
Akewe and Okeke Fixed Point Theory and Applications  (2015) 2015:66 
DOI 10.1186/s13663-015-0315-4

R E S E A R C H Open Access

Convergence and stability theorems for
the Picard-Mann hybrid iterative scheme for a
general class of contractive-like operators
Hudson Akewe1 and Godwin Amechi Okeke2*

*Correspondence:
gaokeke1@yahoo.co.uk
2Department of Mathematics,
Covenant University, Canaanland,
KM 10 Idiroko Road, P.M.B. 1023, Ota,
Ogun State, Nigeria
Full list of author information is
available at the end of the article

Abstract
In this paper we use the general class of contractive-like operators introduced by
Bosede and Rhoades (J. Adv. Math. Stud. 3(2):1-3, 2010) to prove strong convergence
and stability results for Picard-Mann hybrid iterative schemes considered in a real
normed linear space. We establish the strong convergence and stability of the Picard
iterative scheme as a corollary. Our results generalize and improve a multitude of
results in the literature, including the recent results of Chidume (Fixed Point Theory
Appl. 2014:233, 2014).
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1 Introduction and preliminary definitions
Fixed point iterative schemes are designed to be applied in solving equations arising in
physical formulation but there is no systematic study of the numerical aspects of these
iterative schemes. In computational mathematics, it is of vital interest to know which of
the given iterative procedures converge faster to a desired solution, commonly known as
the rate of convergence. Some of the notable authors whose research is in this direction
are Hussain et al. [], Phuengrattana and Suantai [] and Khan []. Harder and Hicks [,
] revealed the importance of investigating the stability of various iteration procedures
for various classes of nonlinear mappings. Harder [] established applications of stability
results to first-order differential equations.

We will now consider some of these schemes, as they are relevant to this work.
Let (X, d) be a metric space and T : X → X be a selfmap of X. Define FT = {p ∈ X : Tp = p}

to be the set of fixed points of T . For x ∈ X, the sequence {xn}∞n= defined by

xn+ = Txn, n ≥ , (.)

is called the Picard iterative scheme.
Let (E,‖ · ‖) be a real normed linear space and T : E → E be a selfmap of E. For x ∈ E,

the sequence {xn}∞n=, defined by

xn+ = ( – αn)xn + αnTxn, n ≥ , (.)

© 2015 Akewe and Okeke; licensee Springer. This article is distributed under the terms of the Creative Commons Attribution 4.0
International License (http://creativecommons.org/licenses/by/4.0/), which permits unrestricted use, distribution, and reproduc-
tion in any medium, provided you give appropriate credit to the original author(s) and the source, provide a link to the Creative
Commons license, and indicate if changes were made.

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208051341?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
http://dx.doi.org/10.1186/s13663-015-0315-4
http://crossmark.crossref.org/dialog/?doi=10.1186/s13663-015-0315-4&domain=pdf
mailto:gaokeke1@yahoo.co.uk


Akewe and Okeke Fixed Point Theory and Applications  (2015) 2015:66 Page 2 of 8

where {αn}∞n=, is a real sequence in [, ] such that
∑∞

n= αn = ∞ is called the Mann itera-
tive scheme [].

If each αn =  in (.), we have the Picard iterative scheme (.).
Rhoades [], perhaps for the first time, used computer programs to compare the rate of

convergence of Mann and Ishikawa iterative procedures. He illustrated the difference in
the rate of convergence for increasing and decreasing functions through examples.

In [], Phuengrattana and Suantai defined the SP iterative scheme and proved that this
scheme is equivalent to, and faster than, Mann [], Ishikawa and Noor iterative schemes
for increasing functions. Recently, Chugh and Kumar [] introduced the CR iterative
scheme and proved some convergence results. In the light of the iterative schemes men-
tioned above, it is clear that the study of the rate of convergence of several iterative schemes
has attracted the interest of several well-known mathematicians. Rhoades and Soltuz []
introduced some multistep iterative schemes and proved some equivalence results. Akewe
et al. [] introduced the Kirk-multistep type iterative schemes and proved strong conver-
gence and stability results, with some numerical examples to back up their work. These
various results are worth emulating.

In , Khan [] gave a different perspective to iteration procedure. He introduced the
following Picard-Mann hybrid iterative scheme for a single nonexpansive mapping T . For
any initial point x ∈ E, the sequence {xn}∞n= is defined by

xn+ = Tyn,

yn = ( – αn)xn + αnTxn, n ≥ ,
(.)

where {αn}∞n= is a real sequence in [, ].
He showed that the hybrid scheme (Picard-Mann scheme (.)) converges faster than all

of Picard (.), Mann (.) and Ishikawa [] iterative schemes in the sense of Berinde []
for contractions. He also proved the strong convergence and weak convergence theorems
with the help of his iterative process (.) for the class of nonexpansive mappings in general
Banach spaces and applied it to obtain results in uniformly convex Banach spaces.

Motivated by the work of Khan [], we prove the strong convergence of the Picard-Mann
iterative scheme for a general class of operators in a real normed space.

Osilike [] proved several stability results, which are generalizations and extensions of
most of the results of Rhoades [], using the following contractive definition: for each
x, y ∈ X, there exist a ∈ [, ) and L ≥  such that

d(Tx, Ty) ≤ ad(x, y) + Ld(x, Tx). (.)

In  Imoru and Olatinwo [] proved some stability results using the following general
contractive definition:

for each x, y ∈ X , there exist δ ∈ [, ) and a monotone increasing function
ϕ : R+ → R+ with ϕ() =  such that

d(Tx, Ty) ≤ δd(x, y) + ϕ
(
d(x, Tx)

)
. (.)

In a recent paper Bosede and Rhoades [] made an assumption implied by (.) and the
one which renders all generalizations of the form (.) pointless. That is if x = p (is a fixed
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point) then (.) becomes

d(p, Ty) ≤ δd(p, y) (.)

for δ ∈ [, ) and all x, y ∈ X.
In a real normed linear space setting, (.) is the same as

‖p – Ty‖ ≤ δ‖p – y‖ (.)

for δ ∈ [, ) and all x, y ∈ X.
In  Chidume and Olaleru [] gave several examples to show that the class of map-

pings satisfying (.) is more general than that of (.) and (.), provided the fixed point
exists. The authors [] proved that every contraction map with a fixed point satisfies in-
equality (.) in the following example.

Several well-known mathematicians have established some interesting fixed points re-
sults for certain classes of nonlinear mappings (see, e.g. Bosede [], Rhoades [], Zam-
firescu []).

Example . [] Let E = l∞, K = {x ∈ l∞ : ‖x‖ ≤ } and let

T : K → K

be defined by

Tx =



(
, x

 , x
, x

, . . .
)

for x = (x, x, x, . . .) ∈ K .

Then
(i) T is continuous and maps K into itself.

(ii) Tp = p implies p = .
(iii)

‖Tx – p‖∞ =



∥
∥
(
, x

 , x
, x

, . . .
)∥
∥∞

≤ 


∥
∥(, x, x, x, . . .)

∥
∥∞

=



‖x – p‖∞ ∀x ∈ K (since p = ).

(iv) T is not a contraction map. To see this, let x = ( 
 , 

 , 
 , . . .) and y = ( 

 , 
 , 

 , . . .).
Clearly, x, y ∈ K , ‖x – y‖∞ = 

 , and ‖Tx – Ty‖∞ = 
 .

Suppose there exists a ∈ [, ) such that ‖Tx – Ty‖∞ ≤ a‖x – y‖∞, ∀x, y ∈ K , we
must then have that

‖Tx – Ty‖∞ =



≤ a


= ‖x – y‖∞

for the above choices of x and y. But then this implies that a ≥ 
 > . So, T is not a

contraction map.



Akewe and Okeke Fixed Point Theory and Applications  (2015) 2015:66 Page 4 of 8

(v) It is clear that every contraction map with a fixed point satisfies inequality (.).
This completes our example.

We now give the following example.

Example . Let E = l∞, B := {x ∈ l∞ : ‖x‖ ≤ } and let T : E → B ⊆ E be defined
by Tx = 

 (, x
 , x

, x
, . . .) if ‖x‖∞ ≤ , Tx = 

‖x‖∞
(, x

 , x
, x

, . . .) if ‖x‖∞ >  for x =
(x, x, x, . . .) ∈ l∞. Then Tp = p if and only if p = . We compute as follows:

‖Tx – p‖∞ = 
‖(, x

 , x
, x

, . . .)‖∞ if ‖x‖∞ ≤ ,
‖Tx – p‖∞ = 

‖x‖∞
‖(, x

 , x
, x

, . . .)‖∞ if ‖x‖∞ > , so that
‖Tx – p‖∞ = 

‖x‖∞ ≤ 
‖x‖∞ if ‖x‖∞ ≤ ,

‖Tx – p‖∞ = 
 . if ‖x‖∞ > .

Hence, we obtain that ‖Tx – p‖∞ = 
‖x – p‖∞ for every x ∈ l∞, p = .

Hence, T satisfies contractive condition (.). But the map T is not a contraction.
To see this, take x = ( 

 , 
 , 

 , . . .); y = ( 
 , 

 , 
 , . . .). Then ‖x – y‖∞ = 

 ; ‖Tx – Ty‖∞ =

‖(, 

 , 
 , . . .)‖∞ = 

 .
Suppose there exists a ∈ [, ) such that ‖Tx – Ty‖∞ ≤ a‖x – y‖∞ for every x, y ∈ E,

then we must have 
 ≤ a

 , which yields that a ≥ 
 > , a contradiction. So, T is not a

contraction map.

Example . Let E = [, ]. Define T : [, ] → [, ] by Tx = x
 , where [, ] has the usual

metric. Then T satisfies inequality (.) and F(T) = [, ].
We shall show that the Picard-Mann hybrid iterative scheme (.) is T-stable.
Now, let p = . Take αn = 

 , yn = 
n for each n ≥ .

Then limn→∞ yn = .
We see that

εn = |yn+ – Tyn|

=
∣
∣
∣
∣yn+ –

yn



∣
∣
∣
∣

=
∣
∣
∣
∣yn+ –

 – αn


yn –

αn



(
yn



)∣
∣
∣
∣

=
∣
∣
∣
∣


n + 

–


n
–


n

∣
∣
∣
∣.

We have

lim
n→∞ εn = .

Hence the Picard-Mann hybrid iterative scheme (.) is T-stable.

We shall need the following lemma in proving our result.

Lemma . [] Let δ be a real number satisfying  ≤ δ <  and {εn}∞n= be a sequence
of positive numbers such that limn→∞ εn = . Then, for any sequence of positive numbers
{un}∞n= satisfying un+ ≤ δun + εn, n = , , , . . . , we have limn→∞ un = .
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2 Main results
Theorem . Let (E,‖ · ‖) be a real normed linear space and T : E → E be a map with a
fixed point p satisfying the condition

‖Tx – p‖ ≤ δ‖x – p‖ (.)

for each x, y ∈ E,  ≤ δ < . For arbitrary x ∈ E, let {xn}∞n= be the Picard-Mann hybrid
iterative scheme defined by (.), where {αn}∞n= is a real sequence in [, ]. Then {xn}∞n=

converges strongly to p.

Proof In view of (.) and (.) we have

‖xn+ – p‖ = ‖Tyn – Tp‖
≤ δ‖yn – p‖, (.)

and

‖yn – p‖ ≤ ( – αn)‖xn – p‖ + αn‖Txn – Tp‖
≤ ( – αn)‖xn – p‖ + αnδ‖xn – p‖. (.)

Substituting (.) in (.), we have

‖xn+ – p‖ ≤ δ
[
 – αn( – δ)

]‖xn – p‖. (.)

Using the fact that  ≤ δ < , αn ∈ [, ) and
∑∞

n= αn = ∞, we have from Lemma . that
limn→∞ ‖xn+ – p‖ = ; that is, {xn}∞n= converges strongly to p. This ends the proof. �

Theorem . leads to the following corollary.

Corollary . (Chidume []) Let (E,‖ · ‖) be a real normed linear space and T : E → E be
a map with a fixed point p satisfying the contractive condition

‖Tx – p‖ ≤ δ‖x – p‖ (.)

for each x, y ∈ E,  ≤ δ < . For an arbitrary x ∈ E, let {xn}∞n= be the Picard iterative scheme
defined by (.). Then (.) converges strongly to p.

Remark . Theorem . generalizes several results in the literature by considering a
larger class of contractive-type operators, including the results of Chidume [].

3 Stability results for the Picard-Mann iterative schemes in real normed spaces
In this section we prove stability results for the Picard-Mann iterative schemes defined by
(.) for a general class of contractive-like operators introduced by Bosede and Rhoades
[]. The stability of Picard iterative schemes follows as a corollary. The theorem is stated
as follows.
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Theorem . Let (E,‖ · ‖) be a real normed linear space and T : E → E be a map with a
fixed point p satisfying the condition

‖Tx – p‖ ≤ δ‖x – p‖ (.)

for each x, y ∈ E,  ≤ δ < . For arbitrary x ∈ E, let {xn}∞n= be the Picard-Mann hybrid
iterative scheme defined by (.). Then the Picard-Mann hybrid iterative scheme is T-stable.

Proof From Theorem ., the sequence {xn}, defined by (.), converges to p.
Let {zn}∞n=, {un}∞n= be real sequences in E.
Let εn = ‖zn+ – Tun‖, n = , , , . . . , where

zn+ = Tun,

un = ( – αn)zn + αnTzn, n ≥ 

and let limn→∞ εn = .
Then we shall prove that limn→∞ zn = p for mappings satisfying condition (.).
That is,

‖zn+ – p‖ ≤ ‖zn+ – Tun‖ + ‖Tun – Tp‖
≤ εn + ‖Tun – Tp‖. (.)

Using condition (.) we have

‖Tun – Tp‖ ≤ δ‖un – p‖. (.)

Substituting (.) in (.) we have

‖zn+ – p‖ ≤ εn + δ‖un – p‖, (.)

‖un – p‖ =
∥
∥( – αn)zn + αnTzn – ( – αn + αn)p

∥
∥

≤ ( – αn)‖zn – p‖ + αn‖Tzn – p‖
≤ [

 – ( – δ)αn
]‖zn – p‖. (.)

Substituting (.) in (.), since  < α < αn, we have

‖zn+ – p‖ ≤ δ
[
 – ( – δ)αn

]‖zn – p‖ + εn.

Then

‖zn+ – p‖ ≤ δ
[
 – ( – δ)α

]‖zn – p‖ + εn. (.)

Using Lemma . in (.) we have

lim
n→∞ zn = p.
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Conversely, let limn→∞ zn = p. We show that limn→∞ εn =  as follows:

εn = ‖zn+ – Tun‖
≤ ‖zn+ – p‖ + ‖Tp – Tun‖
≤ ‖zn+ – p‖ + δ‖un – p‖. (.)

Substituting (.) in (.) we have

εn ≤ ‖zn+ – p‖ + δ
[
( – αn)‖zn – p‖ + αn‖Tz – p‖]

≤ ‖zn+ – p‖ + δ
[
 – ( – δ)αn

]‖zn – p‖
≤ ‖zn+ – p‖ + δ

[
 – ( – a)α

]‖zn – p‖. (.)

Since limn→∞ ‖zn – p‖ = , by our assumption

lim
n→∞ εn = .

Therefore the Picard-Mann iterative scheme (.) is T-stable. �

Theorem . yields the following corollary.

Corollary . (Bosede and Rhoades []) Let (E,‖ · ‖) be a real normed linear space and
T : E → E be a map with a fixed point p satisfying the condition

‖Tx – p‖ ≤ δ‖x – p‖ (.)

for each x, y ∈ E,  ≤ δ < . For arbitrary x ∈ E, let {xn}∞n= be the Picard iterative scheme
defined by (.) converging to p. Then the Picard iterative scheme defined by (.) is T-stable.
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