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Abstract
We use a recent Schauder-type result for discontinuous operators in order to look for
solutions for first-order differential equations subject to initial functional conditions.
We show how this abstract fixed-point result allows us to consider a nonlinearity
which can be strongly discontinuous. Some examples of applications and
comparison with recent literature are included.

1 Introduction and preliminaries
In this paper we are concerned with the existence of absolutely continuous solutions of
the initial value problem

x′ = f (t, x) for a.a. t ∈ I = [t – L, t + L], x(t) = F(x). (.)

We assume that t ∈R and L >  are given (so (.) is a nonlocal problem), and f : I ×R −→
R is a not necessarily continuous function, satisfying some assumptions to be detailed.
Finally, F : C(I) −→ R is assumed to be continuous, but not necessarily linear or bounded.
Notice that, under this framework, classical initial and multipoint conditions are included.

Our goal is to show that the following general version of Schauder’s theorem proven in
[] can be employed to prove the existence of solutions of (.) under very general condi-
tions.

Theorem . ([], Theorem .) Let K be a nonempty, convex, and compact subset of a
normed space X.

Any mapping T : K −→ K has at least one fixed point provided that for every x ∈ K we
have

{x} ∩
⋂

ε>

coT
(
Bε(x) ∩ K

) ⊂ {Tx}, (.)

where Bε(x) stands for the closed ball in X with center x and radius ε > , and co denotes
the closed convex hull.
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Basically, the use of Theorem . instead of the classical Schauder’s theorem allows f
to be discontinuous over the graphs of countably many functions in the conditions of the
following definition. Readers are referred to [–] for similar definitions.

Definition . An admissible discontinuity curve for the differential equation x′ = f (t, x)
is an absolutely continuous function γ : [a, b] ⊂ I −→ R satisfying one of the following
conditions:

either γ ′(t) = f (t,γ (t)) for a.a. t ∈ [a, b] (and we then say that γ is viable for the
differential equation),

or there exist ε >  and ψ ∈ L(a, b), ψ(t) >  for a.a. t ∈ [a, b], such that
either

γ ′(t) + ψ(t) < f (t, y) for a.a. t ∈ I and all y ∈ [
γ (t) – ε,γ (t) + ε

]
, (.)

or

γ ′(t) – ψ(t) > f (t, y) for a.a. t ∈ I and all y ∈ [
γ (t) – ε,γ (t) + ε

]
. (.)

We say that the admissible discontinuity curve γ is inviable for the differential equation if
it satisfies (.) or (.).

The following notation and proposition are useful to check condition (.) in Theo-
rem .: for a given operator T : K −→ K in the conditions of Theorem . we define

Tx =
⋂

ε>

coT
(
Bε(x) ∩ K

)
(x ∈ K). (.)

Notice that Tx = {Tx} when T is continuous at x ∈ K . Moreover, the definition of T can be
expressed analytically as follows.

Proposition . In the conditions of Theorem ., let x, y ∈ K be fixed.
The following two statements are equivalent:
. y ∈ Tx as defined in (.).
. For every ε >  and every ρ >  there exists a finite family of vectors xi ∈ Bε(x) ∩ K

and coefficients λi ∈ [, ] (i = , , . . . , m) such that
∑

λi =  and

∥∥∥∥∥y –
m∑

i=

λiTxi

∥∥∥∥∥
X

< ρ.

2 Main result
This section is devoted to the proof of the following existence principle. Notice that f need
not be continuous with respect to any of its arguments.

Theorem . Let R ∈ (,∞) be fixed. Problem (.) has at least one absolutely continuous
solution x : I −→R such that ‖x‖∞ ≤ R, provided that F : C(I) −→ R is continuous and the
following conditions are satisfied:

(H) There exist N ≥  and M ∈ L(I, [,∞)) such that N + ‖M‖ ≤ R, |F(x)| ≤ N if
‖x‖∞ ≤ R, and for a.a. t ∈ I and all x ∈ [–R, R] we have |f (t, x)| ≤ M(t).
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(H) The compositions t ∈ I �→ f (t, x(t)) are measurable if x ∈ C(I) and ‖x‖∞ ≤ R.
(H) There exist admissible discontinuity curves γn : In = [an, bn] −→R (n ∈N) such

that for a.a. t ∈ I the function x �→ f (t, x) is continuous at every
x ∈ [–R, R] \ ⋃

{n:t∈In}{γn(t)}.

Proof Consider the Banach space X = C(I) with the sup-norm ‖ · ‖∞. In the convex subset

K =
{

x ∈ C(I) :
∣∣x(t)

∣∣ ≤ N ,
∣∣x(t) – x(s)

∣∣ ≤
∫ t

s
M(r) dr (s ≤ t)

}
,

we define a fixed point operator T : K −→ K by

Tx(t) = F(x) +
∫ t

t

f
(
s, x(s)

)
ds (t ∈ I, x ∈ K). (.)

Notice that, thanks to conditions (H) and (H), K is a compact subset of the ball {x ∈
C(I) : ‖x‖∞ ≤ R} and T is well-defined and maps K into itself. Therefore it only remains to
prove that condition (.) in Theorem . is satisfied. Let x ∈ K be fixed; we have to prove
that Tx ∩ {x} ⊂ {Tx}, where T is as in (.).

Case  - m({t ∈ In : x(t) = γn(t)}) =  for all n ∈N. Let us prove that then T is continuous
at x, which implies that Tx = {Tx}, and then (.) is satisfied.

The assumption implies that for a.a. t ∈ I the mapping f (t, ·) is continuous at x(t). Hence
if xk → x in K then F(xk) → F(x), and

f
(
t, xk(t)

) → f
(
t, x(t)

)
for a.a. t ∈ I,

which, along with (H), yield Txk → Tx uniformly on I .
Case  - m({t ∈ In : x(t) = γn(t)}) >  for some n ∈ N such that γn is inviable. In this case

we can prove that x /∈ Tx, and so (.) obtains.
First, we fix some notation. Let us assume that for some n ∈N we have m({t ∈ In : x(t) =

γn(t)}) >  and there exist ε >  and ψ ∈ L(In), ψ(t) >  for a.a. t ∈ In, such that (.) holds
with γ replaced by γn (The proof is similar if we assume (.) instead of (.), so we omit
it.).

We denote J = {t ∈ In : x(t) = γn(t)}, and we deduce from [], Lemma ., that there is a
measurable set J ⊂ J with m(J) = m(J) >  such that for all τ ∈ J we have

lim
t→τ+




∫

[τ,t]\J M(s) ds

(/)
∫ t
τ

ψ(s) ds
=  = lim

t→τ–



∫

[t,τ]\J M(s) ds
(/)

∫ τ
t ψ(s) ds

. (.)

By [], Corollary ., there exists J ⊂ J with m(J \ J) =  such that for all τ ∈ J we have

lim
t→τ+



∫
[τ,t]∩J

ψ(s) ds
∫ t
τ

ψ(s) ds
=  = lim

t→τ–


∫
[t,τ]∩J

ψ(s) ds
∫ τ

t ψ(s) ds
. (.)

Let us now fix a point τ ∈ J. From (.) and (.) we deduce that there exist t– < τ and
t+ > τ, t± sufficiently close to τ so that the following inequalities are satisfied:


∫

[τ,t+]\J
M(s) ds <




∫ t+

τ

ψ(s) ds, (.)
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∫

[τ,t+]∩J
ψ(s) ds ≥

∫

[τ,t+]∩J

ψ(s) ds >



∫ t+

τ

ψ(s) ds, (.)


∫

[t–,τ]\J
M(s) ds <




∫ τ

t–

ψ(s) ds, (.)

∫

[t–,τ]∩J

ψ(s) ds >



∫ τ

t–

ψ(s) ds. (.)

Finally, we define a positive number

ρ = min

{



∫ τ

t–

ψ(s) ds,



∫ t+

τ

ψ(s) ds
}

, (.)

and we are now in a position to prove that x /∈ Tx. By virtue of Proposition ., it suffices
to prove the following claim.

Claim - Let ε >  be given by our assumptions over γn and let ρ be as in (.). For every
finite family xi ∈ Bε(x) ∩ K and λi ∈ [, ] (i = , , . . . , m), with

∑
λi = , we have ‖x –

∑
λiTxi‖∞ ≥ ρ .

Let us denote y =
∑

λiTxi. For a.a. t ∈ I we have

y′(t) =
m∑

i=

λi(Txi)′(t) =
m∑

i=

λif
(
t, xi(t)

) ≤ M(t). (.)

On the other hand, for every t ∈ J = {t ∈ In : x(t) = γn(t)}, we have

∣∣xi(t) – γn(t)
∣∣ =

∣∣xi(t) – x(t)
∣∣ < ε,

and then the assumptions on γn ensure that for a.a. t ∈ J we have

y′(t) =
m∑

i=

λif
(
t, xi(t)

)
<

m∑

i=

λi
(
γ ′

n(t) – ψ(t)
)

= γ ′
n(t) – ψ(t).

Well-known results, e.g. [], Lemma ., guarantee that γ ′
n(t) = x′(t) for a.a. t ∈ J , hence

y′(t) < x′(t) – ψ(t) for a.a. t ∈ J . (.)

Now we use (.) and (.) to deduce the following estimate:

y(τ) – y(t–) =
∫ τ

t–

y′(s) ds =
∫

[t–,τ]∩J
y′(s) ds +

∫

[t–,τ]\J
y′(s) ds

<
∫

[t–,τ]∩J

(
x′(s) – ψ(s)

)
ds +

∫

[t–,τ]\J
M(s) ds

= x(τ) – x(t–) –
∫

[t–,τ]\J
x′(s) ds –

∫

[t–,τ]∩J
ψ(s) ds

+
∫

[t–,τ]\J
M(s) ds

< x(τ) – x(t–) –
∫

[t–,τ]∩J
ψ(s) ds + 

∫

[t–,τ]\J
M(s) ds
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≤ x(τ) – x(t–) –
∫

[t–,τ]∩J

ψ(s) ds + 
∫

[t–,τ]\J
M(s) ds

< x(τ) – x(t–) –



∫ τ

t–

ψ(s) ds
(
by (.) and (.)

)
.

Hence ‖x – y‖∞ ≥ y(t–) – x(t–) ≥ ρ provided that y(τ) ≥ x(τ).
Similar computations with t+ instead of t– show that if y(τ) ≤ x(τ) then we also have

‖x – y‖∞ ≥ ρ .
Case  - m({t ∈ In : x(t) = γn(t)}) >  only for some of those n ∈ N such that γn is viable.

Let us prove that in this case the relation x ∈ Tx implies x = Tx.
We lose no generality if we assume that all admissible discontinuity curves are viable

and m(Jn) >  for all n ∈N, where

Jn =
{

t ∈ In : x(t) = γn(t)
}

.

For each n ∈N and for a.a. t ∈ Jn we have

x′(t) = γ ′
n(t) = f

(
t,γn(t)

)
= f

(
t, x(t)

)
,

and therefore x′(t) = f (t, x(t)) a.e. in A =
⋃

n∈N Jn.
Now we assume that x ∈ Tx and we prove that it implies that x′(t) = f (t, x(t)) a.e. in I \ A,

and that x(t) = F(x), thus showing that x = Tx.
Since x ∈ Tx then for each k ∈Nwe can use Proposition . with ε = ρ = /k to guarantee

that we can find functions xk,i ∈ B/k(x) ∩ K and coefficients λk,i ∈ [, ] (i = , , . . . , m(k))
such that

∑
i λk,i =  and

∥∥∥∥∥x –
m(k)∑

i=

λk,iTxk,i

∥∥∥∥∥∞
<


k

.

Let us denote yk =
∑m(k)

i= λk,iTxk,i, and notice that yk → x uniformly in I and ‖xk,i – x‖ ≤
/k for all k ∈N and all i ∈ {, , . . . , m(k)}.

On the other hand, for a.a. t ∈ I \A we see that f (t, ·) is continuous at x(t) so for any ε > 
there is some k = k(t) ∈N such that for all k ∈N, k ≥ k, we have

∣∣f
(
t, xk,i(t)

)
– f

(
t, x(t)

)∣∣ < ε for all i ∈ {
, , . . . , m(k)

}
,

and therefore

∣∣y′
k(t) – f

(
t, x(t)

)∣∣ ≤
m(k)∑

i=

λk,i
∣∣f

(
t, xk,i(t)

)
– f

(
t, x(t)

)∣∣ < ε.

Hence y′
k(t) → f (t, x(t)) for a.a. t ∈ I \A, and then we conclude from [], Corollary ., that

x′(t) = f (t, x(t)) for a.a. t ∈ I \ A.
Finally, to prove that x(t) = F(x) we fix ρ >  and, since F is continuous, there exists

ε >  such that

∣∣F(y) – F(x)
∣∣ < ρ/ for all y ∈ Bε(x). (.)
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Since x ∈ Tx, we know from Proposition . that we can find functions xi ∈ Bε(x) ∩ K and
coefficients λi ∈ [, ] (i = , , . . . , m) such that

∑
i λi =  and

∥∥∥∥∥x –
m∑

i=

λiTxi

∥∥∥∥∥∞
< ρ/. (.)

The definition of T ensures that
∑

λiTxi(t) =
∑

λiF(xi), so (.) implies that

∣∣∣∣∣x(t) –
m∑

i=

λiF(xi)

∣∣∣∣∣ < ρ/. (.)

Using (.) and (.), we deduce that

∣∣x(t) – F(x)
∣∣ ≤

∣∣∣∣∣x(t) –
m∑

i=

λiF(xi)

∣∣∣∣∣ +

∣∣∣∣∣

m∑

i=

λiF(xi) – F(x)

∣∣∣∣∣

<
ρ


+

∣∣∣∣∣

m∑

i=

λi
[
F(xi) – F(x)

]
∣∣∣∣∣ <

ρ


+

ρ


= ρ.

This proves that x(t) = F(x) because ρ >  can be chosen as small as we wish. �

3 Examples and nonexistence of extremal solutions
Given n ∈ N, we define φ() =  and φ(n) as the number of divisors of n if n ≥ . Thus
constructed, φ is an unbounded sequence satisfying that φ(n) ≥  for all n ∈ N and, as
there exist infinitely many prime numbers,

lim inf
n→∞ φ(n) = .

Now we consider the function

f (t, x) =


φ(n)
√|t| +




, t = , x ∈R, (.)

where n ∈N is chosen such that

n – 
t

≤ x <
n
t

, if tx ≥ , –(n – )σ t ≤ x < –nσ t, σ = sgn t, if tx < .

We will show that Theorem . can be applied to guarantee the existence of solutions
for the following multipoint problem:

{
x′(t) = f (t, x(t)) for a.a. t ∈ I = [–, ],
x() =

∑
i= pi(x(ti)),

(.)

where ti ∈ I for i = , . . . , , and the functions pi : R−→ R are continuous and satisfy

∣∣pi(x)
∣∣ ≤ 


for all x ∈ [–, ].
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Proposition . Problem (.), with f (t, x) defined in (.), has at least one absolutely con-
tinuous solution x such that ‖x‖∞ ≤ .

Proof First, notice that we can write the multipoint condition in the form x() = F(x) for

F(x) =
∑

i=

pi
(
x(ti)

)
,

and F : C(I) −→R is continuous.
Now we take R =  and we note that if x ∈ C(I) and ‖x‖∞ ≤ R, then |F(x)| ≤ N = . On

the other hand, since φ(n) ≥  for all n ∈ N, then for a.a. t ∈ I and all x ∈ [–, ] we have

∣∣f (t, x)
∣∣ =


φ(n)

√|t| +



≤ 

√|t| +




= M(t).

Since
∫ 

–
M(t) dt = ,

condition (H) is satisfied.
To check condition (H), notice that for every x ∈ C(I) we can write the composition

t ∈ I �−→ f (t, x(t)) as

t �−→ f
(
t, x(t)

)
=

∞∑

n=

(


φ(n)
√|t| +




)(
χIn (t)χJn (t) + χÎn

(t)χĴn
(t)

)
,

with

In = x–
[

n – 
t

,
n
t

)
, Jn =

{
t ∈ I : sgn t = sgn x(t)

}
,

În = x–
[

–(n – )t, –nt
)

, Ĵn =
{

t ∈ I : sgn t = – sgn x(t)
}

,

and so f (·, x(·)) is a measurable function.
Finally, to check condition (H) notice that definition of φ implies that for a.a. t ∈ I there

exists a countable set K ⊂N such that f (t, ·) is discontinuous in
⋃

k∈K γk(t) and
⋃

k∈K γ̂k(t),
with

γk(t) =
k
t

, γ̂k(t) = –kσ t.

We have γ ′
k(t) <  and γ̂ ′

k(t) <  for a.a. t ∈ I and all k ∈ K ; however, f (t, u) ≥ 
 for a.a.

t ∈ I and all u ∈R, and so the discontinuity curves are inviable for the differential equation.
We can conclude by application of Theorem . that problem (.) has at least one ab-

solutely continuous solution x, which, moreover, satisfies ‖x‖∞ ≤ . �

In the next example we show that, in general, there is no hope to have extremal solutions
of (.) in the conditions of Theorem .. By extremal solutions we mean a pair of solutions
x∗ and x∗ (possibly identical) such that any other solution x of (.) satisfies x∗(t) ≤ x(t) ≤
x∗(t) for all t ∈ I .
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Example . Consider the following particular case of (.):

x′ = f (t, x) =

⎧
⎪⎨

⎪⎩

, if tx > ,
–, if tx < ,
, if tx = 

⎫
⎪⎬

⎪⎭
for a.a. t ∈ I = [–, ], (.)

x() = F(x) =
x(–) + x()


. (.)

It is easy to show that problem (.)-(.) satisfies conditions (H) and (H) in Theo-
rem .. Indeed, for (H) it suffices to take R = , N = /, and M(t) =  for all t ∈ I . Con-
dition (H) is equally easy to check: we only need one admissible discontinuity curve,
namely, γ (t) =  for all t ∈ I , which is also a solution of the problem (.)-(.) and, in
particular, a viable discontinuity curve for (.).

Other solutions of (.)-(.) are, obviously, x±(t) = ±t for t ∈ [–, ]. The remaining
solutions can be obtained using the general solution of the differential equation (.) and
then imposing the initial condition (.). In doing so, we find that the set of solutions of
(.)-(.) is the uniparametric family

xτ (t) =

⎧
⎪⎨

⎪⎩

t + τ , if t ∈ [–, –τ ],
, if t ∈ (–τ , τ ),
t – τ , if t ∈ [τ , ],

for each τ ∈ [, ].

Notice that there is not a greatest or a least element in {xτ : τ ∈ [, ]} with respect to the
usual pointwise partial order. Summing up, we have an example of a problem under the
conditions of Theorem . which lacks extremal solutions.

4 Comparison with recent literature
Theorem . complements some recent existence results. Pikuta and Rzymowski []
proved that the problem

x′(t) = f
(
x(t)

)
+ h(t) for a.a. t ≥ , x() = , (.)

has absolutely continuous local solutions provided that
(C) there exists M >  such that  < f (x) < +∞ for a.a. x ∈ [, M] and

∫ M


dx
f (x) < +∞;

(C) h : [, +∞) → [, +∞] is locally integrable.
Uniqueness of solutions for (.) is studied in [] under similar conditions for f and as-
suming that h is of bounded variation.

In this section we show that Theorem . guarantees existence of solutions to some cases
of (.) not covered by the existence results in [, ].

Let us consider the discontinuous even function φ : R −→R defined by φ() = , φ(x) =
/(n + ) if /(n + ) ≤ x < /n for some n ∈N, and φ(x) =  for x ≥ .

Now we fix δ > , h ∈ L(–δ, δ), h(t) >  for a.a. t ∈ (–δ, δ), and we consider the initial
value problem

x′ =
∣∣x + φ(x)

∣∣ + h(t), x() = . (.)
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Notice that (.) is the particular case of (.) corresponding to f (x) = |x + φ(x)|. Since
 ≤ φ(x) ≤ x for all x ≥ , we have

∫ M



dx
f (x)

= +∞

for all M > . Therefore, f does not satisfy the condition (C) and, as a result, problem
(.) falls outside the scope of the existence results in [, ].

However, Theorem . ensures the existence of solutions of (.).

Proposition . If δ ∈ (, /), then (.) has at least one solution defined on the interval
[–δ, δ].

Proof We note that (.) is the particular case of (.) corresponding to f (t, x) = |x +φ(x)|+
h(t), t = , L = δ, and F(x) =  for all x ∈ C(I), I = [–δ, δ].

Since  – δ > , we can take R >  such that

∫ δ

–δ
h(t) dt

 – δ
≤ R. (.)

For each x ∈ [–R, R] we have

∣∣f (t, x)
∣∣ ≤ |x| + φ(x) + h(t) ≤ R + h(t) =: M(t),

and then condition (H) in Theorem . is satisfied for this choice of M(t), R as in (.),
and N = .

For every x ∈ C(I) the sets {t ∈ I : /(n + ) ≤ |x(t)| < /n}, n ∈ N, are measurable and
φ(x(t)) is constant on those sets. Hence f (·, x(·)) is measurable.

Finally, for almost all t ∈ I the mapping x ∈R �−→ f (t, x) is continuous in R \ {±/n : n ∈
N}, and each function

γ±n(t) = ± 
n

(t ∈ I, n ∈N),

is an inviable discontinuity curve because f (t, y) > h(t) for every y =  and h(t) >  almost
everywhere.

Since all the conditions in Theorem . are satisfied, we conclude that (.) has at least
one solution x : [–δ, δ] −→R. �
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