, or other related measures.

The perfectionist approach, on the other hand, aims at reaching confidence that, with respect to
the requirements of interest, the software is free of defects, or "perfect". This approach
emphasises the use of "best development practices", document reviews and inspections,
systematic testing and formal proofs. Evidence for assurance comes from the application of
these methods.

Both approaches pose problems.

The intrinsic problem with the perfectionist approach is that "perfection" cannot be
demonstrated with certainty. Empirically, many programs are found to contain bugs even after

Printed 30 September, 1998, 3:33 pm 2

they were checked with great rigour. Theoretically (Barwise, 1989; Fetzer, 1988), even correct
mathematical proofs only prove properties of abstract entities (e.g., that program code satisfies
formally stated requirements), not of physical objects (e.g., that a computer where that code has
been loaded will behave so as to satisfy the actual requirements of its users).

When a software product must be assessed on the basis of "process" evidence, the ideal
situation is one in which the assessor has documented evidence that a certain production or
verification process usually delivers fewer defects than others. This seldom happens in practice.
Even if confident that a given process delivers products with few defects, an assessor would
not generally know the failure rates associated with these defects. In fact, there may be wide
variations between different products of this same process. Thus, the only well-developed and
trustworthy approach to obtaining a quantitative demonstration of reliability is via statistical
testing.

The main problem with the statistical approach is that, to trust the reliability estimates it
produces, one must trust that the input distribution used during testing is a good approximation
of the operational distribution in the environment of interest, which is difficult to judge. Claims
are even often heard that the usual concepts of reliability, as used in other branches of
engineering, have no meaning for software, a view which is refuted in (Littlewood and Strigini,
1993).

The perfectionist attitude appears to be the prevailing, though often implicit, attitude in industrial
practice. For instance, standards for safety-critical software mostly prescribe methods for
avoiding defects in the delivered product, while statistical evidence that the software is indeed
reliable enough is either not required at all (RTCA/EUROCAE, 1993) or given a very marginal
role (IEC, 1995). This form of prescriptions makes sense if one expects from their application a
good chance of delivering defect-free products. Otherwise, the standard-makers should be
much more concerned with the probability that the remaining defects will cause failures (or
accidents) when the product is used.

The prevailing culture in reliability engineering and probabilistic safety assessment focuses on
the estimation of event rates (often of upper bounds on failure or accident rates). So, software
reliability assessors usually try to translate statements about best practice and stringent
verification into statements about failure rates. One (unjustifiable) way of doing this is to claim
that applying the prescriptions found in a IEC 1508-style standard (IEC, 1995) for a given
level of (probabilistic) requirements assures the achievement of that level. But these arguments
do not seem to match what most practitioners actually think. In the authors' (admittedly limited)
personal experience, the people who are responsible for building or approving life-critical
software do not think of, say, an additional verification step as a way of lowering an upper
confidence bound on the software's failure rate; they think of it as a way of increasing the
chance of the software being free of dangerous defects. However, these statements of "freedom
from defects" or "perfection" do not fit well in arguments that centre on failure rates. Because of
this heterogeneity, it is usually difficult to understand which one, between a statistical and a
perfectionist argument, is stronger, or how they support each other (if at all). Surprisingly, no
explicit explanation of this relationship seems to be available in the software engineering
literature, although some authors (Hamlet, 1987; Hamlet, 1992; Howden and Huang, 1995)
have pointed out perceived shortcomings of the statistical approach (especially the dependence
on the operational usage profile) and suggested methods for quantifying confidence in software
correctness.

The contribution of this paper is a basic and clear statement of the relationship between
statements of confidence about a product being perfect and about it having a low failure rate,
and their respective relevance for predictions about a system's lifetime behaviour. The two
kinds of statements are described in common probabilistic terms. This description is a necessary
basis for any argument which compares or combines the two points of view.

2. Terminology
Programs are subject to demands (in general, sequences of inputs). A program is correct if it
executes correctly for every possible demand; otherwise the program is faulty. Every time a
program fails to execute correctly, this event is called a failure; when it executes correctly, the

Printed 30 September, 1998, 3:33 pm 3

event is called a success. Clearly, only faulty programs can fail.

For the purposes of this discussion, a program is assumed to be subjected to a series of
statistically independent demands. "One demand" or "one execution" of the software will mean,
e.g., for an emergency shut-down system in an industrial plant, an evolution in the plant state
that should initiate a shut-down sequence; for avionics software in an aircraft, a whole mission;
for a batch program, a single execution. This is a restricted scenario, but it allows a rigorous
description of the issues of interest, and has reasonably general applicability. In practice, the
questions of interest can often be framed in terms of sequences of properly defined,
independent demands: although software behaviour normally exhibits statistical dependency
between failures in the short term (Strigini, 1996), independence between whole missions, or
between periods of execution that are far apart in time (Galves and Gaudel, 1998) can usually
be assumed.

For a given program, these three measures are defined:

• Pperf: the probability of perfection. Pperf is the relevant measure in the perfectionist view;

• ϑ: the probability of failure per execution, also called the failure rate. ϑ is the measure that
is estimated in the statistical approach;

• Psurv(T): the probability of surviving (operating without failures) for a stated number T
of executions; this will also be referred to as the probability of "mission survival". For
instance, if the product is the shut-down system for a hazardous plant, the T executions
(the mission), could be all the expected demands on the shut-down system over the
lifetime of the plant; if the product is a navigational aid in an aircraft, the T executions
could be all its flights.

Psurv(T) is a measure of direct interest for a safety assessor. A common requirement is that a
safety-critical component (including software) has a low enough probability of failures
(affecting safety) over [a certain stretch of] its operational life.

The following discussion concerns the relationship between these three probabilities.

A note is appropriate about the difference between reliability and safety concerns. For the
purpose of this article, "safety" can be considered as reliability - the probability of delivering the
required service - with respect to a set of requirements which differs from the set considered in
reliability assessment. In the case of safety, the requirement is freedom from failures that would
be dangerous in the environment where the software is used. Faults, perfection, and all the
other terms can be redefined in terms of these failures only, without affecting the arguments
developed here. Therefore, the formal treatment in this article uses the term "reliability",
irrespective of the class of failures considered.

3. Modelling the event space
The first precaution when discussing probabilities is to define carefully the scenario to which
the probabilities refer. This means defining the experiment considered, with its sample space
(i.e., the set of all possible outcomes) and the events (subsets of the sample space) of interest.
To allow Psurv(T) to be studied, the "experiment" considered here includes T executions of the
program as shown in Figure 1 below. As shown, the very first step is the development of the
program, which produces the two mutually exclusive events "the software is perfect" (with
probability Pperf), and "the software is faulty". The program then runs for T consecutive
executions; each execution may result in either a success or a failure (with probability ϑ).

The possible outcomes of this experiment are thus sequences of T+1 elements:
{faulty/correct, success/failure at the first execution,..., success/failure at the T-th execution}.

Printed 30 September, 1998, 3:33 pm 4

more
executions

2nd execution1st executionDevelopment of
the program

SUCCESS

SUCCESS

further
branching
as demands
accumulate

FAILURE

THE SOFTWARE
IS PERFECT

THE SOFTWARE
IS FAULTY

one branch
at each new
demand

...

...

SUCCESS

FAILURE

FAILURE

SUCCESS

SUCCESS

Fig. 1: The sample space for T executions of a program which may be perfect
or faulty. A path from the root to a leaf represents an outcome.

The relationship between the three probabilities considered can now be stated formally. Figure 2
shows the relevant events: the outcomes enclosed within the bubble represent the event
"survival for T executions", with probability Psurv(T). This probability can easily be written as:

(1) Psurv(T) = Pperf + P(program is faulty AND does not fail in T executions),

THE SOFTWARE
IS FAULTY

T SUCCESSFUL
EXECUTIONS

T EXECUTIONS WITH
ONE OR MORE
FAILURES

THE SOFTWARE
 IS CORRECT

T SUCCESSFUL
EXECUTIONS

Fig. 2: The event "the program actually produced survives without failures
through a 'mission' of T executions".

Printed 30 September, 1998, 3:33 pm 5

4. The relationship between the perfectionist and the statistical
views

Equation (1) above can also be written (using self-explanatory abbreviations to designate the
various events) as:

(1') Psurv(T)= Pperf + P(no_fail_in_T | faulty) P(faulty)=
Pperf + P(no_fail_in_T | faulty) (1-Pperf)=
Pperf (1- P(no_fail_in_T | faulty))+ P(no_fail_in_T | faulty)

All terms in (1') are probabilities, with possible values in the interval [0,1]. Hence the
following inequalities follow from (1) and (1'):

(2) Psurv(T) ≥ Pperf

(3) Psurv(T) ≥ P(no_fail_in_T | faulty)

In the statistical approach, it is generally assumed that Pperf=0 (presumably a good
approximation for most software). So, given a failure rate ϑ* (ϑ*>0), (1') becomes:

(4) Psurv(T) = P(no_fail_in_T | faulty) = (1-ϑ*)T

If Pperf is believed to be non-zero, but no estimate is available for it, (3) shows that simply
assuming Pperf=0 and using (4) for predictions yields a conservative estimate of Psurv, given
any value of ϑ*.

The problem with the expression in (4) is then that as T, the number of demands (or the time
period of interest), increases, the probability of surviving without failure tends to 0. This
behaviour of the exponential reliability function is shown dramatically in Table I below, for a
few hypothetical scenarios of interest in the safety area.

If one only allows statistical evidence about ϑ to be brought as evidence of reliability, predicting
a long period of failure-free operation may be infeasible. The deciding factor is the ratio
between the duration of this period and the total testing time over which the product has been or
can reasonably be observed to support the prediction. When this ratio is high, the estimated
bound on ϑ is likely to be too high for supporting the desired conclusion.

On the other hand, if one could estimate Pperf, as in the perfectionist approach, one could use
this estimate as the lower bound for Psurv(T), via inequality (2). Indeed, the probability of
failure over an arbitrary length of time is less than 1-Pperf. An upper bound on the probability
that the program is faulty is thus an upper bound on the probability of any number of failures
over any period of time.

Printed 30 September, 1998, 3:33 pm 6

Example application T ϑ= 10-9 10-8 10-7 10-6 10-5 10-4 10-3

Protection system in
nuclear power plant, 30
year lifetime, 2
demands/year

60 Psurv= 1–6×10-8 1–6×10-7 1–6×10-6 1–6×10-5 1–6×10-4 1–6×10-3 0.94

Flight-critical system in
airliner, type lifetime 30
years, 400 aircraft, 300
flights/year

3.6×106 Psurv= 0.9964 0.965 0.698 0.027 ~0 ~0 ~0

Critical system in car, 1
million sold, 10 year
lifetime, 300 trips/year

3×109 Psurv= 0.05 ~0 ~0 ~0 ~0 ~0 ~0

Table I. Probability of surviving T executions, as a function of the probability
of failure per execution, ϑ .

What is of interest in Table I is the difference between the examples. For a seldom-required
protection system, assurance that the probability of it failing in operation is less than 10% can
be obtained by demonstrating an upper bound on ϑ on the order of 10-3.For equipment on an
aircraft (second example in the table), "catastrophic" equipment failures are required to be "not
anticipated to occur over the entire operational life of all airplanes of one type" (FAA, 1985). If
by "not anticipated to occur" the licensing authorities meant a probability lower than, for
instance, 10%, even demonstrating an upper bound on ϑ of the order of 10-7, if feasible, would
not be enough to give the required assurance. Yet, the same assurance would be given by
knowing that the probability of the equipment containing defects capable of causing such
failures is lower than 10%. If one demanded similar assurance on Psurv for the whole career of
a car type, arguments based on demonstrating upper bounds on the failure rate would be even
more hopeless.

So, if one wants to predict "ultra-high" reliability over many executions (as in the latter two
examples), it may be worthwhile to reason in terms of the probability of absence of faults,
Pperf.

Last, it must be noted that even when using a "perfectionist" argument, statistical evidence
about ϑ is not useless. Even trusting that, for instance, Pperf=0.99 implies no indication of how
likely the software would be to fail if it were faulty, i.e., if the software at hand were the
unlucky "one in one hundred" case. Even if statistical testing cannot be performed long enough
to demonstrate that the software is as good as required, one may well be interested in knowing
at least that it is not too bad. The merits of this position are illustrated by these examples of
systems developed for very high reliability:

- the Space Shuttle software was first delivered with a bug which would cause a
synchronisation error upon initialisation with a probability greater than 10-2 (Garman,
1981);

- the Ariane 5 guidance system was delivered with a defect with probability 1 of causing
loss of mission (Lions, 1996). For systems with a non-negligible risk of being so
"perfectly unreliable", realistic testing, as required by the statistical approach, is sure to be
useful. A single test will either show that this worst-case scenario is not verified, or point
to the presence of defects.

5. Can claims of perfection be plausible?
These considerations naturally lead to the issue (also raised by the reviewers of this paper) of
whether expecting reasonable claims of "perfection" is realistic at all. There are actually three
related questions that need to be briefly addressed:

Printed 30 September, 1998, 3:33 pm 7

1. in which cases, if any, could Pperf reasonably be expected to be non-negligible?

2. how can one estimate Pperf?

3. can estimates of Pperf be stated in terms that would be accepted by the pertinent sector of
the safety community?

Regarding the first question, most practitioners would accept that most well-known software
products, from large telephone switching applications to popular word processors, have a
negligible chance of being defect-free, due to complexity or lack of commitment to quality or
combinations of both. However, in programs for safety-critical applications at least the
following scenarios may occur that make claims of perfection (say, Pperf>90%) plausible:

- the program performs a very simple function (e.g., comparing a sensor reading against a
threshold and producing a single-bit output), is extremely simple in its implementation
(few lines of code with very few branches), and much effort has been spent in checking
it;

- a claim of perfection is only made with regard to specific failure behaviours, and a formal
proof exists that the program is exempt from that kind of behaviour (e.g., deadlock); a
similar case is that in which the claim of perfection is only made concerning safety-
relevant failures, the ways the program can affect safety in the system of which it is part
are a small and clearly understood set, and rigorous checks or proofs have gone into
excluding the possibility of that behaviour.

As for the second question, the feasibility of estimating Pperf depends on the availability of
relevant evidence. Statistical reasoning would be needed, as a rule. For instance, how many
programs has the same company produced that were similar in general characteristics, and how
many of these can be considered to have been defect-free? From such statistics one can infer the
probabilities on a new, similar program. In most cases, there is too small a population, and too
weak a basis for claiming similarity between new and old programs, for supporting claims of a
high Pperf; yet, the possibility of such a statistical argument cannot be excluded.

More refined reasoning is possible in some cases. If the claim for freedom from a certain class
of defects is based on the use of formal proof, one would want statistics about applications of
similar formal methods to similar problems, and the relative frequency with which they failed to
discover defects. There is no special difficulty with statistical inference of this kind. The only
problem is that even in those cases in which it is plausible that Pperf is high, appropriate
statistics are not being collected.

Other authors (Hamlet, 1987; Voas et al., 1995; Howden and Huang, 1995) have proposed
ways of establishing confidence in perfection using the results of testing. Hamlet and Voas have
only studied "classical" confidence levels (related to the probability of a product being accepted
as perfect if faulty), which are inadequate for prediction and acceptance decisions, as they
ignore the base probability of programs being faulty in the first place. (Howden and Huang,
1995) instead consider the probability of a program being faulty and passing tests as though it
were perfect, which is a sound basis for decisions, and study its application in detail, e.g.
looking for optimal allocation of effort to various verification strategies. All these methods use
assumptions on the probabilities of defects being missed by testing, which must be estimated
statistically. Bayesian procedures which yield proper probabilities of perfection as part of
complete distributions of Θ are possible and are described for instance in (Bertolino and
Strigini, 1996b; Bertolino and Strigini, 1996a).

The likelihood that the safety community will accept claims of perfection is a separate issue. The
authors believe that it is desirable for such claims to be considered acceptable in principle, and
their supporting evidence to be carefully scrutinised in practice. Some of the existing safety
communities routinely use unsound formulations of the safety claims about products and
especially software. For instance, formal proof of "correctness" is often equated to certainty of
correct behaviour. Another example is given by the civil aviation community, which demands
assurance that certain failures are unlikely to happen during the whole lifetime of an aircraft
type, but requires no estimate of the probability that software will cause such failures
(RTCA/EUROCAE, 1993). In these circumstances, the certification or licensing process may

Printed 30 September, 1998, 3:33 pm 8

have merits as a challenge which motivates the developers to improve product quality, but is not
a sound decision-making process. Allowing those who present evidence of perfection to label it
as such would be a step in the right direction.

If an estimate of a non-negligible probability of perfection is obtained, it is also possible to
account for it in inference about failure rates, and in predictions about Psurv based on failure
rate. To this end, equation 1 is rewritten as:

(5) Psurv(T) =
0

1

∫ P(program does not fail in T executions | Θ=x) fΘ(x) dx

where Θ represents the failure rate, seen as a random variable, fΘ(x) is its probability density

function, and the case of perfection is represented by Θ=0. A non-zero value of Pperf is

represented by setting fΘ(x) =Pperf δ(x), where δ(x) is Dirac's "delta" function, defined so that

0

0

−

+
∫ δ(x)=1. (Bertolino and Strigini, 1996a) shows the Bayesian inference procedure for

inferring a posterior distribution of Θ from successful operational testing. The distribution of Θ
thus obtained can then be plugged into (5) for predicting Psurv(T) (if there are uncertainties
about the assumptions used in the inference, it is possible to calculate the errors that they may
generate and verify which assumptions in a given range produce the most pessimistic
predictions). Discussing these methods is outside the scope of this paper. The interested reader
may also consider, for instance, (Delic et al., 1997), showing how a prediction procedure can
exploit statistics about the faults found in the programs produced by a given process; in this
procedure, "perfection" is represented by a zero value for a random variable representing the
number of residual faults in a program.

6. Conclusions
A rigorous statement has been provided for the probabilistic arguments that would be allowed,
in support of deeming a software product acceptable for a certain mission, by knowing either
the probability of failure per execution (the statistical position), or the probability that the
software is fault-free (the perfectionist position).

The conclusion is that requirements for survival over many demands or long operational periods
tend to tilt the balance in favour of "perfectionist" arguments, if available. A moderate trust that
a program is fault-free allows stronger belief in the chance of surviving many executions than
the belief warranted by even very low estimates of its failure rate. How long the period of
operation has to be to make the probability of perfection the crucial consideration depends on
the details of each specific context, and typically on the amount of statistical testing that is
economically feasible vs the values of Pperf that can be reasonably claimed.

The purpose of this note has been to clarify an aspect of software assessment that is often
confusing, and to argue that:

- arguments of "perfection" may well have a role in probabilistic assessment of reliability
and safety, but

- using them creates an obligation to provide supporting evidence of a scientific, usually
statistical nature.

Even "moderate trust" in perfection is very difficult to obtain, except perhaps for extremely
simple programs (and "perfection" here means not simply "correctness" according to a formal
mathematical specification, but correctness with respect to the actual requirements). Almost no
information is commonly available to actually bound the probability of faults in well-developed,
well-verified software. For instance, the use of "formal methods" may guarantee that faults of
certain kinds will be almost certainly absent, but this statement is useless without quantification
(of the "almost certainty", and of the probability of other kinds of faults). So, even when a
"perfectionist" argument fares better than a "statistical" one, it is not usually a basis for any

Printed 30 September, 1998, 3:33 pm 9

great degree of confidence in reliable performance. Recognising that even claims of perfection
must be probabilistic in nature indicates the way towards better confidence: collecting scientific
evidence about the effectiveness of the methods used. Practitioners need information, for
instance, on the effectiveness of specific verification methods and of their combinations in
eliminating all defects of concern, rather than simple lists of "recommended" or "highly
recommended" methods.

The formal description given in Section 4 makes it easier to compare the benefits of a
"statistical" vs a "perfectionist" approach to collecting evidence about software reliability, and
thus supports better decision-making. Neither kind of evidence is generally superfluous,
however. When formulating a conjecture ("this product is satisfactory") on uncertain grounds,
the only scientific way of building trust in the conjecture is to submit it to multiple challenges:
looking for faults via techniques that attempt to demonstrate perfection, and looking for
excessive failure rates via statistical testing. Evidence of both kinds is naturally produced by any
well-managed process of development, verification and validation: putting such evidence to
good use for quantitative assessment does not imply much additional cost. The considerations
developed here concern this latter step.

Evidence collected following a "statistical" approach and following a "perfectionist" approach
can be rigorously combined via probabilistic reasoning, as mentioned in Section 5. Bayesian
techniques lend themselves to this use (Littlewood and Wright, 1995; Littlewood and Strigini,
1993; Bertolino and Strigini, 1996c), and there is encouraging research on the use of
convenient formalisms like "Bayesian belief networks" for representing complex probabilistic
arguments (Strigini and Fenton, 1996; Neil et al., 1996; Delic et al., 1997). These allow one to
consider all kinds of evidence - good development methods, program structure, favourable
"metrics", statistical testing, etc. - together, taking account of their known interrelationships (if
any), in one, complex argument. These techniques are not a substitute for factual, statistical
knowledge, but they may exploit such knowledge better than a purely "perfectionist" or purely
"statistical" argument, as outlined here, would. By applying Bayesian reasoning to the results
of testing together with knowledge about the effectiveness of the development and verification
methods used, one can derive a distribution for the failure rate of the program or, better, a
probability of failure over the mission time of interest. In particular, one can explicitly combine
the effects of evidence for perfection and for a low failure rate (Bertolino and Strigini, 1996a),
rather than neglecting one of the two.

The considerations developed here apply, with minor changes, to all systems subject to design
faults, but for the sake of concreteness this paper has used the terminology of software, which
is commonly considered the main example of this kind of problem.

Acknowledgements
This work was partially funded by the European Commission via the "OLOS" research network
(Contract No. CHRX-CT94-0577) and the ESPRIT LTR Project 20072 "DeVa". Bev
Littlewood, Martin Woodward and the anonymous reviewers provided helpful comments on the
previous versions of this paper.

References
Barwise, J. (1989). ‘Mathematical proofs of computer system correctness’. Notices of the
American Mathematical Society. 36, 844-851.

Bertolino, A. and Strigini, L. (1996a). ‘Acceptance Criteria for Critical Software Based on
Testability Estimates and Test Results’. SAFECOMP 96, 15th International Conference on
Computer Safety, Reliability and Security. Vienna, Austria. Springer. 83-94.

Bertolino, A. and Strigini, L. (1996b). ‘On the use of testability measures for dependability
assessment’. IEEE Transactions on Software Engineering. 22, 2. 97-108.

Bertolino, A. and Strigini, L. (1996c). ‘Predicting Software Reliability from Testing Taking
into Account Other Knowledge about a Program’. Quality Week '96. San Francisco. Software
Research Institute, San Francisco.

Delic, K. A., Mazzanti, F. and Strigini, L. (1997). ‘Formalising Engineering Judgement on

Printed 30 September, 1998, 3:33 pm 10

Software Dependability via Belief Networks’. DCCA-6, Sixth IFIP International Working
Conference on Dependable Computing for Critical Applications, "Can We Rely on
Computers?". Garmisch-Partenkirchen, Germany. IEEE Computer Society Press. 291-305.

FAA (1985). Federal Aviation Administration, Advisory Circular AC 25.1309-1A.

Fetzer, J. H. (1988). ‘Program Verification: the Very Idea’. Communications of the ACM. 31,
9. 1048-1063.

Galves, A. and Gaudel, M.-C. (1998). ‘Rare Events in Stochastic Dynamical Systems and
Failures in Ultra-Reliable Reactive Programs’. 28th International Symposium on Fault-Tolerant
Computing, FTCS-98. Munich, Germany. IEEE Computer Society Press. 324-333.

Garman, J. R. (1981). ‘The 'bug' heard round the world’. ACM SIGSOFT Software
Engineering Notes. 6, 5. 3-10.

Hamlet, D. (1992). ‘Are we testing for true reliability?’. IEEE Software. July, 21-27.

Hamlet, R. G. (1987). ‘Probable correctness theory’. Information Processing Letters. 25, 17-
25.

Howden, W. E. and Huang, Y. (1995). ‘Software Trustability Analysis’. ACM Transactions
on Software Engineering and Methodology. 4, 1. 36-64.

IEC (1995). Draft IEC 1508. Functional Safety: Safety Related Systems. International Electrical
Commission, IEC/SC65A/WG 9 and10, Proposed Standard.

Lions, J. L. (1996). Report by the Inquiry Board on the Ariane 5 Flight 501 Failure.
ESA/CNES.

Littlewood, B. and Strigini, L. (1993). ‘Validation of Ultra-High Dependability for Software-
based Systems’. Communications of the ACM. 36, 11. 69-80.

Littlewood, B. and Wright, D. (1995). ‘A Bayesian model that combines disparate evidence for
the quantitative assessment of system dependability’. SAFECOMP '95, 14th International
Conference on Computer Safety, Reliability and Security. Belgirate, Italy. Springer. 173-188.

Littlewood, B. and Wright, D. (1997). ‘Some conservative stopping rules for the operational
testing of safety-critical software’. IEEE Transactions on Software Engineering. 23, 11. 673-
683.

Miller, K. W., Morell, L. J., Noonan, R. E., Park, S. K., Nicol, D. M., Murrill, B. W. and
Voas, J. M. (1992). ‘Estimating the Probability of Failure When Testing Reveals No Failures’.
IEEE Transactions on Software Engineering. 18, 1. 33-43.

Neil, M., Littlewood, B. and Fenton, N. (1996). ‘Applying Bayesian Belief Networks to
Systems Dependability Assessment’. Safety Critical Systems: The Convergence of High Tech
and Human Factors: Proceedings of the 4th Safety-critical Systems Symposium. Leeds, U.K.
Springer. 71-94.

Parnas, D. L., van Schouwen, A. J. and Kwan, S. P. (1990). ‘Evaluation of Safety-Critical
Software’. Communications of the ACM. 33, 6. 636-648.

RTCA/EUROCAE (1993). Software Considerations in Airborne Systems and Equipment
Certification., document RTCA DO-178B/EUROCAE ED-12B.

Strigini, L. (1996). ‘On testing process control software for reliability assessment: the effects of
correlation between successive failures’. Software Testing Verification and Reliability. 6, 1.
36-48.

Strigini, L. and Fenton, N. (1996). ‘Rigorously Assessing Software Reliability and Safety’.
ESA Software Product Assurance Workshop. Nordvjik, the Netherlands. European Space
Agency. 193-198.

Voas, J. M., Michael, C. C. and Miller, K. W. (1995). ‘Confidently Assessing a Zero
Probability of Software Failure’. High Integrity Systems. 1, 3. 269-275.

