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Abstract

Background: Phylogenetic and population genetic studies often deal with multiple sequence alignments that
require manipulation or processing steps such as sequence concatenation, sequence renaming, sequence translation
or consensus sequence generation. In recent years phylogenetic data sets have expanded from single genes to
genome wide markers comprising hundreds to thousands of loci. Processing of these large phylogenomic data sets is
impracticable without using automated process pipelines. Currently no stand-alone or pipeline compatible program
exists that offers a broad range of manipulation and processing steps for multiple sequence alignments in a single
process run.

Results: Here we present FASconCAT-G, a system independent editor, which offers various processing options for
multiple sequence alignments. The software provides a wide range of possibilities to edit and concatenate multiple
nucleotide, amino acid, and structure sequence alignment files for phylogenetic and population genetic purposes.
The main options include sequence renaming, file format conversion, sequence translation between nucleotide and
amino acid states, consensus generation of specific sequence blocks, sequence concatenation, model selection of
amino acid replacement with ProtTest, two types of RY coding as well as site exclusions and extraction of parsimony
informative sites. Convieniently, most options can be invoked in combination and performed during a single process
run. Additionally, FASconCAT-G prints useful information regarding alignment characteristics and editing processes
such as base compositions of single in- and outfiles, sequence areas in a concatenated supermatrix, as well as paired
stem and loop regions in secondary structure sequence strings.

Conclusions: FASconCAT-G is a command-line driven Perl program that delivers computationally fast and
user-friendly processing of multiple sequence alignments for phylogenetic and population genetic applications and is
well suited for incorporation into analysis pipelines.

Keywords: Multiple sequence alignment, Phylogenetic reconstruction, Sequence processing, Consensus sequence,
Sequence translation, Sequence concatenation, File format conversion

Introduction
Phylogenetic and population genetic analyses commonly
involve the manipulation and processing of multiple
sequence alignments. For instance, concatenation of mul-
tiple gene alignments are common in rRNA analyses
(e.g. [1-6]) and in ’mixed’ nucleotide alignment analy-
ses, combining rRNA genes like 18S and 28S as well as
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protein coding nucleotide sequences (e.g. [7-10]). Like-
wise, the ability to concatenate hundreds to thousands
of nucleotide or amino acid single gene alignments has
recently become an indispensable tool with the growth
of phylogenomics (e.g. [11-24]). Sequence translation of
nucleotide data (DNA/RNA) to protein coding sequences
as well as RY coding [25] of nucleotide sequences are
common practices to reduce the signal-to-noise ratio of
underlying data in phylogenomic studies prior to tree
reconstruction (e.g. [26-29]). In order to predict possible
nucleotide sequences for a specified protein, researchers
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often reverse translate amino acid sequences to nucleotide
states (e.g. [30-33]). Another common analysis of multiple
sequence alignments is consensus sequence generation,
which is commonly used to identify and compare con-
served and variable regions (e.g. [34-36]), design degen-
erated PCR primers for appropriate locations within the
alignment, or to define operational taxonomic units using
DNA barcode data for subsequent phylogenetic analy-
sis (e.g. [37]). Consensus sequence generation has also
become a valuable tool in large scale population genetic
analyses that pool individuals as a cost effective method
for determining population level data. Recent studies
searching for genes potentially under selection among
populations relied on identifying the most common allele
at polymorphic sites as well as alleles fixed within popula-
tions [38], which can be accomplished through consensus
generation.
Phylogenetic and population genetic analyses also com-

monly involve the tedious tasks of dealing with different
sequence file formats and sequence renaming with the
later becoming increasingly time-consuming when deal-
ing with hundreds of sequences.
Although there are many scripts and online platforms

that address these issues or manipulate sequence align-
ments with single processing steps, a software tool which
enables combined processing steps in a single operation
is lacking. Software like SequenceMatrix [39], Transla-
torX [40], and CONCATENATOR [41] are pure con-
catenation tools which can be used only via graphical
user interface or which are web server designed and
therefore cannot be implemented in automatic process
pipelines. 2matrix [42] is a pure concatenation tool as
well but command line driven. SCaFoS [43] is a phyloge-
nomic tool for selecting and concatenating sequences in
large multigene and species datasets at either the amino
acid or nucleotide level. Although SCaFoS is efficient
at selecting orthologous sequences, creating chimerical
sequences, and selecting genes according to their level of
missing data, it lacks alignment processing options such
as sequence translation, RY-coding, secondary structure
handling, sequence renaming and consensus sequence
generation.
With FASconCAT-G (FcC-G), we introduce a versatile

software designed for processing and manipulating mul-
tiple sequence alignments. Conveniently, FcC-G allows
for multiple processing steps in a single run and is easily
implemented into pipeline analyses. FcC-G represents an
advancement of FASconCAT [44], an already commonly
used tool in phylogenetic studies (e.g. [45-53]).

Results and discussion
FASconCAT-G accepts multiple nucleotide, amino acid,
and structure sequence alignment input files and can
perform sequence renaming, file format conversion,

sequence translation of nucleotide and amino acid
states, consensus generation of specific sequence blocks,
sequence concatenation, RY coding, model selection of
amino acid replacement using ProtTest [54], extraction
of parsimony informative sites as well as generation of
partitioned files for MrBayes [55] and RAxML analyses
[56]. The process order of FcC-G allows for a wide range
of optional process combinations (Figure 1), although,
some process chains are not possible in a single pro-
cess run. For instance, it is not possible to RY code
nucleotide sequences before translating them to amino
acid sequences or to build consensus sequences before
the sequence translation process. For tasks of this nature,
FcC-G has to be run twice. However, we hope the current
process order of FcC-G is useful for most phylogenetic
and population genetic applications. To avoid errors such
as the exclusion of third nucleotide site positions before
sequence translation to amino acid character states, FcC-
G contains a hierarchical order of single file processing
steps:

1. Sequence renaming
2. Sequence translation (nucleotide to amino acid

sequences or vice versa)
3. Generation of consensus sequences of predefined

sequence blocks
4. RY coding of nucleotide sequences
5. Exclusion of each third nucleotide site position
6. Sequence concatenation
7. Extraction of parsimony informative sites
8. Print out of edited sequences and additional

sequence information

Sequence renaming
Sequence names are often coded during the sequencing
process or, if downloaded fromNCBI, extended with addi-
tional information and non-alphanumeric signs which
are often not allowed in downstream analysis programs.
Accordingly, FcC-G can rename defined sequence names
prior to file processing by using a user supplied info file,
which lists, in each row, the old name delimited from the
new name by a tabstop. Sequences which are not listed in
the user supplied info file remain unchanged. FcC-G will
print additional information of the sequence renaming
process to a new outfile.

Sequence translation
FcC-G can translate standard nucleotide sequence states
to amino acid characters and vice versa. For sequence
translation of nucleotide data FcC-G uses the stan-
dard IUPAC triplet codes for amino acid characters.
When translating amino acid states to corresponding
nucleotide characters, FcC-G uses compressed IUPAC
codes. Conveniently, FcC-G can recognize and handle
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Figure 1 Simplified flowchart depicting FcC-G implemented options. Possible alignment input file formats, which can be processed
individually or in combination, are listed in the top section. The hierarchical flow of possible processing options is depicted by the direction of the
arrow in the middle of the figure. Processing options can be combined following the flow direction. For processing chains that contradict this flow
direction, FcC-G has to be run twice. Possible output files of FcC-G are depicted on the bottom section. The content of output files depends on the
chosen processing options and the type of sequences in given input file alignments. A more detailed description of possible FcC-G input/output
files, implemented processing options, and examples of complex process chains are discussed in the FcC-G manual.
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both amino acid and nucleotide data sets in a single
processing run. Accordingly, FcC-G will only translate
sequences of infiles which are suitable for a defined trans-
lation process. This makes it very easy to concatenate a
mixture of different infile sequence types to one specific
supermatrix sequence type FcC-G will translate incom-
plete nucleotide triplets to ‘?’. FcC-G translates nucleotide
triplets even if triplets contain ambiguity codes, provided
that the triplets are still assignable to specific amino acid
characters (e.g. ‘YTR’ ↪→ Leucine/L). Otherwise, unspe-
cific triplets are translated to ‘?’ (e.g. ‘RCT’ ↪→ ?). FcC-G
does not check for correctness of given reading frames but
will print a warning in the terminal window if sequence
lengths are not a multiple of three.

Consensus sequences
FcC-G can create consensus sequences for matching
defined sequence blocks within given infiles using one
of three consensus methods: ‘Most Frequent Consensus’,
‘Majority Rule Consensus’, and ‘Strict Consensus’. The
‘Most Frequent Consensus’ option considers the most
frequent character state at a given site among defined
sequence blocks as the consensus character state. If two
or more character states are equally frequent, FcC-G uses
either the corresponding IUPAC ambiguity code as the
consensus character state (nucleotide data) or a ‘?’ (amino
acid data and nucleotide data). The ‘Majority Rule Con-
sensus’ option considers character states which occur at
a given site position in more than 50% of sequences of a
defined sequence block as consensus character state. Oth-
erwise, FcC-G uses a ‘?’ as the consensus character state
(amino acid data and nucleotide data). The ‘Strict Con-
sensus’ option considers all character states at a given
site position to generate a strict consensus sequence for
a defined sequence block using IUPAC ambiguity codes
for nucleotide data and a ‘X’ for amino acid data. For
nucleotide data, indel events (coded as ‘-’) and missing
data (coded as ‘?’) are ignored using ‘Strict Consensus’ as
long as a nucleotide character state exists for a specific site
position. If a specific site on a defined sequence block con-
sists of only indel events (‘-’) and missing data states (‘?’),
FcC-G will output a ‘?’ as the consensus character state.

RY coding of nucleotide sequences
RY coding can be applied to each third nucleotide
sequence position or to complete nucleotide sequences.
The R code is used for purine states while the Y code
is used for pyrimidines. Amino acid sequences are left
unchanged unless the sequence translation option from
amino acid to nucleotide states has been defined.

Sequence concatenation
FcC-G can concatenate sequence alignment infiles
(nucleotide and amino acid as well as ‘dot-bracket’

structure information) of identical taxa into a superma-
trix file. It is also possible to concatenate amino acid and
nucleotide alignments into one supermatrix. In the super-
matrix file, taxon sequences which were missing from sin-
gle files are encoded either by ‘N’ (nucleotide sequences),
‘X’ (amino acid sequences) or by ‘ . ’ (dots structure strings
in ‘dot-bracket’ format).

Extraction of parsimony informative sites
FcC-G can print out additional information file(s) identi-
fying parsimony-informative sites of given infiles and/or
the concatenated supermatrix. A site is parsimony-
informative if it contains at least two types of nucleotides
(or amino acids), and at least two of them occur with a
minimum frequency of two. The file format of parsimony-
informative alignment files depends on the chosen output
format(s).

Input/Output
FcC-G can simultaneously handle three different infile
formats (FASTA, CLUSTAL, and PHYLIP) in any com-
bination. Similarly, FcC-G can print concatenated and/or
edited alignment files in FASTA, NEXUS, and/or PHYLIP
format but FASTA is the default. NEXUS outfiles can
conveniently be imbedded with MrBayes commands for
direct execution in PAUP [57] or MrBayes [58] (very
convenient for partitioned or mixed DNA/RNA analy-
ses) or output without any specific commands. Likewise,
PHYLIP output files can be directly used for Maximum
Likelihood tree reconstruction analyses with RAxML [56]
or PhyML [59]. Additionaly, our new software tool prints a
file with useful information about alignment and sequence
characteristics for the concatenated supermatrix as well
as all single infiles. Information on this file includes sin-
gle base compositions (including GC content), sequence
types as well as sequence lengths and the number of taxa
represented in each infile and the concatenated superma-
trix. The file also contains information specific to the con-
catenation process, such as the position of each sequence
fragment in the concatenated supermatrix as well as a
list of all concatenated sequences and inserted replace-
ment strings. However, the evaluation of this additional
information often results in longer computation times
depending on the size of data sets. Therefore, FcC-G offers
an option to increase the overall computation speed by
decreasing the information sampled and printed to the
information file. If one or more infiles contain a secondary
structure string, FcC-G will print another file with infor-
mation about stem and loop character states and posi-
tions in both the concatenated supermatrix and infile(s).
FcC-G can also print parsimony informative sites (sites
which consist of at least two types of nucleotides, or amino
acids, with a minimum frequency of two) from given
infiles and/or the concatenated supermatrix to separate
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output files. Furthermore, FcC-G can optionally generate
additional gene partition output files for the concatenated
supermatrix which can be directly used for Maximum
Likelihood analyses using RAxML [56] or for Bayesian
analyses with MrBayes [58].

Model selection of amino acid replacement using ProtTest
FcC-G offers the option to generate the best-fit protein
model for each amino acid gene partition in RAxML
partition formatted supermatrices using the external soft-
ware, ProtTest [54]. The ProtTest option can only be

Figure 2 Terminal menu of FcC-G. The menu is subdivided into a command block (upper half) and a setting block (lower half). Users can specify
their setting by using single commands via menu options or by typing multiple commands directly via the start command line of FcC-G.
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executed with amino acid infiles or translated infiles
and when sequence concatenation has been chosen
together with the partition option (“-l”), but not for
supermatrices in NEXUS format. FcC-G implements
the default parameters for ProtTest version 3.3 and
uses the ProtTest BIC criterium to select the best-fit
model.

Conclusions
With FcC-G, we introduce an advanced editor to facil-
itate subsequent processing steps for multiple sequence
alignments in phylogenetic and population genetic stud-
ies. Like its predecessor version, FASconCAT, FcC-G is
easy to use, very fast (even with large data sets) and not
limited in number of input files or input sequences. It
facilitates data handling, it is time saving in generating
and processing data matrices, and provides useful addi-
tional information about input sequences. FcC-G is imple-
mented in Perl and runs on Windows PCs, Mac OS and
Linux operating systems. FcC-G is command-line driven
and well suited for incorporation into automatic process
pipelines. Alternatively, the software tool can be operated
and executed through interactive terminal menu options
(Figure 2). Most processing options of FcC-G are com-
binable (Figure 1) and help is provided for every option.
The executable source code (Additional file 1) as well as
example test files and a detailed documentation of FcC-G
are freely available at https://www.zfmk.de/en/research/
research-centres-and-groups/fasconcat-g. The program
is open-source and released under the terms of the GNU
General Public License (GPL) 3.0. Detailed information
and instructions are provided in the manual of FcC-G
(Additional file 2). The manual also includes some practi-
cal examples, which demonstrate FcC-G is a suitable and
user-friendly tool for complex phylogenetic and popula-
tion genetic data processing.

Methods
FcC-G is implemented in Perl (Perl 5.0 or higher) and
platform independent. Like the predecessor version FAS-
conCAT, FcC-G can be used via command line or by
terminal menu options. The terminal menu is subdivided
into two parts, separated by a dashed line (Figure 2).
The upper component constitutes of a list of all possible
options and their associated commands for adjustment.
The lower part shows the actual parameter settings of
FcC-G. All default parameters can be optionally changed,
and the new setting configuration will be displayed in the
lower part of the menu. FcC-G is distributed under GNU
GPL 3.0 and freely available from https://www.zfmk.de/
en/research/research-centres-and-groups/fasconcat-g or
upon request from the corresponding authors.

Additional files

Additional file 1: Executable Perl script of FASconCAT-G. FASconCAT-G
is distributed under GNU GPL 3.0 and freely available. Windows users have
to install a PERL interpreter on their operating system. Mac and Linux users
can directly start FASconCAT-G via terminal options.

Additional file 2: FASconCAT-Gmanual. Detailed information and
instructions and practical examples of FASconCAT-G. The pdf document
can be opened with pdf readers like AdobeAcrobatReader, Xpdf, or
DocumentViewer.
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