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Abstract

Purpose: Following Holland, complex adaptive systems (CASs) are collections of
interacting, autonomous, learning decision makers embedded in an interactive
environment. Modeling CASs is challenging for a variety of reasons including the
presence of heterogeneity, spatial relationships, nonlinearity, and, of course,
adaptation. The challenges of modeling CASs can largely be overcome by using the
individual-level focus of agent-based modeling. Agent-based modeling has been
used successfully to model CASs in many disciplines. Many of these models were
implemented using agent-based modeling software such as Swarm, Repast 3, Repast
Simphony, Repast for High-Performance Computing, MASON, NetLogo, or StarLogo.
All of these options use modular imperative architectures with factored agents, spaces, a
scheduler, logs, and an interface. Many custom agent-based models also use this kind of
architecture. This paper’s contribution is to introduce and apply a theoretical formalism for
analyzing modular imperative agent-based models of CASs. This paper includes an analysis
of three example models to show how the formalism is useful for predicting the execution
time and space requirements for representations of common CASs.

Method: The paper details the formalism and then uses it to prove several new findings
about modular imperative agent-based models.

Results: It is proven that the asymptotic time and space performance of modular
imperative agent-based modeling studies is computationally optimal for a common class
of problems. Here ‘optimal’means that no other technique can solve the same problem
computationally using less asymptotic time or space. Modular imperative agent-based
models are shown to be universal models, subject to the correctness of the Church-Turing
thesis. Several other results are also proven about the time and space performance of
modular imperative agent-based models. The formalism is then used to predict the
performance of three models and the results are found to compare closely to the measured
performance.

Conclusions: This paper’s contribution is to introduce, analyze, and apply a theoretical
formalism for proving findings about agent-based models with modular agent scheduler
architectures. Given that this kind of modeling is both computationally optimal and a
natural structural match for many modeling problems, it follows that it is the best modeling
method for such problems.
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Background
Introduction

Complex adaptive systems (CASs) are collections of interacting, autonomous, learning de-

cision makers embedded in an interactive environment (Holland 1992; Holland 1999;

Holland 2006). CASs are common in both nature and society. Examples include ecosys-

tems composed of organisms, industrial supply chains consisting of companies, social net-

works of formed by people, and even the human body’s multitudinous cells. The

contributing decision makers in each of these CAS, and all others, have properties and be-

haviors. The decision makers interact with and influence each other; learn from their ex-

periences; and change their behaviors so they are better suited to their environment.

Modeling CASs is challenging for several reasons. The details matter, so averages often

fail to properly represent these systems. Heterogeneity is the norm, so decision makers must

be modeled individually. Adaptation is expected, so models must be highly dynamic. Space

is central, so models must be intensively spatial. Scale matters, so models must often include

large numbers of decision makers. Nonlinearity is routine, so models must track specific de-

cision maker attributes against relevant thresholds. As an example, consider human tissue

growth at the cellular level. In this situation, averages over the number of cells and extracel-

lular materials do not take into account the unique, heterogeneous situation of each cell.

Cells adapt to their circumstances and substantially change their behavior in nonlinear ways.

The relative locations of cells and extracellular materials are critical for predicting long-

term outcomes. Furthermore, scale matters since large numbers of cells are needed to form

tissues. Consider further an example of tissue engineering where human tissues such as

bone are grown in controlled environments. Now, there are nonlinear and even adaptive en-

vironmental inputs. If vascularization (e.g., blood vessel formation) is one of the goals then

appropriate growth factors may be periodically added to the growth media. If growth

optimization is the goal then additional factors and nutrients may also be included.

The challenges of modeling CAS such as those for tissue growth and engineering can

largely be overcome by using the individual-level focus of agent-based modeling (ABM)

(Bonabeau 2002; Macal and North 2010; North and Macal 2007). By modeling CAS deci-

sion makers as individual agents, the full effects of the diversity that exists among the deci-

sion makers with respect to their attributes and behaviors can be observed as they give rise

to the dynamic behavior of the system as a whole. Like CAS decision makers, ABM agents

have properties and behaviors, interact with and influence each other, learn from their ex-

periences, and adapt their behaviors so they are better suited to their environment. Agent-

based modeling has been used successfully to model CAS in many disciplines, including

archaeology, biology, ecology, supply chains, consumer market analysis, military planning,

and economics (North and Macal 2007; North and Macal 2009). Many of these models

were implemented using agent-based modeling software such as Swarm (Accessed 2014),

Repast 3 (Accessed 2014), Repast Simphony (Accessed 2014), Repast for High-Performance

Computing (Accessed 2014), MASON (Accessed 2014), NetLogo (Wilensky 2014), and

StarLogo (Accessed 2014). All of these options use modular imperative agent-based

modeling architectures. Many custom agent-based models also use this kind of

architecture. Three examples are reviewed later in the section on example models.

These examples to show how the formalism introduced in this paper is useful for

predicting the execution time and space requirements for representations of com-

mon CASs.

http://www.casmodeling.com/content/2/1/3
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There are many possible theoretical foundations for computational agent-based model-

ing. The value of each candidate depends on the questions to be answered by the theoret-

ical approach. For example, the theoretical foundation in North (2012) focuses on how

information is actually processed in agent-based models. Other candidates are reviewed in

the section on related work. This paper extends the implementation-oriented theoretical

foundation in North (2012) and applies it to study a variety of new questions.

This paper’s contribution is to introduce and apply a theoretical formalism for analyzing

agent-based models. This paper details the formalism and then uses it to prove several new

findings about agent-based models. It is proven that the asymptotic time and space per-

formance of agent-based modeling studies is computationally optimal for common classes

of problems. Here ‘optimal’ means that no other technique can solve the same problem

computationally using less asymptotic time or space. Asymptotic approaches are likely to

become increasing attractive as the sizes of agent-based models grow (Parker and Epstein

2011; Murphy 2011; Collier and North 2012). Agent-based models are also shown to be

universal models, subject to the correctness of the Church-Turing thesis (Kleene 1943).

Here ‘universal’ means that any computational model can be expressed as an agent-based

model. Several other results about agent-based model time and space performance are also

proven. The formalism is then used to predict the performance of three agent-based

models and the results are found to compare closely to the measured performance.

The formalism contributes several things to the modeling of CAS and is therefore

needed by CAS researchers from a range of disciplines. First, the formalism provides

fundamental results about the time and space performance of one of the most com-

mon ways to investigate CASs, namely modular imperative agent-based models.

Second, the formalism provides a way to predict the runtime and memory required

to execute modular imperative agent-based models of CASs. This will become

increasingly important as the number of agents commonly represented in models

rises. Third, the formalism provides a straightforward way for CAS model developers

to compare the time and space performance of modular imperative CAS agent-based

models to that of traditional approaches such as optimization. Fourth, the formalism

anchors modular imperative agent-based models, and their associated CASs, within

the algorithmic hierarchy of traditional computer science complexity theory.
Related work

There is a range of published work that uses formal systems to prove selected proper-

ties of agent-based models or related kinds of models. This work includes the use of

equation-based modeling, game theory, discrete systems, classifier agents, and an earl-

ier random access stored-program (RASP) machine-based formalism. Each of these

candidates is reviewed in the next sections.
Equation-based modeling

Parunak et al. (1998) compare agent-based modeling and equation-based modeling. They

conclude in part that agent-based modeling is best for spatial problems and individual

choices, while equation-based modeling is best for geographically concentrated problems

driven by well-defined mathematical rules. Specific equation-based formalisms for analyzing

simulations include partial recursive functions, difference equations, and dynamical systems.

http://www.casmodeling.com/content/2/1/3
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Partial recursive functions

Epstein (2007) invalidates the commonly cited dichotomy between computational

agent-based models and equation-based models by proving, albeit informally, that all

computational agent-based models can be expressed using partial recursive functions.

Epstein begins his proof by observing that because any standard computer program is

effectively Turing complete, then programs for computational agent-based models must

be so as well. Epstein then notes that there is an equivalent partial recursive function

for every Turing machine. Therefore, there are sets of partial recursive functions for

every computational agent-based model. These partial recursive functions are equations

that fully specify any given computational agent-based model. Epstein also uses the par-

tial recursive functions approach to argue informally that computational agent-based

models, particularly those in the social sciences, are deductive in nature.

Considering the partial recursive functions approach further, Epstein (2007) discusses

how unnatural or “unrecognizable” this expression of an agent-based model is likely to

be for most agent-based modelers and how far this formalism is from real implementa-

tions. This suggests that partial recursive functions are not presently a suitable

implementation-oriented theoretical foundation for agent-based modeling.

Difference equations

Leombruni and Richiardi (2005) introduce an equation-based formalism that can de-

scribe both agent-based and analytical models. Their formalism is intended to bridge

the conceptual gap between equation-based economics and agent-based modeling.

Leombruni and Richiardi (2005) define agent attributes using vectors of state vari-

ables and then employ time-indexed difference equations to specify how each agent’s

state changes from one time step to the next. Naturally, analytical models that can be

reduced to difference equations can also be represented with their formalism. Once

they define their formalism, they then consider the question of how to estimate the

relevant parameters in the difference equations.

Leombruni and Richiardi (2005)’s formalism has the advantage of including both

agent-based and analytical models. Unfortunately, difference equations can be an ex-

tremely awkward way to specify the behavior of agents with complicated algorithmic

behavior. Furthermore, they do not use their formalism to prove properties of either

kind of model or show how this could be done.

Algebraic dynamical systems

Hinkelmann et al. (2011) extend Grimm et al.’s (2006) Overview, Design Concepts, and

Details (ODD) protocol by adding an algebraic field to describe agent behavior. First

we review ODD then consider Hinkelmann et al.’s (2011) extension of it.

ODD describes models using a three-part approach involving an overview, concepts,

and details. The model overview includes a statement of the model’s intent, a descrip-

tion of the main variables, and a discussion of the agent activities. The design concepts

include a discussion of the foundations of the model. The details include the initial

setup configuration, input value definitions, and descriptions of any embedded models.

Hinkelmann et al.’s (2011) ODD extension maps each agent’s state into a set of state

variables. A set of time-indexed polynomial discrete dynamical equations that update

the values of each agent’s state variables are then defined in such a way as to allow the

http://www.casmodeling.com/content/2/1/3
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state variables to form an algebraic field. They then use the rich body of existing alge-

braic techniques to prove system-level properties of two simple demonstration models.

Hinkelmann et al.’s (2011) approach has the advantage of offering a straightforward

way to prove properties of agent-based models while leveraging a large body of existing

research. Unfortunately, expressing complicated agent behaviors using time-indexed

polynomial discrete dynamical equations can become prohibitively complex. Also,

Hinkelmann et al.’s (2011) note that the algebraic techniques they seek to leverage

sometimes have serious weakness of their own, such as an inability to scale to realistic

model sizes.

Reaction–diffusion dynamical systems

Dynamical systems are sets of equations that specify a path through a space over time (Smale

1967). Selected agent-based models can be expressed as dynamical systems models or can be

approximated by them. For example, Dorofeenko and Shorish (2002) used this approach to

study a variation of the prisoner’s dilemma game. It is interesting to note that even though

the prisoner’s dilemma is a classic game theoretic model, Dorofeenko and Shorish did not

choose analytical or algorithmic game theory as the primary method for their study.

Dorofeenko and Shorish (2002) map Epstein’s (1998) demographic prisoner’s dilemma

game to a reaction–diffusion dynamical system metamodel. Epstein’s original game used a

30 × 30 square lattice populated by reproducing agents with fixed prisoner’s dilemma

strategies. Dorofeenko and Shorish investigated a one-dimensional version of the game

and proved that certain conditions produce regions of long-term cooperation. Their find-

ings are interesting, but are limited to the specific model that they are investigating. In

particular, they do not provide a method for generalizing their findings or applying dy-

namical system analysis to a wider range of agent-based models. This absence illustrates

the general conclusion that dynamical systems have limited potential as a theoretical foun-

dation for agent-based modeling, as there is no known general mapping between compu-

tational agent-based models and dynamical systems models.

Game theory

Game theory is a mathematical approach for studying multiparty decision problems in

interactive environments (Myerson 1991). Some of the findings that are the most rele-

vant for this paper are that many games have at least one stable outcome (i.e., Nash

equilibrium) and that many games are nondeterministic polynomial time (NP)-

complete (Nisan et al. 2007). Nisan et al. (2007) show that games with exactly one Nash

equilibrium are in a lower complexity class than are NP-complete problems, whereas

games with two or more Nash equilibriums are NP-complete.

Game theory can be used to prove properties about agent-based models to the extent

that such models can be expressed as games. There are several approaches to solving

game theoretic formulations including analytic game theory and algorithmic game the-

ory. Each will be considered separately.

Analytic game theory (Nisan et al. 2007) applies mathematical proof techniques to

deduce facts about game theoretic formulations. The previously mentioned proof that

certain games are NP-complete is an example. Unfortunately, only a few kinds of games

are amenable to analytical proof techniques (Nisan et al. 2007). Therefore, most prac-

tical problems do not have a corresponding analytically solvable game. This constraint

http://www.casmodeling.com/content/2/1/3
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prevents analytic game theory from being a useful general theoretical foundation for

computational agent-based modeling.

Algorithmic game theory (Nisan et al. 2007) uses computational tools to solve game

theoretic problems. Its computational nature allows it to address a much wider range

of cases than does analytic game theory. However, this added flexibility often comes at

the expense of theoretical generality.

There are several major differentiators between algorithmic game theory and agent-

based modeling. Algorithmic game theory tends to focus on specific types of outcomes,

such as stable equilibrium or various kinds of oscillatory dynamics (Nisan et al. 2007).

Agent-based modeling tends to address much broader outcomes (North and Macal

2007). Algorithmic game theory uses extended game formulations to specify models,

whereas agent-based modeling typically uses more scalable software engineering design

tools. Unlike algorithmic game theory formulations, agent-based modeling software is

often designed to represent detailed geographies, rich interaction topologies, nuanced

agent learning, and complex agent behaviors. Therefore, algorithmic game theory is not

an appropriate theoretical foundation for agent-based modeling because of the limited

kinds of outcomes that are represented, the constraints on scaling, and the substantial

practical differences in how models are specified.

Discrete systems

Quite a few different approaches to representing agent-based models using discrete sys-

tems have been published. These approaches include cellular automata and the Discrete

Event System Specification (DEVS). These approaches will be considered in the follow-

ing sections.

Cellular automata

Cellular automata (Christos and Lafortune 2008) are grids of cells, each of which has a

state transition diagram. Uniform cellular automata have a single state transition dia-

gram for every cell. Non-uniform cellular automata can have state transition diagrams

that vary by cell. Brown et al. (2005) discuss cellular automata in relation to spatial

agent-based modeling. They observe that cellular automata tend to yield Eulerian (i.e.,

field-oriented) models versus Langrangian (i.e., individual-oriented) representations.

Here we conclude that this limits cellular automata as a foundation for proving proper-

ties about agent-based models, since many are domains are naturally Langrangian.

DEVS

DEVS is one of the best developed theoretical formalisms for analyzing complicated

simulations. DEVS describes simulations as hierarchical Moore machines with timing

information added to the state transitions (Zeigler et al. 2000). Classic DEVS is the core

abstraction. It is a structure that consists of the following:

� A set of external events that can be input to the DEVS,

� A sequence set of states,

� A set of internal results that can be output from the DEVS,

� An internal transition function that specifies how timeouts change states,

� An external transition function that specifies how inputs change states,

http://www.casmodeling.com/content/2/1/3
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� A time advance function that specifies how long before each state times out, and

� An output function that specifies the results for each state.

Coupled DEVS extends classic DEVS by allowing hierarchical nesting of the Moore

machines. An example of a hierarchical DEVS implementation is described by Bolduc

and Vangheluwe (2002). Extensions that add other functionality to classical DEVS and

restrictions that limit the functionality have also been studied.

DEVS provides a theoretical foundation for analyzing some critical computational

properties of agent-based models such as decidability. If the Church-Turing thesis is

correct, then any computing system as complex as a Moore machine can be used to

calculate any function. Therefore, in principle, DEVS can represent any computable

model. Nonetheless, this finding by itself does not mean that DEVS is an ideal theoret-

ical foundation for agent-based modeling because the same conclusion can be reached

about any Turing-complete system.

Unfortunately for agent-based modeling, DEVS imposes an awkward boundary

between state and behavior that makes it difficult to represent dynamically gener-

ated agent behaviors. The DEVS boundary also does not correspond to common

agent-based model architectures. In addition to dynamically generated behaviors,

agent-based models often have state structures that are a dynamic function of the

events in the models. Dynamic Structuring DEVS (Shang and Wainer 2006)

attempts to address these weaknesses, but it also adds new constraints that

similarly limit its utility.

In addition, DEVS lacks important constraints commonly found in agent-based

models. Agent-based models have extremely wide-ranging properties, yet exhibit

characteristic forms of state storage and agent behavior. These conventions place

specific theoretical limitations on the computational properties of agent-based

models. DEVS does not include these conventions. An appropriate theoretical

foundation should represent these conventions and allow analysts to reason about

them rigorously. These agent-based modeling conventions are detailed in later

sections.
Classifier agents

Holland (2006) discusses the modeling of complex adaptive systems using a variety of

techniques including agent-based modeling. He briefly reviews the capabilities of con-

trol theory, economic modeling, biological cell modeling, and game theory. Holland

concludes that although the formalisms he has reviewed have unique strengths, they all

face the problem of relying on differential calculus in general and on partial differential

equations in particular. He then argues that the usefulness of partial differential equa-

tions is undermined by the inherent nonlinearity of the domains being modeled. For

Holland, the answer is to develop exploratory computer-based models that have agent

rules defined using individual classifier systems. Holland’s approach does not include

enough explicit simulation engine details to derive time or space performance bounds.

Furthermore, his approach is a special case of the formalism presented in this paper be-

cause it can be implemented using this formalism. Unlike this paper, Holland’s paper

does not include time or space bounds derived using his recommended approach.

http://www.casmodeling.com/content/2/1/3
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Formal methods

Niazi and Hussain (2010) use the Z specification language to represent an agent-based

model of wireless sensor networks. Z is an International Standards Organization stand-

ard that specifies computations using set theory and predicate calculus operating on

typed expressions (Spivey 1992). Z and its derivatives offer correctness-proving tools

and model-based checking capabilities. Z specifications are often detailed enough to be

translated into executable software.

Niazi and Hussain (2010) show how to use Z to specify a wireless sensor network

model by defining an interlocking set of Z schemas. They report that the resulting spe-

cification is useful for demonstrating or proving the correctness of the wireless sensor

network model relative to well-defined requirements. Also, they show that the Z speci-

fication provides a way to document detailed expectations for model behavior. This

matches well with two of Z’s purposes, namely system documentation; and system veri-

fication and validation. However, the Z language does not specifically address model

execution time or space performance analysis. For example, Niazi and Hussain (2010)

do not use their Z specification to predict the execution time or space performance of

their wireless sensor network model.
Earlier RASP formalisms

North (2012) introduces a RASP-based formalism for the analysis of agent-based model

performance and uses this formalism to prove that the total asymptotic time and space

performance of a specific Mars Rover model is computationally optimal. The current

paper substantially extends North (2012) in several ways. First, the formalism presented

in this paper is both different and more general than that of North (2012). The formal-

ism in this paper includes a discrete event scheduling option, a wider range of inter-

action spaces, a discussion of user interfaces, analysis of parallel execution, and

provisions for modeling studies. Second, broadly applicable computational optimality

conditions are proven in this paper. Third, several other results about agent-based

model time and space performance are also proven. Fourth, this paper provides per-

formance analysis examples for three real models and compares these results to the

theoretical predictions.
Methods
Common features of agent-based modeling libraries

An implementation-oriented theoretical foundation for computational agent-based

modeling should take into account the conventions commonly seen in applied model-

ing. This is not to say that current agent-based modeling efforts represent the expected

final form of computational agent-based modeling research. Agent-based modeling is

younger than techniques such as game theory. It is anticipated that agent-based model-

ing will evolve rapidly in the future. As this growth proceeds, it is hoped that agent-

based modeling theory and practice will advance together. This paper is intended to

contribute to this evolution.

Seven free and open-source agent-based modeling libraries and environments with

published descriptions will be used to illustrate the common structural conventions of

agent-based models. The examples are Swarm, Repast 3, Repast Simphony, Repast for

http://www.casmodeling.com/content/2/1/3
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High-Performance Computing (HPC), MASON, NetLogo, and StarLogo. Each of these

options has a modular imperative agent-based modeling architecture.

Swarm is an agent-based modeling library with both Objective-C and Java bindings

(Minar et al. 1996). Repast 3 (North et al. 2006) is a family of three agent-based model-

ing libraries, two in Java and one in C#, each with architectures inspired by Swarm.

Repast Simphony (North et al. 2013) is a Java-based library and environment that gen-

eralizes Repast 3. Repast HPC (Collier and North 2012) is a C++ Message Passing

Interface agent-based modeling library designed to run Repast Simphony’s core feature

set efficiently on supercomputers.

MASON is an agent-based modeling library that seeks to provide a focused set of

core services that can be easily used with other libraries (Luke et al. 2005). Its structure

is related to that of Swarm.

NetLogo (Wilensky 1999) is an educational agent-based simulation environment that

uses a modified version of the Logo programming language (Harvey 1997). Repast

Simphony and Repast HPC include a ReLogo module and environment inspired by

Logo in general and NetLogo in particular. StarLogo (Resnick 1994) is another Logo

environment related to NetLogo.

When considering the commonalities between these libraries and environment, a short

list of features emerges. These features include agents, a scheduler, interaction spaces, a

random number source, logging, and a user interface. These features are discussed in

detail in the sections that follow. It should be noted that these features are significantly

different than those suggested by the previously discussed DEVS formalism.
Agents

Agents are the decision makers in all of the selected libraries and environments.

Methods for representing agents vary. For example, the simulation systems discussed

above are all object-oriented except for NetLogo and StarLogo. At a minimum, agents

have some type of a unique identifier (e.g., index code or memory reference), behaviors

that can be activated, and attributes that can be modified. Every agent can have unique

behaviors and attributes, although agents are often grouped into types, classes, or

breeds. Some libraries or environments offer additional features, such as dynamically

modifiable behaviors.

Initialization of agents is completed using a bootstrap module that is called before the

model begins executing. Some libraries or environments also offer persistent storage using

text files, extensible markup language (XML) files, binary files, databases, or clouds.
Scheduler

The scheduler is responsible for representing the flow of time in a simulation. Schedul-

ing can be time stepped or can use discrete events.

Time-stepped agents activate once for each scheduler time increment. The time counter

normally increases in fixed increments of one unit for each step. Schedulers often imple-

ment time-step scheduling by repeatedly scanning through a list of agents. This list may

be constant or may be randomized over time to allow the agent activation order to vary.

With discrete event scheduling, each agent action occurs at a unique time. Time

advances from event to event. Some systems allow multiple events at a given time.

http://www.casmodeling.com/content/2/1/3
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These pseudo-parallel systems usually execute simultaneous events at a given time in a

randomized sequential order.

Schedulers often implement discrete event scheduling by maintaining a list of pend-

ing, time-stamped agent behaviors sorted by time of activation. The next behavior is ac-

tivated whenever a running behavior is completed. If any ties occur, they are often

broken with random draws as previously discussed.

Interaction spaces

Several different kinds of agent interaction spaces are usually available. All of the previ-

ously listed libraries and environments offer several basic interaction spaces, except for

StarLogo, which does not have networks:

� A finite, one- (or more) dimensional integer lattice with one computable real value

for each lattice point provides a simple way to represent scalar fields. The number

of dimensions for each scalar field is fixed when the grid is created.

� A finite, one- (or more) dimensional integer lattice with multiple occupancy and

computable real number coordinates for agents provides a simple representation of

physical space. The computable real numbered coordinates allow each agent to take

on any location within the range supported by the grid. The integer lattice allows

agents to find other agents who have similar coordinates (i.e., those agents with the

same location when their coordinates are truncated to an integer). As with scalar

fields, the number of dimensions for each grid is fixed when the grid is created.

This entity will be called a “grid.”

� A basic network stored as a weighted graph between agents provides a way to represent

connections between agents. Both directed and undirected graphs are supported.

Each model can have zero or more of each kind of interaction space. Generally, the

number of interaction spaces is a small constant relative to the number of agents. By

default, every agent in each model is present somewhere in each of the model’s inter-

action spaces.

Random number streams

Random number streams are used to generate reproducible sequences of pseudoran-

dom numbers. Several probability distributions are usually provided, including uniform

random sources.

Logging

Logging provides a mechanism for recording values within an executing model for later

analysis. Data collection is usually performed at regular intervals during model execu-

tion both for the overall model and for sets of agents. Data collection is usually per-

formed automatically based on user input. User-programmed logging will be used in

this paper.

User interface

Agent-based models usually run in one of two modes. The first is an interactive mode

that presents the user with a graphical interface. The second is a ‘headless’ batch mode

http://www.casmodeling.com/content/2/1/3
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that reads input files, the runs model, and then stores the results into output files. Da-

tabases, data warehouses, or clouds may also be used in place of files.

Agent-based models are often run in interactive mode during model development

and scenario creation. Graphical user interfaces (GUIs) for agent-based models are usu-

ally composed of a main window containing a nested set of subwindows. The main

window is called the ‘frame’. Sometimes a frame is not used and the subwindows ap-

pear independently. In either case, the subwindows contain various simulation controls,

one or more views of the spaces, and one or more displays of the properties of selected

individual agents. The agent property subwindows are called ‘probes’. The properties

often dynamically update as the underlying model executes. An overview schematic is

shown in Figure 1.

Displaying a GUI often consumes a large amount of computing time and space. Most

of these resources are not needed during batch runs. Therefore, batch mode is com-

monly used to generate large numbers of runs once the model and scenarios are final-

ized. Batch mode is also typically used for individual model runs with large numbers of

agents. Batch mode will be the main focus of this paper because asymptotic perform-

ance analysis of agent-based models implies large numbers of agents.
Abstract machine for modular imperative agent-based modeling

This section provides an abstract machine specification for the modular imperative agent-

based modeling architecture identified in the previous section. In this paper, we use the

RASP architecture for our abstract machine. In keeping with the implementation-oriented

theme discussed earlier, the RASP architecture was selected because it has a closer
Figure 1 Schematic diagram of an agent-based model GUI.
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correspondence to real computer systems than do other typical options, such as Turing

machines or the λ-calculus.

A RASP is an enhanced random access machine (RAM) (Cook and Reckhow 1973).

Several variations exist (Elgot and Robinson 1964; Cook and Reckhow 1973). This

paper uses the formulation by Cook and Reckhow (1973).

A RAM consists of an infinite set of memory registers that are used by a finite pro-

gram. To better match the real implementations in this paper, a large but finite number

of registers will be used instead of an infinite number. Each register can hold an inte-

ger. Register i is denoted Xi for a nonnegative integer.

Memory will be managed using a doubly linked free list with a fixed block size com-

bined with a free boundary reference. The free boundary reference points to the first

free register beyond which all registers are unallocated. To avoid external memory

fragmentation, the block size will be set to be the maximum of any the dynamically

allocatable uses of memory. Memory allocation will use the first block in the free list,

if one is available. If the list is empty, then a block will be created by using and then

incrementing the free boundary reference. Memory deallocation will insert the freed

memory at the head of the list. In this case, the free boundary reference will remain

the same.

By default, a RASP only processes integers. Finite computable real numbers will also

be included in our modified machine. The operations for computable real numbers will

work in the same fundamental way as the corresponding integer operations defined

later in this section.

Cook and Reckhow (1973) scale the sizes of their registers independently to match

the values held in storage. Modern computers rarely allow such variation. Therefore,

we will set the register size for each RASP run to be a RASP-wide constant value, w.

Naturally, w defines the maximum value of any integer or computable real number that

can be directly processed in the given program run. w will vary between runs to reflect

the widths of the numbers used in the problems being solved. The size of w is dis-

cussed further, once agents are introduced.

A RAM has access to a sequential input tape and a sequential output tape. The RASP

enhancements add an accumulator (AC) that contains an integer; an instruction coun-

ter (IC) that contains the address of the next instruction; the ability to run programs by

sequentially reading, decoding, and executing the values in the registers pointed to by

IC; and an ALGOL-like programming language that can be translated into instructions

for the underlying RAM. The RASP instructions are shown in Table 1.

For large w and constants ck, all of the operations shown in Table 1 take O(ckw) = O

(w) time. In particular, processing integers and computable real numbers requires O

(w) time and space. Operations that allocate new registers take O(0) time and O(w)

space.

Cook and Reckhow (1973) show that a RASP has higher computing power than a

standard multi-tape Turing machine—but only by the square root of the time. The

RASP architecture was chosen for this paper because it is amenable to complexity ana-

lysis while still retaining an architecture closely resembling commonly used computers.

In the next sections, the abstract machine’s program and memory layout is presented.

The outline intentionally uses standard data structures and algorithms to insure that

the expected code is straightforward.
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Table 1 RASP instructions adapted from Cook and Reckhow’s (1973) Table 2

Instruction Interpretation Code Time New space

LOD c Load constant c into AC 1 2w 0

Increment IC

ADD Xi Add the value in register Xj to AC 2 4w 0

Increment IC

SUB Xi Subtract the value in register Xj from
AC

3 4w 0

Increment IC

STO Xi Store the value in AC to register Xj 4 3w w, if Xj was not allocated else 0

Increment IC

BPA c If AC > 0, then set IC to c 5 3w 0

If AC≤ 0, increment IC

RD Xi Load the next input tape value into Xj 6 3w w, if Xj was not

Increment IC allocated else 0

PRI Xi Output the value in Xj to the output
tape

7 3w 0

Increment IC

HLT Halt execution -∞ o 0 and 8 to ∞- 2w 0
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Agents

Agents will be represented using a set of stored programs and a set of registers for data

values, as shown in Table 2. h is the number of different types of agents in a given

model. ni is the maximum number of active agents for agent type i in a given model

run. The ni values count agents that execute at least one behavior, have attributes that

are accessed at least once for each agent, or are included in at least one calculation.

Completely inactive agents are not included in the ni counts. We then have the total

number of agents, N, as the sum of ni from 1 to h. We set w ≥ ⌈ log2(N)⌉ to insure that

agent counts can be properly calculated in all cases. To minimize time and space re-

quirements, we then have O(w) =max (O(⌈ log2(N)⌉), Z), for Z the widest numeric

value to be directly processed by a given model.

Agent definitions are read from input files. The input files have either individual

agent descriptions or distributions. If the agents are stored individually, then there will

be at least one input per agent. If distributions are used, then the needed agents are

created using random draws from the given distributions.
Table 2 Agent storage layout

Register Contents

I The first of j registers needed to store the agent attributes.

i + j-1 The last of j registers needed to store the agent attributes.

i + j The head of a linked list used to store dynamically generated agent behaviors, if any.

i + j + 1 The first of k registers needed to store the heads of doubly linked lists used to store network
links for network 1.

i + j + k The last of k registers needed to store the heads of doubly linked lists used to
store network links for network k.

i + j + k + 1 The address of the next agent in the agent list.

i + j + k + 2 The address of the previous agent in the agent list.
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Agents will be stored using the layout shown in Table 2. The default identifier for

each agent is its lowest memory address.

Agents can have both statically defined and dynamically generated behaviors. Static-

ally defined behaviors are included in the code for a given RASP instance. Dynamically

generated behaviors are stored in an agent-specific linked list as shown in Table 2.

A doubly linked list of agents is maintained by the system. Inserting or removing agents

updates this list. This list is used for activities discussed later such as time scheduling.

Basic operations to be provided by the agent-based modeling library are as follows:

� Creating an agent requires initializing the agent register storage, as shown in

Table 2. This operation has time O(r1⌈ log2(N)⌉) complexity and O(r1⌈ log2(N)⌉)

space complexity for r1, the number of registers used by the agent. r1 is a constant

relative to N.

� Disposing of an agent requires adding the agent’s space back to the free list, which

takes O(⌈ log2(N)⌉) time.

� Changing the value of an agent attribute for a given agent j uses O(0) space and O

(r2⌈ log2(N)⌉) time for r2, the required number of registers. r2 is again a constant

relative to N.

� Modifying an agent’s behavior involves writing a new routine for the agent. This

action has O(r3⌈ log2(N)⌉) time complexity and O(r3⌈ log2(N)⌉) space complexity

for r3, the required number of write operations. Statically compiled agent behaviors

are stored with the main model program. Dynamically generated agent behaviors

are added to an agent-specific linked list, as noted in Table 2. r3 is yet again a con-

stant relative to N.

� Executing an agent behavior takes time and space as determined by the contents of

the corresponding routine.

The agents are accompanied by information on their surrounding environment. This in-

formation includes the statically compiled agent behaviors and other pieces of overall con-

trol information stored with the main model program. This information is in addition to a

description of the interaction spaces that are present, which are discussed in a later sec-

tion. The space needed to store information on the surrounding environment is always

small and constant compared to that needed to store information about agents for any

substantial number of agents. Therefore, environments use O(A⌈ log2(N)⌉) space and take

O(B⌈ log2(N)⌉) access time for constants A and B. The need for a large amount of infor-

mation on the surrounding environment implies that the agent-based model has been de-

signed incorrectly and that agents have been blended into the environment.
Scheduler

Both time-stepped and discrete event scheduling are available. Each model will use one

of these options exclusively.

The time-stepped scheduler uses the agent list and an integer time counter. This

scheduler simply picks elements sequentially from the agent list and executes the next

behavior. Every agent runs for each time step. Each time-stepped agent has a default

‘step’ routine that is called for each time step. A given agent’s step routine can be empty
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if no behavior is needed for a given time step. This default is taken to be the first elem-

ent in the linked list of dynamically generated agent behaviors, if any. If an agent’s dy-

namic procedures list is empty, then a call is made to the first routine in the list of

statically compiled functions for the corresponding agent type. Whichever way the step

routine is found, it can call other routines as needed.

The discrete scheduler uses a time counter and an event time slot list stored as a B-tree

sorted by time stamp. Each event time slot list entry includes a time value and the head

pointer of a singly linked list of events. Each event, in turn, contains a time stamp, the ad-

dress of the routine to be invoked, a single register value that can contain an optional par-

ameter, and a link to the next list element. Decoding the parameter is solely the

responsibility of the routine to be invoked. Inserting a new event time slot into the event

time slot list, in the worst case, requires O(⌈ log2(N)⌉ log v) time for a list with v unique

time slots. Finding an event time in the worst case takes O(⌈ log2(N)⌉ log v). Deleting an

event when it is completed in the worst case takes O(⌈ log2(N)⌉ log v). The B-tree will use

space O(v⌈ log2(N)⌉). In the worst case inserting, reading, or deleting an event once the

corresponding event time has been found or inserted takes O(⌈ log2(N)⌉) time.

A model is said to have asymptotically linearithmica scheduling in time or space

when the time or space performance is O(N⌈ log2(N)⌉). Time step scheduling is always

asymptotically linearithmic in both time and space. Discrete scheduling is asymptotic-

ally linearithmic in time and space when the number of pending unique discrete event

time slots, referred to as v previously, is constant with respect to N.

Regardless of the kind of scheduling that is employed, the number of time steps or

unique discrete event times is usually independent of N. In other words, models are

rarely run for more time steps or unique discrete event times because they have more

agents. We thus assume that the length (i.e., time steps or slots) of each run is a con-

stant relative to N, and therefore run length does not affect asymptotic time or space

performance. We will briefly return to this assumption in a later section.
Interaction spaces

Three kinds of interaction spaces are supported. Each model can have any number of

these spaces, although in practice the number of different interaction spaces is usually

quite small.

Scalar fields will be stored as multidimensional arrays indexed in row major order.

Each d-dimensional scalar field with maximum dimension range g will use space

O(gd⌈ log2(N)⌉). Each grid point holds a computable real number or an integer. An in-

dividual value can be read or written in O(⌈ log2(N)⌉) time.

Grids will also be stored as multidimensional arrays indexed in row major order.

Each array element will store the head pointers of doubly linked lists of agent records

and a counter of the length of each list. There is one head pointer and counter pair for

each agent type. Each agent record holds the reference of the associated agent and the

agent’s floating point coordinates. Agents will also keep a reference to their own re-

cords. The doubly linked list can be of any length between zero and N. It is up to each

modeler to process these lists in an appropriately efficient way. Each d-dimensional grid

with width g will use space O(gd⌈ log2(N)⌉). An individual value can be read or written

in O(⌈ log2(N)⌉) time.
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Networks will be stored using a doubly linked list of edges for each agent. The head

references for each agent are shown in Table 2. Each linked list element contains the

identifier of the linked agent, a computable real number weight, a reference to the next

element, if any, and a reference to the previous element, if any. The use of weights by

agent behaviors is optional. Undirected networks contain linked lists with paired refer-

ences (i.e., if agent A’s list includes agent B, then B’s list will also include A). Directed net-

works allow lists with asymmetric references. Each network will use O(bN⌈ log2(N)⌉)

space for b the maximum number of links per agent. An agent can insert, read, or delete

an entry in their list in O(b⌈ log2(N)⌉) time.
Random number stream

A pseudorandom number generation algorithm with O(⌈ log2(N)⌉) asymptotic time and

space performance will be used to produce a uniformly distributed random number

stream. The Mersenne Twister (Matsumoto and Nishimura 1998) is an example, at

least until the number of random draws approaches the algorithm’s period of 219937-1.

Non-uniform distributions can be provided by applying appropriate constant time

functions to the core uniform random number stream. Also, the random seed used for

stochastic execution is an input parameter.
Logging

The log stores values to the output tape using the PRI instruction. The log will be un-

structured. This will allow users to determine the format of the logs individually for

each model. The PRI instruction uses O(⌈ log2(N)⌉) time and O(0) space for each value

to be logged.
User interfaces

The abstract machine will not normally use a GUI. As previously discussed, the ma-

chine will typically execute in a headless batch mode, since we are analyzing asymptotic

(i.e., large-scale) performance. Nonetheless, the performance impact of a GUI will be

briefly analyzed.

The abstract machine model can accommodate a GUI by including an optional mem-

ory region on startup that represents the graphics buffer. The machine will then in-

clude routines to draw agents into the memory locations representing the graphics

buffer.

Drawing an agent-based model GUI usually involves rendering the frame and sub-

windows shown in Figure 1. The complexity of the overall frame and simulation con-

trol subwindows are independent of the number of agents. Thus, these components

run in constant time and use constant space relative to the number of agents.

Users normally invoke probes manually rather than programmatically. As such, there

is a fixed upper bound on the number of agents that can realistically be shown with

probes in a GUI. Therefore, probes also run in constant time and use constant space

relative to N.

Drawing the interaction spaces usually involves rendering many, if not all, of the

agents individually. Generally, it will take O(⌈ log2(N)⌉) time to draw each view of the

agents. Optimizations that reduce the number of agents considered for drawing may
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improve the time complexity. For example, simply not showing interaction spaces re-

duces the complexity of this task to O(0).

Drawing can be performed on an individual basis with intermediate results accumu-

lating in the graphics buffer (i.e., graphics memory). Graphics buffers have a fixed size

that is related to the screen resolution and is independent of the number of agents.

Thus, drawing takes constant storage space.

The remainder of this paper will focus on batch mode model runs. The analysis that

follows can be augmented using the results in this section, as needed.
Parallel execution

There are multiple ways to use parallel computing to improve simulation performance

Perumulla (2006), Parker and Epstein (2011) and Collier and North (2012) present ex-

amples. Two major paths are parallel parameter sweeps and distributed execution of in-

dividual simulations. Obviously, these approaches can be combined. Both paths will be

considered in the next sections.
Parallel parameter sweeps

Simultaneously executing each run of a parameter sweep is sometimes called an “embar-

rassingly parallel” approach because of the relative simplicity of its implementation com-

pared to more sophisticated alternatives (Foster 1995). The speedup factor is just the

number of simultaneous runs discounted for any overhead required for job control. The

overhead for this type of implementation is generally quite low, as implied by the “embar-

rassingly parallel” moniker. The major limiting factor is the number of processors, p, avail-

able for executing model runs. For even the largest computers, p is constant relative to N.

Therefore such runs do not affect the asymptotic time requirements. Similarly, the mem-

ory requirements for a parallel parameter sweep will be the size of a model run times the

number of simultaneous runs, again with additions for job control requirements and with

discounts for possible shared memory. These factors, combined with the constant number

of processing nodes, imply that parallel parameter sweeps do not affect the asymptotic

space requirements.
Distributed model runs

Executing a single model using many processing nodes offers the potential to speed up

the delivery of individual results. Here we will assume an ideal implementation. In this

case, the asymptotic space requirements remain unchanged, given that the same num-

ber of agents needs to be tracked as with a sequential model. The best speedup for

asymptotic time is 1/p for p processors because no computing work can be ignored.

Unfortunately, as previously discussed, p is a constant relative to the number of agents,

so there is no asymptotic time speedup.

Modeling studies

Agent-based modeling studies often require multiple model runs to cover different scenar-

ios and to account for stochastic variation. The time and space complexity results for indi-

vidual runs can be used to estimate the requirements for each needed type of run and

then multiplied by the corresponding number of runs and summed, as appropriate.
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In many situations, even though the number of model runs needed for a given study

is a factor of many input variables, it is independent of the number of agents. In these

cases, the asymptotic time and space requirements, of course, are the same as for an in-

dividual model run.

The abstract machine reads the first input tape value to determine the number of in-

put sets that are present. If more that one input set is present then they are simply

concatenated in the desired order of execution.

The abstract machine has constant time routines to reset itself and start the new

model runs, as needed. The output from each run is simply appended to the output

tape in order of execution. It is the responsibility of modelers to store appropriate

delimiters or use other encodings to differentiate output run results.

The abstract machine has an optional provision for executing a routine to aggre-

gate a set of runs after they have completed. The performance of this routine is

included in the overall performance of the data aggregation system. In general, if

the number of model runs is constant with respect to N and the model-level data

aggregation is linearithmic or better in asymptotic time and space performance then

the parameter sweep-level data aggregation routine will also be linearithmic or better

in performance.
Results and discussion
Best cases for any model

This section presents results that apply to all models. Considering memory usage, there

must be an assignment operation for every register that is used beyond the size of the

basic machine and model program, both of which are constant with respect to N.

Therefore, for maximum model memory space usage Smax, we have:

(1) For any model, O(Ttotal) ≥O(Smax).

Considering output logs, there must be a PRI instruction for each output value. For

total time Ttotal and total output log space usage Slog we therefore have:

(2) For any model, O(Ttotal) ≥O(Slog).
Best cases for asymptotically thorough and incompressible models

Two important definitions are presented in this section. These definitions are then used

to analyze the best cases for time and space.
Asymptotically thorough models

A model with N agents is said to be asymptotically thorough when individual values

from O(N) agents are needed from at least two different representative time periods to

correctly calculate the logged results. Representative means that the span between

logged time periods includes typical agent behaviors. Logging a value from each agent

for two or more normal time steps is generally sufficient to meet this standard.
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Asymptotically incompressible models

A model with N agents is said to be asymptotically incompressible when a minimum of

O(N) space is needed to store the agents and recalculating an attribute for an agent

takes at least as much space as storing it between uses. In other words, the best com-

pression ratio achievable for agent storage is constant relative to N for the general case

for a given model. Agent attributes that can take on a wide range of values are gener-

ally sufficient to meet this standard.
Analysis

We will now consider the best cases for time and space performance for asymptotically

incompressible and asymptotically thorough models.

Time

For N decision makers, any asymptotically thorough model must access the attributes

for at least O(N) decision makers for a minimum of two different time periods. Thus,

the output aggregation must use at least O(N) operations, each of which takes O(⌈ log2
(N)⌉) time. Then we have the following:

(3) The minimum asymptotic time needed for asymptotically thorough models is in

Ω O(N⌈ log2(N)⌉) for variable word size computers.

Space

Asymptotically thorough models must log individual values from O(N) agents from at

least two different representative time periods to correctly calculate the logged results.

Any asymptotically incompressible model must either store the relevant decision maker

attributes between the first and second time periods or use at least as much space re-

creating them for the second logging period. Either way, this requires O(N⌈ log2(N)⌉)

space. Therefore, we have the following:

(4) The minimum asymptotic space needed for asymptotically thorough and incom-

pressible model is in Ω (N⌈ log2(N)⌉) for variable word size computers.
Time-stepped, boundedly rational modular imperative agent-based model worst cases

In this section, we will consider the worst cases for time and space for asymptotically

thorough and incompressible batch-mode modular imperative agent-based models with

large numbers of individual, boundedly rational, decision makers; input parameter

ranges and counts that do not increase with the number of decision makers; asymptot-

ically linearithmic scheduling; and output aggregation that is linearithmic or faster in

time and space. Obviously, it is assumed that the agent-based model in question is suit-

able for the problem, correctly written, and efficiently implemented relative to the con-

straints and requirements of the question to be answered.

Time

The N agents in a model with, at most, s unique event times (i.e., times steps or unique

discrete event times) and d operations in the agent routine with the greatest time com-

plexity requires, at most, O(Nsd⌈ log2(N)⌉) time. s does not increase with N. Thus, s is a

constant with respect to N. Bounded rationality means in part that the amount of computa-

tion that can be completed by any one agent in a single time step is strictly limited. This
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limitation, in turn, means that d must be a constant relative to N because N is unbounded.

All of the agent’s operations are either programmed using the instruction set given in Table 1

or are interaction space access calls. Thus, the agents themselves require, at most, O(N⌈

log2(N)⌉) time plus access time for any interaction spaces that might be used.

As discussed above, environments use O(⌈ log2(N)⌉) time. There is only one environ-

ment. Therefore, the total time N agents spend accessing information in the environ-

ment is, at most, O(N⌈ log2(N)⌉).

Scalar fields can be accessed in O(⌈ log2(N)⌉) time. The number of scalar field accesses in

each agent behavior must be bounded due to bounded rationality. Therefore, the total time

N agents spend accessing scalar fields is, at most, O(C1N⌈ log2(N)⌉) = O(N⌈ log2(N)⌉),

where C1 is the maximum number of accesses in an agent behavior.

Grids are stored as simple multidimensional arrays. The access time is just the time needed

for array indexing, namely, O(⌈ log2(N)⌉) per access. The number of linked list checks and

overall grid accesses in each agent behavior must be bounded due to bounded rationality.

Therefore, the total time N agents spend accessing grids is, at most, O(C2N⌈ log2(N)⌉) =

O(N⌈ log2(N)⌉), where C2 is the maximum number of grid accesses in an agent behavior.

Each network has O(b⌈ log2(N)⌉) access time for b, the maximum number of links

per agent. Bounded rationality implies that the number of network links that can be re-

membered by any one agent is strictly limited. This constraint, in turn, means that b

must be a constant relative to N, given that N is unbounded. The number of accesses

must also be bounded due to bounded rationality. Therefore, the total time N agents

spend accessing networks is, at most, O(C3bN⌈ log2(N)⌉) = O(N⌈ log2(N)⌉), where C3 is

the maximum number of network accesses in an agent behavior.

Output aggregation uses linearithmic or less time. The outputs, therefore, require, at

most, O(N⌈ log2(N)⌉) time in addition to that used by the rest of the model.

We have the following for the total execution time, Ttotal:

Ttotal ≤ Tagents þ Tenvironment þ Tfields þ Tgrids þ Tnetworks þ Toutputs

The count of each type of interaction space will be a constant relative to N as previ-
ously discussed. Substituting in the findings thus far produces the following:

Ttotal ≤ O N log2 Nð Þð Þ þO N log2 Nð Þð Þ þO N log2 Nð Þð Þ þO N log2 Nð Þð Þ þO N log2 Nð Þð Þ ¼ O N log2 Nð Þð Þ

Therefore; Ttotal∈O N log2 Nð Þð Þ:

The input parameter ranges and counts do not increase with the number of decision
makers. This constraint means that the number of model runs, M, needed to solve a

particular problem instance is, at worst, constant relative to N. Thus, if one run re-

quires, at most, O(N⌈ log2(N)⌉) time, then a proper design of experiments for a study

to answer a specific question requires O(MN⌈ log2(N)⌉) = O(N⌈ log2(N)⌉) time. Thus:

(5) The maximum asymptotic time for studies done with asymptotically thorough and

incompressible batch mode modular imperative agent-based models with large

numbers of individual, boundedly rational, decision makers; input parameter ranges

and counts that do not increase with the number of decision makers; asymptotically
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linearithmic scheduling; and output aggregation that is linearithmic or better in time

and space is Ω (N⌈ log2(N)⌉) for variable word size computers.

Space

Modular imperative agent-based models read all of their agent inputs, create the corre-

sponding agents, and then store them. The combined requirements of asymptotic thor-

oughness and incompressibility prevent agent data from being recreated for each time

step to save space. Thus, O(N⌈ log2(N)⌉) space is required.

Environments use O(C4⌈ log2(N)⌉) space for constant C4. There is one environment.

Therefore, environments use, at most, O(⌈ log2(N)⌉) space.

Each scalar field requires O(gd⌈ log2(N)⌉) space. d will be a constant relative to N,

since the number of space dimensions normally does not depend on the number of

agents. The growth rate for the maximum dimension range, g, is tied to the agent space

density, y, given by y = N/gd, as covered by these two cases:

1. g grows asymptotically faster than N1/d. In this case, the agent density will drop and

eventually either the agents will cluster or most agents will be isolated from one

another. In either case, the model’s use of the space becomes trivial. The space can

then be replaced with either a set of smaller spaces when most of the agents cluster

or with a network when most of the agents are isolated from one another. Thus,

this case is not allowed.

2. g grows at the same rate or asymptotically slower than N1/d. The agent density is

constant or rising so the agent interactions can continue to be mediated via the

field. The overall space usage for the grid is then O(gd⌈ log2(N)⌉) ≤O(((N/y)1/d)d

⌈ log2(N)⌉) = O(((N/y)⌈ log2(N)⌉) ≤O(N⌈ log2(N)⌉)

The number of scalar fields must be bounded due to bounded rationality. Therefore,

scalar fields use O(C5N⌈ log2(N)⌉) = O(N⌈ log2(N)⌉) or less space, for C5 scalar fields.

Each grid requires O(gd⌈ log2(N)⌉) space. d will be a constant relative to N. The

doubly linked grid point membership lists can individually vary in size, but in total they

take up O(N⌈ log2(N)⌉) space for N agents. The growth rate for g is tied to the agent

space density, y, given by y = N/gd, as covered by these two cases:

1. g grows asymptotically faster than N1/d. In this case, the agent density will drop and

eventually either the agents cluster or most agents will be isolated from one

another. In either case, the model’s use of the space becomes trivial. The space can

then be replaced with either a set of smaller spaces when most of the agents cluster

or with a network when most of the agents are isolated from one another. Thus,

this case is not allowed.

2. g grows at the same rate or asymptotically slower than N1/d. The agent density is

constant or rising so the agent interactions can continue to be mediated via the

field. The overall space usage for the grid is then O(gd⌈ log2(N)⌉) ≤O(((N/y)1/d)d

⌈ log2(N)⌉) = O(((N/y)⌈ log2(N)⌉) ≤O(N⌈ log2(N)⌉)
The number of grids must be bounded due to bounded rationality. Therefore, grids

use, at most, O(C6N⌈ log2(N)⌉) = O(N⌈ log2(N)⌉) or less space, for C6 grids. Of course,
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agents must be selective in how they access the grid point membership lists to maintain

bounded rationality.

Each network requires O(bN⌈ log2(N)⌉) space. b has been previously shown to be a

constant relative to N. Thus, each network requires O(N⌈ log2(N)⌉) space. As with the

other kinds of spaces, the number of networks must be bounded due to bounded ra-

tionality. Therefore, networks use, at most, O(C7N⌈ log2(N)⌉) = O(N⌈ log2(N)⌉) space,

for C7 networks.

Output aggregation uses linearithmic or less space. The outputs, therefore, require at

most O(N⌈ log2(N)⌉) space in addition to that used by the rest of the model.

The input parameter ranges and counts do not increase with the number of decision

makers. This means that the number of model runs, M, needed to solve a particular

problem instance is at worst constant relative to N. Thus, if one run requires at most

O(N⌈ log2(N)⌉) space, then a proper design of experiments for a study to answer a spe-

cific question requires O(MN⌈ log2(N)⌉) = O(N⌈ log2(N)⌉) space. Thus:

(6) The maximum asymptotic space for studies done with asymptotically thorough and

incompressible batch mode modular imperative agent-based models with large

numbers of individual, boundedly rational decision makers; input parameter ranges

and counts that do not increase with the number of decision makers; asymptotically

linearithmic scheduling; and output aggregation that is linearithmic or faster in time

and space is Ω O(N⌈ log2(N)⌉) for variable word size computers.
Computational optimality

Next, we consider the conditions under which modular imperative agent-based model-

ing studies may be considered to have optimal asymptotic time or space performance.

As previously stated, (optimal) means that no other modeling technique can solve the

same problem as an agent-based model can using fewer resources — in this case, time

and space. The strategy is straightforward because both the lower bounds on all model-

ing techniques and the upper bounds on a common class of agent-based models have

been proven. Using this background, we will now prove the following:

(7) Studies with modular imperative agent-based models are computationally optimal

in asymptotic time and space performance if the models are asymptotically in-

compressible; asymptotically thorough; have large numbers of individual, boundedly

rational, decision makers; have input parameter ranges and counts that do not in-

crease with the number of decision makers; use batch mode operation; have asymp-

totically linearithmic scheduling; and have output aggregation that is linearithmic or

faster in time and space for variable word size computers.

(3) and (4) show that the best case time and space bounds for any asymptotically

incompressible and thorough model are both in Ω (N⌈ log2(N)⌉). We also showed that

individual, boundedly rational decision makers in an asymptotically incompressible and

thorough agent-based model with individual inputs requires O(N⌈ log2(N)⌉) time and

space, plus the time and space needed for accessing the interaction spaces. We

additionally showed that the agent-based modeling interaction spaces require, at most,
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O(N⌈ log2(N)⌉) time and space for each space for N boundedly rational agents. This

formulation yields O(N⌈ log2(N)⌉) + O(C8N⌈ log2(N)⌉) = O(N⌈ log2(N)⌉) total asymp-

totic time and space performance for C8 spaces. Finally, we showed that modeling stud-

ies and parallel runs do not change the asymptotic time and space complexity of agent-

based models. Therefore, (7) is proven.

Given (2) we also have:

(8) Modular imperative agent-based models are computationally optimal in asymp-

totic time performance if O(Ttotal) = O(Slog).

Computational power of modular imperative agent-based models

In this section, we use the formalism to investigate other properties of agent-based

models. Here we focus on characterizing the computational generality of modular im-

perative agent-based modeling.

Modular imperative agent-based models are computationally complete

Any RASP algorithm can be stored as the sole behavior for a single agent. Executing

the behavior can be the sole scheduled event for the model. The inputs for the algo-

rithm can be stored as the input data for the solitary agent in the model. All of these

mappings take constant time and space relative to the problem size. Memory alloca-

tion time and space are at worst a constant multiple of register assignment costs. The

algorithm can thus use a standard RASP approach and produce results and perform-

ance metrics asymptotically identical to a default RASP. RASPs have been proven to

be a general model of computation, subject to the correctness of the Church-Turing

thesis. The RASP formulation of agent-based models thus has the same computing

power and performance as a general RASP. Therefore:

(9) Modular imperative agent-based models are computationally complete, subject to

the correctness of the Church-Turing thesis.

Hartmanis (1970) and Luginbuhl (1970) discuss the computational complexity of

RASPs in detail. Naturally, agent-based models have the same computational complex-

ity as general RASPs.

Modular imperative agent-based models are universal models

Result (9) says in part that if the Church-Turing thesis is correct, then any comput-

able model output can be computed with modular imperative agent-based modeling.

Therefore:

(10) Any computable model can be expressed as a modular imperative agent-based

model.

For example, Macal (2010) presents an algorithm to convert any system dynamics

model to a modular imperative agent-based model. Of course, result (10) does not

mean that modular imperative agent-based modeling should be automatically used to

solve all modeling problems. The practical circumstances surrounding a given model-

ing problem need to be taken into account as well.
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Modular imperative agent-based model complexity classes: ABM, ABMSPACE, and

ABMTIME

Let ABMTIME be the set of all modular imperative agent-based models that have optimal

time performance. Let ABMSPACE be the set of all modular imperative agent-based

models that have optimal space usage. Then let ABM be the set of all modular imperative

agent-based models that have optimal time and space performance. Naturally:

(11) ABM =ABMTIME ∩ ABMSPACE

ABMTIME

What can we say about ABMTIME? We can construct a set of models. Let g(N) be a

valid complexity class that is linearithmic or larger. Then let g’(N) = (N−1)g(N). We

have g’(N) ≥ 1 since g(N) is linearithmic or larger. Define a modular imperative agent-

based model with N agents and no interaction spaces. Assign each agent a random

number ‘tag’ so that the set of agents is asymptotically incompressible. Program each

agent to have a constant time interaction with ⌈g ' (N)⌉ other randomly selected agents

for each of a fixed number of time steps. The output is a log entry of each inter-

action so the model is asymptotically thorough. This model is optimal according to

result (7). It has O(g’(N)) = O(N(N−1)g(N)) = O(g(N)) asymptotic time performance.

Therefore:

(12) ABMTIME includes modular imperative agent-based models of all complexity

classes linearithmic or larger.

ABMSPACE

Similarly, what can we say about ABMSPACE? We can again construct a set of models.

Begin with the model used for the proof of (12). Change the agents so they store the

tag for each interaction from the previous time. Also, have the agents compute a new

tag as the sum of the tags from the last interaction. This is O(g’(N)) = O(N(N−1)g(N)) =

O(g(N)) asymptotic incompressible space usage As before, this model is optimal ac-

cording to result (7). Thus:

(13) ABMSPACE includes modular imperative agent-based models of all complexity

classes linearithmic or larger.
Toward real computers

In the proceeding sections, we have assumed an abstract model of computation that

scales with the size of N. In this section, we will briefly relax this assumption to better

approximate real computers. Even in this section, the relaxation will only be partial,

since we want the formalism to accommodate the full range of typical computers. The

relaxation here will occur along two axes, namely word size and run length.

Fixed word size

Real computers generally have fixed word sizes. In this case, the ⌈ log2(N)⌉ term we

previously used to account for increasing word size for increasing N becomes 1. The

results in the proceeding sections can then be simplified by replacing the ⌈ log2(N)⌉
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term with 1 and replacing the linearithmic requirements with linear requirements. In

particular, result (7) becomes the following:

(14) Studies with modular imperative agent-based models are computationally opti-

mal in asymptotic time and space performance if the models are asymptotically

incompressible; asymptotically thorough; have large numbers of individual,

boundedly rational, decision makers; have input parameter ranges and counts

that do not increase with the number of decision makers; use batch mode operation;

have asymptotically linear scheduling; and have output aggregation that is linear or

faster in time and space on fixed word size computers.

Substantial run length

The performance bounds in the proceeding sections included the observation that the num-

ber of time steps or unique discrete event times is generally independent of N. Therefore,

these factors do not affect asymptotic time or space performance. For real computers, a

substantial constant may still affect performance. In this case, the time performance results

should be multiplied by s, the number of time steps or slots. The space performance results

remain the same for boundedly rational agents with linear output aggregation on fixed word

size computers. Here bounded rationality limits the agent’s ability to accumulate memory,

and linear output aggregation storage constrains output aggregation space.
Examples

Returning to the cellular-level human tissue growth example discussed in the introduction, if N

is the number of cells, each cell’s behavior is boundedly rational, cell density is finite, and the

cells exist in three dimensional grid then the model will be O(N) on fixed word size computers.

In the following sections we analyze the asymptotic time and space performance of

three example modular imperative agent-based models. The examples were chosen

from the set of published agent-based models, so as to cover a range of different de-

signs and a spectrum of varying uses. These examples show how to apply both the for-

malism and the optimality conditions to several different kinds of real agent-based

models. These examples also demonstrate how the formalism is useful for predicting

the execution time and space requirements for representations of common CASs.
A simple synthetic model

The Lotka-Volterra (Lotka 1925; Volterra 1926) predator–prey model is a classic differ-

ential equations model that is commonly implemented using system dynamics. Here

we will consider a three species ‘predator–prey-plant’ variant. In this model, there are

predators that eat prey and prey that eat plants. The animals (i.e., the predators and

prey) have an energy level and die if their energy goes to zero. Plants regrow at a speci-

fied rate. N is the sum of the three species’ populations. By convention, the output is a

population count time series for each tracked species or compartment. The input par-

ameter ranges and counts do not increase with N.

Theoretical analysis

The modular imperative agent-based predator–prey-plant implementation has one

agent type for each species and is time-stepped. Since it is time-stepped, it has
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asymptotically linear scheduling. A selected Repast Simphony implementation is used

for reference.

For the Repast Simphony implementation, animals reproduce probabilistically using

random draws checked against reproduction rate thresholds. The animal agents move

on a two dimensional toroidal grid, with plant agents at each point. During each time

step, the animals move to a random point near their current location and then eat if

the appropriate food is available. This is a simple boundedly rational O(a⌈ log2(a)⌉) time

and space behavior for a animals on variable word size computers.

Plants can be living or dead. Live plants grow at a constant rate. Areas with dead

plants lie fallow for a period of time and then life returns. Plants die due to excessive

consumption by prey. This is a simple boundedly rational O(b⌈ log2(b)⌉) time and space

behavior for b plants.

a and b can both be large. With N = a + b, we have N large, as well.

The three species each maintain individual energy levels that can take on any double

precision value. As such, they are asymptotically incompressible.

Combining results (5) and (6) with the minimum requirements that were just dis-

cussed implies that this model is O(N⌈ log2(N)⌉) in time and space. This version of the

agent-based model does not qualify for time or space optimality under result (14) be-

cause the output requires only compressible information from each agent (i.e., the

population count) rather than specific attributes. In other words, the model’s output ag-

gregation is not asymptotically thorough. Is there a more efficient implementation?

The system dynamics predator–prey-plant implementation has one stock for each

species and a set of flows between stocks. On variable word size computers, this model

has O(C9⌈ log2(N)⌉) = O(⌈ log2(N)⌉) asymptotic time and space performance for con-

stant C9 measuring the time and space usage for the fixed stocks and flows. Obviously,

this model has better time and space performance than the previous agent-based

version.

Consider a variation of the model used to study predator and prey migration patterns.

Now, the model must output the grid locations of each animal for every time step. This

agent-based model is asymptotically thorough. It remains O(N⌈ log2(N)⌉) in time and

space but it is now optimal under result (14).

What about the O(⌈ log2(N)⌉) system dynamics implementation? It cannot generate

the needed outputs. A scalar field approach is also insufficient, since this only shows

net flows, not long distance migrations. Modifications that allow the system dynamics

model to track individual animal coordinates and energy levels results in a model with

O(N2
⌈ log2(N)⌉) terms in each of the animal coordinate and energy level equations.

The result is a model that requires O(N2
⌈ log2(N)⌉) space and O(N2

⌈ log2(N)⌉) evalu-

ation time on variable word size computers. Furthermore, the model has awkward con-

straints on the range of model execution, since the formulation limits the maximum

number of animals allowed in a given run. Wilson (1998) further explores the relation-

ship between agent-based modeling and system dynamics for the two species variant of

this model.

Experimental results

Results for 100 runs of the Repast Simphony predator–prey-plant model for varying

grid sizes and 500 time steps are shown in Figures 2 and 3. The number of time steps
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is held constant with respect to N. The runs in Figures 2 and 3 were completed on a

1.8 GHz Intel Core i7 MacBook Air with 4 GB of memory.

For fixed word-size computers, we have O(N⌈ log2(N)⌉) = O(N), which is a linear re-

lationship. As predicted, the test measurements of the predator–prey-plant model exe-

cution time are collectively linear versus N with an adjusted R2 of 0.7794 and a p-value

less than 2.200 × 10−16. The space measurements are also collectively linear versus N

with an adjusted R2 of 0.5687 and a p-value less than 2.200 × 10−16.
A research model

Strains of the bacterium community-associated methicillin-resistant Staphylococcus

aureus (CA-MRSA), are responsible for potentially life-threatening infections of the

skin, soft tissue, blood, bone, and other human tissues. CA-MRSA strains are resistant

to standard antibiotics related to penicillins and have a high prevalence in the general

community, as well as in healthcare facilities. Macal et al. (2012) have developed two

fine-grained, modular imperative agent-based models of CA-MRSA for the Chicago

metropolitan area. These hourly time-stepped models feature people as agents. Both

models share a common design. We will consider the large-scale Repast HPC version

here due to its ability to scale across a wide range of agent population sizes. We will

use this ability to compare the theoretical predictions of our time and space perform-

ance model to measured results over several orders of magnitude for N. We will also

compare this simulation to system dynamics epidemic simulations.

Theoretical analysis

The Repast HPC CA-MRSA modular imperative model has N person agents. The

number of agents is constant throughout each simulation run. The number of agents is

generally large because the model is used to study major parts or all of the Chicago

area. The agents have activity schedules and a list of locations at which to act. The ac-

tivities are coded by hour, location, and activity type. The agent activities can be inter-

rupted when problems such as hospitalization or incarceration occur.

The model uses time step scheduling with a step size of one hour. Since it is time

stepped, it has asymptotically linearithmic scheduling.
Figure 2 Predator–prey-plant model time versus N.
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The location and activity type for each agent for each simulated hour contribute to

the determination of the risk of disease transmission and the likelihood of disease pro-

gression. The disease states of the people in a location also contribute to the risks and

likelihoods. The locations include residences such as homes or group quarters, work-

places, schools, gyms, hospitals, and jails.

The model tracks three disease states for each agent, namely uncolonized, colonized,

and infected. Uncolonized people do not have the CA-MRSA. Colonized people have

the disease but do not show symptoms. Infected people have symptoms and are be-

lieved to be more likely to spread the disease than are colonized people. Infected people

may either treat themselves or seek medical care.

Individual behaviors involve selecting new activities from a personal list that is short

and constant compared to N, moving to the selected activity location, and then inter-

acting with the other agents at that place. The number of agents at each place is always

small with respect to N. The individual, boundedly rational agent behaviors are thus O

(⌈ log2(N)⌉) for each agent.

The people in the model have a disease state that can take on any one of three values

for each individual. As such, they are asymptotically incompressible.

The model produces two kinds of outputs. The first kind includes an activity entry

for each agent for each time step. This is asymptotically thorough. The second kind

consists of a summary line for each time step. There is a fixed number of each kind of

output. Both types of outputs use straightforward data collection that is linearithmic or

less time and space.

The input parameter ranges and counts do not increase with the number of people

in the simulation, since the parameters provide constants for the previously described

bounded rational behavior. Therefore, modeling studies do not increase the asymptotic

time or space complexity. This model implementation is thus O(N⌈ log2(N)⌉) in time

and space. Its optimality depends on which outputs are needed to answer the modeling

question at issue. What about alternative techniques?

Epidemics have long been studied using system dynamics modeling (Kermack and

McKendrick 1927). Compartments are generally used to track the populations of inter-

est. System dynamics epidemic models usually have a fixed number of stocks, often one

for each compartment, and a fixed set of flows between stocks. These models have
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O(C10⌈ log2(N)⌉) = O(⌈ log2(N)⌉) asymptotic time and space performance for constant

C10 measuring the time and space usage for the fixed stocks and flows. Obviously, these

models have better time and space performance than the previously discussed agent-

based version as long as the number of compartments is constant relative to N and

limited compartments are sufficient to answer the question at hand.

Consider the use of the model to study disease contagion networks. The needed

model output will be the data needed to create a disease spread dendrogram showing

who contracted the tracked disease from whom. Now, the model must output the iden-

tities of the interacting parties (e.g., agents) every time the disease spreads from person

to person. The first model output previously mentioned, namely hourly activity infor-

mation, meets this requirement. This agent-based model is asymptotically thorough. It

remains O(N⌈ log2(N)⌉) in time and space, but it is now optimal under result (14).

What about the O(⌈ log2(N)⌉) system dynamics implementation? As with the previ-

ous predator–prey-plant model, it cannot generate the needed outputs. Modifications

that allow the system dynamics model to track individual disease states and contacts re-

sult in a model with O(N2⌈ log2(N)⌉) terms in each person’s state equation. The result

is a model that requires O(N2
⌈ log2(N)⌉) space and O(N2

⌈ log2(N)⌉) evaluation time.

Furthermore, the formulation fixes the maximum number of people allowed in a given

run. Rahmandad and Sterman (2008) further explore the relationship between agent-

based and system dynamics disease dispersion models.

Experimental results

Results for runs of the CA-MRSA model for 10 years and five geographic regions are

shown in Figures 4 and 5. The regions in order of increasing population are a single ZIP

code, three ZIP codes, the South Side of Chicago, and Chicago itself. Figures 4 and 5 show

32 runs for each region. The number of time steps is held constant with respect to N.

The runs in Figures 4 and 5 were completed on the 320-node Argonne National

Laboratory Fusion Linux cluster. Each Fusion computing node has two Nehalem

2.6 GHz Pentium Xeon processors with 36 GB of RAM.

For fixed word-size computers, we have O(N⌈ log2(N)⌉) = O(N), which is a linear re-

lationship. As predicted, the test measurements of the CA-MRSA model execution
Figure 4 Measured MRSA model time versus N.
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time are collectively linear versus N with an adjusted R2 of 1.000 and a p-value less

than 2.200 × 10−16. The space measurements are also collectively linear versus N with

an adjusted R2 of 0.9999 and a p-value less than 2.200 × 10−16.
An industrial model

The Virtual Market Learning Lab (North et al. 2010) is a large-scale modular impera-

tive agent-based model of consumer markets co-developed by Argonne National

Laboratory and Procter & Gamble (P&G). It represents the shopping behavior of con-

sumer households and the business behavior of retailers and manufacturers in a simu-

lated national consumer market. Argonne and P&G successfully calibrated, verified,

and validated the resulting agent-based model using several independent, real-world

data sets for multiple consumer product categories with more than 60 comparison tests

per data set. First, Repast and then later Repast Simphony were used to implement the

model. P&G has successfully applied the model to several challenging business prob-

lems, where it has directly influenced managerial decision-making and has produced

substantial cost savings. The version of the model analyzed in this paper does not use

social networking.

Theoretical analysis

The model uses time step scheduling with a step size of one day. Since it is time

stepped, it has asymptotically linearithmic scheduling.

The agents in this model are consumer households (n0), retail stores (n1), retail re-

gions (n2), retailers (n3), and manufacturers (n4) (North et al. 2010). Here, N is the sum

of ni for i = 1 to 5. In principle, N scales with the number of any of the agent types. In

practice, the number of consumers, n0, is always orders of magnitude greater than the

counts of the other agents. Thus, we have N = n0. n0 is generally large, so N is as well.

Each consumer household exists in a local neighborhood, buys products in local retail

stores, and then uses those products. Buying products means selecting a store and then select-

ing a product from that store. Using products means selecting an item from inventory, redu-

cing the stored amount of that item, and then updating the agent’s memory about the product

usage experience. These processes are O((⌈ log2(N)⌉) in time and space for each agent.
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Each consumer household remembers varying attributes of both stores and products.

The Miller (1956) range of seven plus or minus two bounds the sizes of the consumer

attribute lists. The store and product selection processes depend on these attribute lists.

These boundedly rational processes are O(⌈ log2(N)⌉) in time and space for each agent.

Households are randomly created based on draws from an input set of demographically

indexed distributions. This process is O(⌈ log2(N)⌉) in time and space for each agent.

Retail stores stock their shelves; adjust prices; compare their prices to other stores in

their neighborhood; and offer promotions including flyers, sales, volume discounts, and

in-store displays. Retail stores are initialized using an input list of properties. All of these

boundedly rational processes are O(⌈ log2(N)⌉) in time and space for each agent.

Retail regions track sales volumes and profits at their stores and provide feedback to their

stores on sales goals. Retail regions are initialized using an input list of properties. All of

these boundedly rational processes are O(⌈ log2(N)⌉) in time and space for each agent.

Retailers track sales volumes and profits in their regions; provide feedback to their re-

gions on sales goals; advertise; determine stocking options for regions and stores; and

receive, use, and distribute trade support from manufacturers. Retailers are initialized

using an input list of properties. All of these boundedly rational processes are O(⌈ log2
(N)⌉) in time and space for each agent.

Manufacturers maintain and update brand and product lists, advertise, run promo-

tions, adjust suggested retail prices, and offer trade support incentives to retailers.

Manufacturers are initialized using an input list of properties. All of these boundedly

rational processes are O(⌈ log2(N)⌉) in time and space for each agent.

The agents in the model have a variety of attributes that can take on any double pre-

cision value as well as individualized lists, Boolean values, etc. As such, they are asymp-

totically incompressible.

The model produces two kinds of outputs. The first kind includes a result for each

agent for each time step. The second kind consists of a summary line for each time

step. There is a fixed number of each kind of output. Both types of outputs use

straightforward data collection that is linearithmic or faster in time and space.

The input parameter ranges and counts do not increase with the number of con-

sumers in the simulation, since the parameters provide constants for the previously de-

scribed boundedly rational behavior. Therefore, modeling studies do not increase the

asymptotic time or space complexity. This model implementation is thus O(N⌈ log2(N)⌉)

in time and space.

This model fits into the requirements for result (14). Therefore, the Virtual Market

Learning Lab is computationally optimal in asymptotic time and space performance.

Experimental results

For fixed word-size computers, we have O(N⌈ log2(N)⌉) = O(N), which is a linear relation-

ship. As predicted, seven test measurements of the model execution time for a fixed num-

ber of time steps relative to N and a range of consumer population sizes were found to be

collectively linear with an adjusted R2 of 0.9963 and a p-value of 3.221 × 10-6.
Conclusions and future work
Following Holland (1992, 1999, 2006), complex adaptive systems (CASs) are collections of

interacting, autonomous, learning decision makers embedded in an interactive
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environment. CASs are common in both nature and society. Modeling CASs is challen-

ging for a variety of reasons. The challenges of modeling CASs can largely be overcome

by using the individual-level focus of agent-based modeling. This paper’s contribution is

to introduce, analyze, and apply a theoretical formalism for proving findings about modu-

lar imperative agent-based models. The use of the formalism is demonstrated with three

example models. These examples also show how the formalism is useful for predicting the

execution time and space requirements for representations of common CASs. We have

proven results (1) to (14), including that modular imperative agent-based modeling studies

are asymptotically optimal in computational time and space for a common class of model-

ing problems. Given that modular imperative agent-based modeling is both computation-

ally optimal and a natural structural match for many modeling problems, it follows that

modular imperative agent-based modeling is the best modeling method for these

situations.

There are many next steps for future work. First, the theoretical formalism can be

used to analyze additional applied models for computational complexity and optimality.

Second, the range of modeling problems covered by the computational optimality re-

sults in this paper might be expanded. Third, the performance results for modular im-

perative agent-based models violating the computational optimality criteria might be

compared to that of other modeling techniques by directly using the formalism. Fourth,

the formalism may be used to prove other properties of modular imperative agent-

based models. Fifth, the formalism might be extended as modular imperative agent-

based modeling practice evolves.
Endnote
aThe term “linearithmic” refers to relationships of the form (x log2x).
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