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Abstract

Single-view distributed video coding (DVC) is a video compression method that allows for the computational
complexity of the system to be shifted from the encoder to the decoder. The reduced encoding complexity makes
DVC attractive for use in systems where processing power or energy use at the encoder is constrained, for example, in
wireless devices and surveillance systems. One of the biggest challenges in implementing DVC systems is that the
required rate must be known at the encoder. The conventional approach is to use a feedback channel from the
decoder to control the rate. Feedback channels introduce their own difficulties such as increased latency and
buffering requirements, which makes the resultant system unsuitable for some applications. Alternative approaches,
which do not employ feedback, suffer from either increased encoder complexity due to performing motion
estimation at the encoder, or an inaccurate rate estimate. Inaccurate rate estimates can result in a reduced average
rate-distortion performance, as well as unpleasant visual artifacts. In this paper, the authors propose a single-view DVC
system that does not require a feedback channel. The consequences of inaccuracies in the rate estimate are
addressed by using codes defined over the real field and a decoder employing successive refinement. The result is a
codec with performance that is comparable to that of a feedback-based system at low rates without the use of
motion estimation at the encoder or a feedback path. The disadvantage of the approach is a reduction in average
rate-distortion performance in the high-rate regime for sequences with significant motion.
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1 Introduction
In a standard transform-domain distributed video coding
(DVC) system, frames are split into key frames (which are
similar to I-frames in H.264) andWyner-Ziv (WZ) frames.
The key frames are intra-coded, and the WZ frames
are discrete cosine-transformed, quantized and encoded
using a systematic error correction code (ECC). The par-
ity symbols from the encoding are then transmitted. At
the decoder, advanced motion compensation methods are
used to produce an estimate of the frame, also known as
the side information (SI), from the intra-coded key frames.
Errors in the SI are corrected using the received parity
symbols.
The encoder must operate at a high enough rate (trans-

mit enough parity symbols) to ensure that the errors
can be corrected. However, calculating this rate at the
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encoder is fundamentally impossible without calculating
the SI used at the decoder. Doing this at the encoder
would defeat the purpose of DVC as it would increase
the computational complexity of the encoder to the same
level as that of conventional video coding. The conven-
tional method used to solve this problem is to introduce
a feedback path from the decoder [1]. If the rate esti-
mate is too low, more bits are requested. This requires the
video sequence to be decoded in real time and renders
the codec unsuitable for any application where the com-
pressed sequence needs to be stored for decompression
at a later time. It also introduces latency in the process
which can become severe if the decoder is far away from
the encoder. Constraining the use of the feedback channel
has been shown to alleviate some of these problems [2],
though real-time decoding is still required.
The second method used to determine the rate is called

suppressed feedback DVC, where a low complexity esti-
mate of the SI is created at the encoder and used to
estimate the rate. If the rate estimate is too low, then
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decoding failures can lead to significant distortion in the
decoded frame. Conversely, if the rate is overestimated,
any extra bits are wasted. Typically, the rate estimate is
good for low motion sequences and poor for high or
complex motion sequences. In order to achieve robust
performance, extra bits may be transmitted to increase the
likelihood of successful decoding. However, a finite proba-
bility of a decoding failure remains. Increasing the number
of extra bits to reduce this probability implies that a larger
percentage of transmitted bits will be redundant, yielding
reduced rate-distortion (R-D) performance.
In this paper, the authors propose to solve this prob-

lem by changing the codec structure so that the output
distortion will be a smoother function of the rate. As a
result, any extra bits will continue to improve the distor-
tion, and if the rate is underestimated, the image quality
will degrade gradually. The rate-distortion characteristics
are modified by changing the nature of the quantization
region that the Wyner-Ziv code imposes on the signal
space. This change is implemented by reversing the order
of the quantizer and the low-density parity check (LDPC)
encoder and by defining the code over the real field
instead of over a finite field.
The results will show that the system reduces the vari-

ance of the distortion and improves the perceptual video
quality, in comparison with more conventional feedback-
free methods without increasing the encoding complexity.
The trade-off introduced by the proposed method is a
reduction in the average R-D performance as compared to
systems with perfect rate knowledge.
This paper is structured as follows: Section 2 provides

a short review of the relevant literature. Section 3 dis-
cusses real field coding and describes how it alleviates the
effects of an imperfect rate estimation. Section 4 describes
the overall design of the system. Specific aspects of the
encoder and its subsystems are described in Section 5,
while the decoder with its subsystems are discussed in
Section 6. The complexity of the proposed system is anal-
ysed in Section 7 and the performance of the system is
analysed in Section 8, with the conclusion following in
Section 9.

2 Overview of the previous work
DVC is based on the Wyner-Ziv [3] and Slepian-Wolf
(SW)[4] coding theorems. There have been several DVC
systems proposed in literature along with many improve-
ments to individual subsystems. The first practical sys-
tems were the Stanford system [5] and PRISM (Berkeley)
[6]. Since then many improvements have been intro-
duced. Notable milestones include the DISCOVER [1]
and VISNET [7] codecs, both of which are based on the
architecture of the Stanford system. The authors have
also presented a codec based on the Stanford architecture
[8,9], of which the SI creationmethod is used in this paper.

The majority of competitive systems require a feedback
path. Methods to remove feedback are based on esti-
mating the required rate at the encoder and attempting
to mitigate the visual effects of decoding failures at the
decoder. Estimating the rate requires estimating the SI
at the encoder, which increases the encoder complexity.
Some estimate must be made and thus the increased com-
plexity at the encoder becomes a trade-off point for R-D
performance.
There have been some notable proposals for feed-

back suppressed systems. A pixel-domain feedback
suppressed system was developed in [10]. However, the
simulation results did not consider the key frames in the
R-D performance, making comparisons difficult. In [11]
and [12] there were attempts to learn the required rate
from the SI estimate using machine learning and neu-
ral networks, respectively. In [13] a pixel-domain system,
exploiting spatial and temporal correlations along with
iterative decoding was presented. A system with a struc-
ture not relying on conventional Wyner-Ziv techniques
and exploiting overlapped block motion estimation with
probabilistic compensation (OBMEPC) and SI dependent
correlation channel estimation (SID-CE) was presented in
[14]. This system produced excellent results at a reduced
encoding complexity. A system similar to [10] but for
transform-domain DVC was presented in [15], where a
multi-mode SI method was used at the encoder. More
advanced and complete attempts at creating and analysing
a feedback-free DVC system were presented in [16] and
[17]. These systems rely on performing reduced com-
plexity motion estimation at the encoder. Sophisticated
techniques related to the correlation noise modelling,
improved side information generation, and mitigation of
decoding errors allowed authors in [16] to achieve R-D
performance approaching that of the DISCOVER codec.
A useful addition in [17] is the use of a hash to improve
the motion estimation at the decoder. Future research
may consider the complexity vs. rate-distortion trade-
off of including low complexity motion estimation at the
encoder, but in this paper, it is assumed that motion
estimation is not desired at the encoder.
Encoding over the real field, quantizing the result and

decoding with side information can be shown to be math-
ematically similar to compressive sensing (CS), if the error
signal is assumed to be sparse or compressible. The effects
of quantization and the R-D performance of quantized CS
were analysed in [18]. In the proposed system, we show
how the use a binning quantizer [19] can improve the R-
D performance when the rate estimate is accurate. CS has
been applied to video compression previously, for example
in [20]. However, previous systems are different to the one
presented here, since in these systems CS is used to reduce
the sampling requirements in the pixel domain and, as
such, the discrete cosine transform (DCT) is not used.
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3 Real field coding
In this section, real field coding and its effect on Wyner-
Ziv coding is described. Wyner-Ziv coding can be under-
stood as a process of creating discontiguous quantization
bins over the signal space. This can most easily be seen
when the Wyner-Ziv code is implemented as a nested
lattice quantizer [21]. A scalar quantizer followed by an
error correction code performs the same role, where
the syndrome describes a coset of codewords, each of
which maps to a quantization cell in the signal space. The
expected distortion, DW|Z, of a Wyner-Ziv code can be
simplistically expressed as follows:

DW|Z = E[DB]P[ε]+E[DQ] (1 − P[ε] ), (1)

where P[ε] is the probability of a codeword error,DB is the
distortion introduced by a codeword error and DQ is the
distortion introduced by quantization. When the code is
operating at a high enough rate P[ε]→ 0 and the quan-
tizer is the dominant distortion source. However, when
the rate is too low, P[ε] can no longer be considered neg-
ligible and the distortion of a codeword error significantly
affects performance. A real field code creates a contiguous
subspace over the signal space. This changes the distor-
tion function to a more continuous and gradual function
of the noise, since there is no codeword error-based dis-
tortion. If x ∈ R

N is the signal, encoding can be expressed
in a similar manner as for conventional error correction
codes:

y = GTx, (2)

where G ∈ R
N×(N+M) is the generator matrix and y ∈

R
(N+M) is the encoded signal. Since only the parity sym-

bols are transmitted, the generator matrix is in systematic
form:

G = [In|P] , (3)

where P ∈ R
N×M is a parity matrix. Let s be the parity

symbols (also referred to as the syndrome in Wyner-Ziv
literature):

s = [yN+1 . . . yN+M]T (4)
= PTx. (5)

The parity symbols identify a specific subspace with
(N − M) dimensions, in R

N where x must lie. For exam-
ple, if N = 3 and M = 2, then s will describe a
specific line along which x lies. Decoding will find the
most likely point on this line. In finite field coding, the
same is true over the finite-field-based signal space, but
when the correct codewords are mapped back to the
signal space, they map to non-contiguous quantization
regions.
Assuming a spherically symmetrical i.i.d Gaussian dis-

tributed error vector, the components of the error not
along the line will be removed during decoding. Thus, if

the original error variance was σ 2
e , then the decoded error

variance, σ 2
d , becomes

σ 2
d = σ 2

e
N − M

N
. (6)

If the noise is not Gaussian, the decoded variance can
be reduced even further. For example, if the noise is K-
sparse, which means ||e||0 = K ,K � N , then with
M ≥ K + 1, perfect reconstruction is possible, assum-
ing an l0-minimization decoder, though the problem is
NP-complete [22]. If the noise is Laplace distributed, as is
typically the case for DVC, or more generally compress-
ible, then the performance lies between these two cases.
Thus, decoding reduces the error variance in all cases and
catastrophic decoding failures do not occur. Therefore,
while there is no guarantee of a specific R-D performance
due to a lack of knowledge about the channel, the method
will always reduce the distortion in the SI, and there will
be no catastrophic decoding failures due to noise variance
underestimation.
Before the real field encoded parity symbols can be

transmitted or stored, they must be quantized. We thus
calculate:

sQ = Q(s). (7)

The quantized parity symbols describe a cell in R
N that

is N-dimensional, but bounded inM of those dimensions.
The size of the bounded dimensions depends on the quan-
tization bin size. There will thus be an additional quantiza-
tion noise component added to the distortion as described
in (6). Quantizer design is considered in Sections 5.3 and
5.4. From this point, we will refer to PT as H to more
closely align with notation used in the Wyner-Ziv coding
literature.

4 Description of the proposed system
Figure 1 shows a block diagram of the proposed sys-
tem. Incoming frames are split into key frames, which
are H.264 intra-coded and WZ frames. Let the original
pixel-domainWZ frame, at time t in the group-of-pictures
(GOP), be referred to as f [t]. f [t] (i, j) refers to the pixel at
position (i, j). The GOP size (NG) refers to the number of
WZ frames in between the key frames plus one. The last
key frame from the previous GOP will be referred to as
f [0] and the key frame at the end of the current GOP as
f [NG].

4.1 Encoder
The WZ frame is transformed with the block-based DCT
to yield:

F[t] = DCT( f [t] ). (8)

The bth subband of the frame will be referred to as Fb[t],
and the coefficient corresponding to the (v,w)th subblock
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Figure 1 System diagram.

will be referred to as Fb[t] (v,w). For notational brevity,
we will now drop the time indices and assume that each
WZ frame in the GOP is treated in a similar manner. The
number of bits assigned to each subband is calculated
using a rate estimation algorithm (Section 5.2) aiming
for a specific distortion. The system attempts to achieve
the same distortion as a conventional DVC system using
a pre-defined quantization matrix. For this paper, eight
quantization profiles taken from [23] are used in conjunc-
tion with a 4× 4 DCT. We also consider quarter common
intermediate format (QCIF) resolution (176 × 144) video
sequences, which result in N = 1, 584 elements per sub-
band. After estimating the required rate for each subband
according to the quantization profile, the bit budget (R) is
allocated to a specific code size (Mb) and bits per quan-
tized symbol (qb) as described in Section 5.4. Let xb =
vect(Fb), be a (N×1) vectorised version of Fb, then xb is
encoded:

sb = Hbxb, (9)

where Hb is the Mb × N parity check matrix used for
the bth subband. Each encoded subband is then quantized
with a symmetric uniform quantizer (Section 5.3). The
quantized subband will be referred to as follows:

sQb = Qb(sb), (10)

whereQb(·) is the quantizer for the bth subband. If qb rep-
resents the number of bits assigned to Qb(·), then sQb will
have elements in {0, 1, . . . , Lb − 1}, where Lb = 2qb . Each
quantized subband is then sent to the decoder along with
the intra-coded key frames. Due to the lack of a feedback
path, frames do not need to be buffered after encod-
ing. The parameters required to describe the quantizer, as
discussed in Section 5.3, must also be transmitted.

4.2 Decoder
At the decoder, the key frames and possibly other decoded
frames are used to create an estimate of f. In the multi-
hypothesis case more than one estimate of f is created.
The hth hypothesis will be denoted by f̂h. For this system
we use four hypotheses as described in [8]. Each hypoth-
esis is transformed to produce F̂h and each subband is
vectorised to yield yhb:

F̂h = DCT(f̂h) (11)
yhb = vect(F̂hb), (12)

where F̂hb is the bth subband of F̂h. If the error for each
hypothesis is given as

rh = f − f̂h, (13)

we calculate an estimate r̂h. The method used to calcu-
late the estimated error will differ for each hypothesis and
depend on the method used to produce the hypothesis.
From the error estimates, noise parameters are calculated
at a coefficient level using the method developed in [23].
In order to improve the relative quality of the noise esti-
mation for the different hypotheses, a motion-adaptive
scaling factor is used to scale the Laplace noise param-
eters of the key frame and motion-based hypotheses as
described in [8].
For each subband, the error estimates and the NH

hypotheses are combined with the received parity infor-
mation and decoded using a Gaussian BP (GBP) algorithm
which attempts to solve the equation:

x̂n = argmax
xn∈R

fX|Y,SQ(xn|Y, sQ), (14)

where n indicates the nth coefficient in a subband with N
coefficients and the subband indices are dropped for nota-
tional brevity.Y is anNH×N matrix with entries yhn where
the hth row represents the N received symbols of the hth
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hypothesis. As opposed to standard DVC, no reconstruc-
tion is required. The decoded bands are recompiled to
produce F̂ , and then the pixel-domain output frame f̂ is
calculated:

f̂ = IDCT(F̂). (15)

After decoding, the process is repeated in a method sim-
ilar to successive refinement [24-27]. Using the decoded
frame f̂ , a more accurate motion estimation and com-
pensation algorithm is used to produce higher quality SI.
New correlation noise estimates must then be produced
for the SI, after which the GBP algorithm is used to decode
the improved SI. This process may be iterated a num-
ber of times, though two iterations are typically sufficient.
If the original decoding introduced an error, then the
iterative process may worsen performance as the motion-
compensated interpolation (MCI) process may produce
worse quality SI. We will now discuss the subsections in
more detail.

5 Encoder
In this section we discuss the specifics of the different
parts of the system. Both the time and subbands indices
have been dropped from most of the equations, since the
same process is applied to all the subbands for each of the
WZ coded frames.

5.1 Real field code design
Coding over the real field as opposed to a finite field has
not been considered much due to the prevalence of digital
systems. Some early analog codes were based on Bose-
Chaudhuri-Hocquenghem (BCH) codes and the discrete
Fourier transform (DFT) [28]. Large codes, analogous to
finite field LDPC codes, were considered recently in the
context of CS [29]. While exact design strategies are still
being developed, it has been shown that codes that work
well as binary LDPC codes also work well over the real
field.
LDPC code design can be described as designing the

decoding graph and choosing the connection weights. In
this paper, we use the quasi-cyclic (QC) codes designed
in [30] to design the decoding graph (the parity check
matrix structure). QC codes were chosen because of their
fast encoding algorithms and reduced storage require-
ments at the encoder, as compared with random codes.
For a code with an M×N parity matrix H, the connec-
tion weights (non-zero elements) were selected at random
from a Gaussian distribution such that the expected total
energy of the encoded signal is the same as that of the
original signalMσ 2

s = Nσ 2
x .

The codes from [30] are girth-6 codes that are con-
structed using Galois fields. Depending on the number of
parity symbols, M, we use a different construction field

so as to ensure that the code remains girth-6 while being
as dense as possible. If the construction field is the Galois
field, GF(2qc), then the value for qc is chosen as

qc =
⎧⎨
⎩
5 if 70 ≤ M ≤ 120
6 if 120 < M ≤ 250
7 ifM > 250.

(16)

M corresponds to the number of transmitted symbols.
These values are sufficient for the video resolution con-
sidered in this paper, where N = 1, 584. If the higher
resolution frames are encoded, then N and M might
increase. Codes should be designed with the required size
in mind. We perform decoding using a version of GBP
described in Section 6.1.
To demonstrate the performance of the real field codes,

we evaluate the codes using random Laplace distributed
data and noise. Figure 2 shows the ratio of the noise
variance after decoding, σ 2

d , to the initial noise variance,
σ 2
e , as a function of M for a range of signal-to-noise

ratio (SNR) values. The number of quantization bits was
fixed at a large value (q = 12) to remove the effect of
the quantization noise from the analysis. The number of
decoding iterations was fixed at 10. The figure shows that
the decrease in the noise depends on the initial SNR. As
M increases the slope decreases indicating a decreased
effectiveness. This is however a function of the decod-
ing algorithm and the number of decoding iterations. The
performance at largeM can be improved by increasing the
number of iterations. This improvement would, however,
come at the cost of a greater decoding complexity.

5.2 Rate estimation
The proposed system operates at an estimate of the the-
oretical Wyner-Ziv rate. This rate is calculated assuming
a conventional system with a mid-rise symmetrical quan-
tizer for the DC band and a dead-zone uniform quantizer
for the AC bands. The bits assigned to each band for
each rate-distortion point, are taken from the quantiza-
tion profiles in [23]. While these quantizers are used to
calculate the bit budget assigned to each subband, a dif-
ferent quantizer is used after encoding. This is because we
are quantizing the encoded signal and not the original sig-
nal. The code sizeMb and number of quantization bits qb
are the design parameters that affect performance where
R = Mbqb is the bit budget.
We estimate the rate required to reconstruct the source

x quantized with bin size �. If x is the signal, e is the error
and y is the side information, then the system model for a
given subband is

y = x + e, (17)

where the elements of x and e are Laplace distributed
and drawn i.i.d from X ∼ L(0,αx) and E ∼ L(0,αe)
respectively [31]. x is quantized to xQ with a q-bit
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Figure 2 Plot of ratio of the noise variance after decoding to the initial noise variance. Plot of ratio of the noise variance after decoding to the
initial noise variance as a function ofM for several SNR values. The signal and the noise are both Laplace distributed and ten decoding iterations
were performed.

quantizer, where the value for q is taken from [23].
The required transmission rate is lower bounded by the
entropy remaining in the quantized source given the
side information [4]. The per symbol rate can thus be
expressed as

R ≥ H(XQ|YQ), (18)

where H(XQ|YQ) is the conditional entropy of quantized
source, XQ, given the quantized side information YQ. The
final bit budget per subband will beR = NR.

5.2.1 Correlation channel model
In order to estimate the rate, we require an estimate of
the signal variance and the noise variance. We use the
decoded key frames, f̂ [0] and f̂ [NG], which are automat-
ically available at the encoder due to the intra-coding
algorithm, to create an interpolated frame without motion
estimation:

f̂ [t] = 1
2

(
f̂ [0]+f̂ [NG]

)
. (19)

An estimate of the residual, r̂, is then used to calculate the
required variance estimates:

r̂[t] = f [t]−f̂ [t] (20)
R̂[t] = DCT[r̂[t] ] (21)

σ 2
e (b) = VAR(R̂b) (22)

σ 2
x (b) = VAR(DCT[f ] (b)) (23)

σ 2
y (b) = σ 2

x (b) + σ 2
e (b). (24)

While the variance estimation method works fairly well
for the DC band, the AC bands are not as accurate.

To improve the estimate, we estimate the noise variance
of band (b) as usual and then average the value with a
predicted variance:

σ̂ 2
e (b)∗ = 1

2
σ̂ 2
e (b) + 1

2
σ̂ 2
e (b − 1)∗ σ̂ 2

x (b)
σ̂ 2
x (b − 1)

. (25)

5.2.2 Conventional bit plane based estimates
Most DVC systems encode each bit plane of a DCT sub-
band independently using binary codes. As a result, an
estimate of the required rate for each bit plane is required.
The standard method for approaching this problem is to
consider a binary symmetric channel (BSC) for each bit
plane [16,32]. The minimum rate for a given bit plane is
calculated as

Rb ≥ Hb(ε) (26)
= −ε log ε − (1 − ε) log(1 − ε), (27)

where ε is the crossover probability of the virtual BSC.
The crossover probability is defined as the probability that
xb 	= x̂b, where:

x̂b = argmax
i=0,1

Pr(xb = i|y, xb−1, . . . , x1), (28)

and xb is the bth bit plane of XQ. In practice, the bit plane
entropy is calculated as [16,33]

pn(i) = Pr(xb = i, xb−1, . . . , x1|y)
Pr(xb−1, . . . , x1|y) (29)

Hb(pn) = −pn(0) log pn(0) − pn(1) log pn(1), (30)
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where n is the nth symbol in the subband. The final
entropy is then calculated as

Hb = 1
N

∑
WZj

Hb(pn), (31)

with WZj representing all the symbols in the jth subband.
This method requires N entropy calculations for each bit
plane of each subband.

5.2.3 Symbol-wise conditional entropy estimation
The proposed system operates at a symbol level, but the
bit-plane-based method could still be used by adding the
entropy estimates for each bit plane in a symbol. However,
there are some advantages to estimate the entropy directly.
The definition of symbol-wise conditional entropy is as
follows:

H(XQ|YQ) = −
∑
XQ

∑
YQ

P(XQ,YQ) logP(XQ|YQ) (32)

= −
∑
XQ

∑
YQ

P(XQ,YQ) log
P(XQ,YQ)

P(YQ)
. (33)

This method was used for a pixel-domain system [34] that
assumed a uniform distribution for X. In general, esti-
mating H(XQ|YQ) directly from (32), requires evaluating
P(XQ,YQ) L2 times, where L = 2q and q is the number
of bits in the quantizer. Instead, we propose to evaluate a
different form of the expression:

H(XQ|YQ) = H(XQ) − I(XQ;YQ) (34)
= H(XQ) − H(YQ) + H(YQ|XQ), (35)

where I(XQ;YQ) is the mutual information between XQ

and YQ. The authors previously analysed this approach in
[35]. We now make the simplifying assumption:

H(YQ|XQ) ≈ H(EQ), (36)

which allows the required rate to be calculated as a func-
tion of the entropies of three single variables, each of
which is simpler to calculate than the conditional entropy.
This is a high-rate assumption which will typically be
inaccurate for large � values.
Assuming that X is Laplace distributed, H(XQ) can be

expressed as a summation that depends on the quan-
tizer. When a dead-zone quantizer is used (as for the AC
coefficients), we compute the entropy HD(XQ) as:

HD(XQ) = −
∞∑

i=−∞
P(i�) log2[P(i�)] (37)

P(i�) =

⎧⎪⎨
⎪⎩

∫ (i+1)�
i� fX(x)dx if i > 0∫ (i+1)�
(i−1)� fX(x)dx if i = 0∫ i�
(i−1)� fX(x)dx if i < 0,

(38)

yielding:

P(i�) =
⎧⎨
⎩

1
2e

−iαx�(1 − e−αx�) if i > 0
1 − e−αx� if i = 0
1
2e

iαx�(1 − e−αx�) if i < 0.
(39)

Calculating the infinite sum and recombining yields :

HD(XQ) = − (1 − e−αx�) log(1 − e−αx�) − e−αx�

×
[
log

(
1 − e−αx�

2

)
− αx� log(e)

1 − e−αx�

]
.

(40)

For a uniform mid-rise quantizer that is symmetrical
around zero, the entropy is denoted by HS(XQ) and can
be calculated in a similar manner to yield:

HS(XQ)=− 2
[
1
2
(1−e−αx�)

]
log

[
1
2
(1 − e−αx�

]
− e−αx�

×
[
log

(
1 − e−αx�

2

)
− αx� log(e)

1 − e−αx�

]
. (41)

For a uniform mid-tread quantizer the entropy, HM(XQ),
is

HM(XQ) = −
(
1 − e−

αx�
2

)
log

(
1 − e−

αx�
2

)
− e−

αx�
2

×
[
log

(
e

αx�
2 − e−

αx�
2

2

)
− αx� log(e)

(1 − e−αx�)

]
.

(42)

These closed-form equations all assume that the quan-
tizer is defined by the bin size and that the range of the
variable is theoretically infinite. In reality, there will be
a limited number of levels considered. We can thus also
calculate H(XQ) by evaluating (37) and (39) over a finite
number of levels. However, the difference between these
is small enough to be ignored and we choose to use the
closed-form solutions provided by the infinite quantizer
instead.
If we assume that both the side information and the

noise are Laplace distributed, then the equations derived
for the source signal, (40), (42) and (41), can be used
to calculate H(YQ) and H(EQ) as well. However, many
subbands in DVC coding are assigned only a small num-
ber of bits, and as a result the high-rate assumption
may not hold. To improve the accuracy of the method,
we use a slightly different approach for H(EQ). For the
DC band, a conventional mid-rise uniform quantizer is
typically used on the signal. In this case, we use the
equation for the entropy of a mid-tread quantizer, (42),
to calculate H(EQ). For the AC band, a dead-zone quan-
tizer is typically used on the signal. When X is in the
dead zone, P(YQ|XQ) can be approximated by P(EQ),
assuming a dead-zone quantizer for the error. However,
when X is not in the dead zone, P(YQ|XQ) is better
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approximated by P(EQ), assuming a mid-tread quan-
tizer. Thus, for the AC bands, we estimate H(EQ) as
follows:

H(EQ) = P(XQ = 0)HD(EQ) + P(XQ 	= 0)HM(EQ). (43)

5.3 Quantizer
The encoded signal must be quantized before transmis-
sion. If the bit budget for a subband is R and the length
of the code is Mb, then we use a qb = R/Mb bit uniform
quantizer with L = 2qb levels. If the range of the quan-
tizer is A = 2||s||∞, then the quantizer function can be
described as

Q(s) =
(

�fc(s)/�
 + LD
2

)
mod L, (44)

where

fc(s) =
{
s if |s| ≤ βA
sign(s)βA otherwise, (45)

� = βA
LD

. (46)

The scaling parameter β allows for the quantizer to clip
some measurements. The divisor D is a parameter that
allows binning of the measurements to improve the rate
performance. For D = 1, the quantizer is a standard uni-
form quantizer. The �, qb and D parameters for each sub-
band are transmitted along with the encoded sequence. �
can be represented with 8 bits, qb with 3 bits and D with
3 bits as well. As a result, the overhead, from transmitting
these parameters, is negligible.

5.4 Bit allocation
The rate estimation algorithm provides a specific bit bud-
get,R, for each subband. A method is required to allocate
Mb and qb , where qbMb = R. The quantizer can also
employ binning to increase the effective number of bits
per symbol. Employing binning will create the possibility
of a decoding failure.We discuss binning here to show that
the real field coding method can be adapted to include
binning (discontiguous quantization) if desired. If D is
the binning divisor, then an extra qD = log2 D bits are
effectively gained. D should be chosen to be as large as
possible while keeping the probability of a bin error at the
decoder to a minimum. The maximum value for D is thus
related to the noise variance and the quantizer range. Let
�B = Aβ/D be the size of the bin. If σ 2

x is the variance
of the signal x and σ 2

s is the variance of the parity signal s
then

σ 2
s = σ 2

x
N
Mb

, (47)

by design of the parity check matrix. Similarly, if σ 2
e is the

variance of the correlation noise, and z = He, then the
variance of the noise on the parity sequence, σ 2

z , is

σ 2
z = σ 2

e
N
Mb

. (48)

The bin size can be described as

�B = cσz
D

(49)

= cσx
D

√
N
Mb

, (50)

where c is a constant such that cσx equals the range of the
quantizer. The probability that the noise on the encoded
signal, z, will yield a bin error can be approximated and
upper bounded by ε:

ε > P(bin error) (51)

= P
(
z >

�B
2

)
(52)

= exp
(

−α
�B
2

)
(53)

= exp
(

−α
cσx
2D

√
N
Mb

)
. (54)

D is solved as follows:

D < − cσx√
2ln(ε)σe

√
N
Mb

√
N
Mb

(55)

= c√
2ln(1/ε)

√
SNR. (56)

For a typical choice of c = 6 and ε = 0.05, this yields

D < 1.42
√
SNR. (57)

The bit allocation should be chosen to minimise the
expected distortion. In general, for a bounded quantiza-
tion cell, the area in the cell and the resultant distortion
can be halved by adding an additional quantization bit
per symbol or by doubling the number of constraints
(Mb). This would indicate that the number of quantiza-
tion bits per symbol (qb) should be maximised. How-
ever, this is only true once the quantization region is
bounded. This indicates that the allocation decision func-
tion should be piecewise defined. The number of con-
straints should be increased until the region is bounded at
which point the number of bits per constraint should be
increased.
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Since we are aiming for a specific distortion level, we can
estimate the number of errors larger than the allowable
distortion. Let this number be K :

K = NP(e > εaim). (58)

If we treat the dimensionality of the error signal as K, then
we need at least K dimensions to create a bounded quan-
tization region for the error. We thus set the minimum
value forMb and the maximum value of qb as follows:

Mb ≥ K + 1 (59)

qb ≤ R

K + 1
. (60)

This is only an approximation as the noise model at the
encoder is not exact and the decoder is suboptimal. Mb
should be larger to improve the performance if the noise
is underestimated. Our approach is to calculateMb and qb
as above. If the effective number of bits qeff = qb + qD, we
then limit qb as

qb ≤ qaim + 2 − qD. (61)

We also require that qeff ≥ 2. After adjusting qb to meet
the above criteria,Mb is recalculated.

6 Decoder
6.1 Belief propagation over real fields
Belief propagation (BP) is a decoding algorithm that cal-
culates an estimate of a marginal probability by exploit-
ing factorization to reduce computational complexity. BP
can be performed over any arbitrary field. The update
equations require the computation of the product and
the convolution of the marginal probability density func-
tions (pdfs) being passed in the graph. When the coding is
performed over the binary field, the pdf becomes a prob-
ability mass function (PMF) and can be represented using
a single number. In the case of the real field, a full pdf is
required. Calculating the convolution of a set of arbitrary
functions is difficult. Thus, we use a version of relaxed
or Gaussian BP [36], which assumes that the messages
internal to the graph are Gaussian distributed. This allows
for simple closed-form solutions of the update equations
that rely only on the mean and the variance of the mes-
sages, reducing computational complexity. It also means
that only two values need to be passed along each edge of
the graph, reducing memory requirements.
Let μij be the messages from variable node i to check

node j and vji be the message from check node j to variable
node i. Let fX(xi) be the prior information of variable node
i, and fY|X(yi|xi) be the multi-hypothesis side information.
The standard update equation at the variable node is

μij(xi) ∝ fX(xi)fY|X(yi|xi)
∏
k,k 	=j

vki
(

1
Hji

xi
)
, (62)

while the update at the check node is

vji(xi) ∝ fS(sj)
⊕
k,k 	=i

μkj(Hjkxk), (63)

where
⊕

indicates convolution, Hji is the connection
weight from the parity check matrix, and fS(sj) is the pdf
of the jth parity symbol. As mentioned, due to compu-
tational complexity, we make the simplifying assumption
that these messages are Gaussian distributed. Thus, each
message is represented with only a mean and a variance:

μG
ij (xi) = (E[μij(xi)] ,V [μij(xi)] ) (64)

vGji (xi) = (E[vji(xi)] ,V [vji(xi)] ), (65)

where (64) and (65) can be calculated using the erf()
function. As a result of the Gaussian assumption for the
marginals, the updated equations are simplified. A prod-
uct of Gaussian pdfs is a Gaussian pdf:

I∏
i=1

G(μi, σ 2
i ) = SG(μp, σ 2

p ) (66)

σ 2
p =

( I∑
i=1

1
σ 2
i

)−1

(67)

μp =
∑I

i=1 μiσ
−2
i∑I

i=1 σ−2
i

, (68)

where S is an irrelevant scaling factor, and I is the number
of pdfs in the product. The convolution of Gaussian pdfs
is also Gaussian:

I⊕
i=1

G(μi, σ 2
i ) = G(μc, σ 2

c ) (69)

μc =
I∑

i=1
μi (70)

σ 2
c =

I∑
i=1

σ 2
i . (71)

Similarly, the connection weights are easily taken into
account:

μG
ij (Hjixi) = (HjiE[μij(xi)] ,H2

jiV [μij(xi)] ) (72)

vGji
(

1
Hji

xi
)

=
(

1
Hji

E[ vji(xi)] ,
1
H2
ji
V [vji(xi)]

)
. (73)

To help with convergence, a damping parameter is added
at the variable node. If we are calculating the update for
iteration t + 1, μG

ij (xi)t+1, then we combine the result
of (64), represented by μG

ij (xi), with the output of the
previous iteration μG

ij (xi)t :

μG
ij (xi)

t+1 = βμG
ij (xi)

t + (1 − β)μG
ij (xi), (74)
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where β = 0.7 was found to yield good results. When
employing binning in the quantizer, the pdf of the parity
symbols, fS(sj), consists of disjoint sections. If we simply
calculate the outputs of the check nodes as in (65), we
might end up with inconsistent updates. To solve this, we
first calculate the most likely bin at the check node. First,
we estimate the value of the syndrome symbol from the
incoming messages:

ŝj = E
[⊕

k
μkj(Hjkxk)

]
. (75)

Then, we select the bin with the highest probability given
ŝj:

s∗ = argmax
l

P(sl|ŝj) (76)

= argmin
l

|sl − ŝj|, (77)

where sl, l ∈ {1,D} are the centres of the D bins corre-
sponding to the received sqj . Now, fS(sj) is a uniform pdf
over the range corresponding to the most likely bin.

6.2 Side information creation
6.2.1 Initial decoding
A multi-hypothesis SI creation method using four
hypotheses as developed in [8] is used. The hypotheses
are the two reference frames, f̂ [0] and f̂ [NG], aMCI-based
frame using small blocks, f̂S, as well as a MCI-based frame
using big blocks, f̂B. The method used to perform MCI
is a variant of the one described in [37]. First the key
frames are mean filtered. The filtered key frames are then
used for bidirectional pixel level accuracy block matching
(BM) using large blocks and the modified sum of abso-
lute difference (SAD) metric in [37]. These vectors are
used as starting points for a BM algorithm using smaller
blocks with a fixed search range. The motion vector (MV)
field generated with large blocks is quadrupled in den-
sity (oversampled by a factor of two in both directions),
before being median filtered. By increasing the density,
we allow the median filter to produce smoother edges
and more precise vectors. The MV field generated with
smaller blocks is also quadrupled in density before being
median filtered. These twoMV fields are then used to cre-
ate twoMCI hypotheses by interpolating from the original
key frames.

6.2.2 Successive refinement
After BP decoding, the subbands are recombined and a
pixel domain version of the WZ frame is produced. Using
this decoded frame, the motion estimation process is
repeated to produce better quality side information. This
is similar to [24-27] where successive refinement was used
to improve reconstruction distortion. Due to the use of

Figure 3 Bidirectional motion estimation. The gray boxes in
frames f [ t − 1] and f [ t + 1] indicate the search range.

real field coding, the effect is slightly different from con-
ventional DVC as improved side information can result
in decreased distortion from the GBP decoding process,
whereas for finite field coding, there can be no further
gain (other than improved reconstruction) after successful
decoding of the bit planes.
In order to use the decoded frame, the motion esti-

mation method needs to be adjusted. Three different
hypothesis frames are created. The first method performs
pixel level accuracy bilinear BM motion estimation (ME)
using the decoded frame as a hash (Figure 3) to produce
f̂I. The matching metric used during ME is

MI(L,M,R) = (1 − 2λM)
∑

|L − R| + λM
∑

|L − M|
+ λM

∑
|R − M|,

(78)

where L,M and R represent the subblocks in the left key
frame, the reconstructed frame and the right key frame,
respectively. λM is a scaling factor that may be optimised.
For this paper we used λM = 0.25.
The other two hypotheses, f̂Lr and f̂Rr , are created by

matching the key frames individually with the recon-
structed frame (Figure 4). This allows non-linear motion
to be tracked across the GOP.

Figure 4 Single directional motion estimation. The gray boxes in
frames f [ t − 1] and f [ t + 1] indicate the search range.
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For these hypotheses, a simple SAD metric is used:

MLr(L,R) =
∑

|L − M| (79)

MRr(L,R) =
∑

|R − M|. (80)

The metrics are all adjusted by including a motion penal-
ising term [37], which helps to ensure less noisy motion
vectors.

6.3 Correlation noise modeling
The system uses a coefficient level noise model [23] which
models the correlation noise for a single coefficient of a
subband of a hypothesis as being Laplace distributed. The
method for calculating this noise parameter (α) requires
an estimate of the error in the hypothesis. This error is
termed as the residual frame (r). For the multi-hypothesis
system, a residual frame estimate is required for each
hypothesis.

6.3.1 Residual estimation for the first decoding
For the MCI hypotheses, f̂S and f̂B, the residual estimates,
r̂S and r̂B respectively, are the difference between the
motion-compensated frames used to perform the interpo-
lation. For frame t in the GOP, this is given by

r̂B = |f̂ BL∗ − f̂ BR∗ | (81)
r̂S = |f̂ SL∗ − f̂ SR∗ |. (82)

Here, f̂ BL∗ and f̂ BR∗ indicate the motion-compensated ref-
erence frames used to interpolate f̂B, while f̂ SL∗ and f̂ SR∗
indicate the motion-compensated reference frames used
to interpolate f̂S. For the reference frame hypotheses, the
residual estimates (r̂L and r̂R) are simply the difference
between the two reference frames:

r̂L = f̂ [0]−f̂ [NG] (83)
r̂R = f̂ [0]−f̂ [NG] . (84)

The correlation noise for each hypothesis is estimated
using the method in [23], and motion-adaptive scaling
factors are applied as in [8]. All the hypotheses are then
combined at a coefficient level using Bayesian fusion:

fY|X(y|x) =
H∏
h=1

fYh|X(yh|x), (85)

before being passed to the GBP algorithm for decoding.

6.3.2 Residual estimation for later iterations
After the frame has been decoded the first time, we cal-
culate new side information frames using the methods

discussed in the previous section. If f̂I, f̂Lr and f̂Rr are the
three hypotheses, we estimate a residual frame for each as:

r̂I = (1 − λI)|f̂L∗ − f̂R∗ | + λI|f̂I − M| (86)

r̂Lr = (1 − λLr)|f̂Lr − f̂Rr | + λLr |f̂Lr − M| (87)

r̂Rr = (1 − λRr)|f̂Lr − f̂Rr | + λRr |f̂Rr − M|. (88)

Here, f̂L∗ and f̂R∗ indicate the motion-compensated key
frames used to create f̂I,M is the previous decoded frame,
and the λs are tunable parameters. While they may be
optimised in the future, we used λI = λLr = λRr = 0.5.
From the residual estimate, we calculate a correlation

noise estimate for each hypothesis. A method similar to
[23] is used, but we include the output variance from
the belief propagation decoder in calculating the value
of the Laplace parameter α. The goal is to identify the
areas where the decoder may have been in error, or
where further refinement should occur. If σ

2(d)

b (u, v) is
the output variance from the GBP decoder, the new
equation is:
Db(u, v) = |R̂b(u, v) − μb| (89)

α̂b(u, v) =

⎧⎪⎪⎨
⎪⎪⎩

√
2

λσ̂ 2
b +(1−λ)σ

2(d)

b (u,v)
, [Db(u, v)]2 ≤ σ̂ 2

b√
2

λ[Db(u,v)]2+(1−λ)σ
2(d)

b (u,v)
, [Db(u, v)]2 > σ̂ 2

b

, (90)

where λ is a tunable variable, that we set to one half.

7 Complexity analysis
In this section, we will discuss the complexity of the pro-
posed system relative to conventional DVC as well as
H.264 intra coding.

7.1 Encoder complexity
The overall complexity is a function of the GOP size, since
it will be a combination of the key frame encoding com-
plexity as well as the WZ encoding complexity. Initially,
we consider only the complexity of the WZ frames, since
the key frames have the same complexity in H.264 (intra)
and in conventional DVC methods.
The complexity of the encoder can be described as the

sum of the complexity of the subblocks. The main points
where differences between the proposedmethod and con-
ventional DVC may occur is in the conditional entropy
estimation block, the quantizer and the real field encoder.
We do not consider the complexity of motion estima-
tion at the encoder and do not compare against systems
that employ motion estimation. The complexity of the
DCT operation will be the same for all transform domain
systems.
Real field encoding compared to finite field coding will

have the same number of operations (assuming the same
code size), but the type of operation will differ: Real
field (floating point) multiplication and addition versus
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Table 1 Encoder run-time simulation

Foreman Coastguard Soccer Hall monitor

RD H.264 Prop Disc H.264 Prop Disc H.264 Prop Disc H.264 Prop Disc

1 112 14 21 120 10 21 104 23 21 121 8 21

2 114 16 21 124 13 21 104 24 21 124 9 21

3 116 16 21 127 13 21 107 24 22 126 9 22

4 128 26 21 136 25 22 114 38 22 133 10 22

5 131 26 22 141 25 21 116 39 22 136 10 23

6 140 35 24 152 39 22 122 48 22 143 11 24

7 148 49 23 157 52 23 132 69 24 147 20 24

8 172 86 24 184 98 25 159 110 25 170 43 26

Run-time comparison of the encoder for the proposed system with the H.264 (intra) method as well as the DISCOVER codec. All results are in milliseconds per frame.
Only WZ frames were considered for the DISCOVER codec and the proposed system. ‘Disc’ refers to the DISCOVER codec and ‘Prop’ refers to the proposed codec.

Galois field multiplication and addition. The complexity
of the different operations will be platform and imple-
mentation specific. Typically one would expect finite field
operations to be faster than the real field equivalent, how-
ever many modern processors are optimised to perform
floating point operations and can perform them at high
speed.
A similar point can be made for bit-plane-based sys-

tems with binary codes. These codes will have a larger
number of operations compared to symbol-based coding,
but the operations will be simple binary XOR and AND
operations which are much faster.
The proposed conditional entropy estimator is faster

than the conventional method (see Section 5.2), O(1) vs.
O(qbN) per subband, but the complexity of creating the
side information estimate is also at leastO(N), so this does
not represent a very large saving. The quantizers will also
be similar in complexity though the proposed system only
quantizes (Mb < N) values compared to the N values
of a conventional system. Overall, we expect the encod-
ing complexity of the proposed system to be similar to
that of conventional DVC without motion estimation at

the encoder. Exact comparisons will be implementation
specific.
To experimentally evaluate the complexity we per-

formed execution-time experiments. Simulation-based
comparisons are difficult and always imperfect, but may
still provide some insight into the expected performance
of the systems. For these simulations we used the refer-
ence implementation of the H.264 intra codec. The pro-
posed codec was implemented in C++. We also compare
with the DISCOVER codec.
All the simulations were performed on a computer with

a 2.93 GHz Intel Core 2 duo processor (Intel, Sta. Clara,
CA, USA) and 2 Gb of RAM running Ubuntu Linux 12.04
LTS. The results can be seen in Table 1. The encoder
run time of DISCOVER was analysed in [38]. With-
out access to the source code, run-time results for the
DISCOVER encoder could not be accurately generated.
To facilitate a comparison, the run time of DISCOVER
(on this computer) was predicted. This was done by calcu-
lating the ratio of the per-frame run time of DISCOVER
to H.264 (intra) from results presented in [38]. The run
time of H.264 (intra), as produced in this simulation,

Table 2 Decoder run-time simulation

Foreman Coastguard Soccer Hall monitor
RD Prop Disc Prop Disc Prop Disc Prop Disc

1 2.133 6.528 1.830 4.835 2.910 8.323 1.580 4.984

2 2.164 7.541 1.830 5.780 2.940 8.955 1.590 5.780

3 2.180 8.533 1.850 6.291 2.940 10.869 1.790 6.394

4 4.990 12.933 5.400 8.927 6.430 15.586 2.950 7.964

5 5.080 13.909 5.480 9.138 6.560 16.249 4.070 8.018

6 7.000 17.825 8.180 11.821 8.950 20.301 6.120 9.820

7 10.040 21.682 11.190 14.349 12.570 23.737 6.450 11.251

8 17.200 31.127 18.910 21.704 20.130 29.926 10.880 14.061

Run-time comparison of the decoder of the proposed system with the DISCOVER codec. All results are in seconds per frame. Only WZ frames were considered.
‘Disc’ refers to the DISCOVER codec and ‘Prop’ refers to the proposed codec.
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Table 3 Key frame quantization parameters for the RD
points

RD number 1 2 3 4 5 6 7 8

Hall monitor 37 36 35 33 32 30 29 24

Coastguard 38 37 36 34 33 31 30 26

Foreman 40 39 38 34 33 31 29 25

Soccer 43 42 40 36 35 33 30 25

The same values are used for all GOP sizes.

was then multiplied by the ratio to predict the run time
of DISCOVER. While this is not ideal, it still provides
a good idea of the relative performance of the different
systems.
The table shows the average encoding time for a

WZ frame as measured when NG = 2. The over-
all encoding time for any GOP size can be estimated
by combining the running time for the key frames and
the WZ frames. From the table, one can see that the
proposed system has a reduced run time when mea-
sured against the H.264 intra codec. The running time
for the proposed system increases as the rate increases
(larger RD points), since more subbands are encoded.
A rate increase for a given subband also increases the
size of the encoding matrix, which leads to a run-time
increase.
The proposed system has approximately the same run

time as the DISCOVER codec in the low-rate region.
However, for the higher RD points, the proposed sys-
tem has a longer run time than the DISCOVER codec. It

should be mentioned that no attempt was made to opti-
mise the encoder implementation, and it is expected that
the run time can be significantly reduced in the future.

7.2 Decoder complexity
Decoding complexity is generally not considered a limita-
tion for DVC and is not often considered when evaluating
the performance in DVC systems. However, we will briefly
discuss the effect of real field coding on the decoder com-
plexity. The reduced complexity GBP algorithm used for
decoding is similar to a binary BP decoding algorithm
in terms of memory requirements and computational
complexity. In GBP each edge requires two values to be
transmitted while for binary BP one value is required. The
update rules are also simple equations that scale with the
check and variable node degree distributions. However,
binary-coded systems decode each bit plane indepen-
dently, thus it has to perform more than one decoding
for each subband. The GBP also converges in fewer than
ten iterations, which is less than most binary BP algo-
rithms. GBP is thus expected to compare favourably to
binary BP in terms of decoding speed. Non-binary BP is
typically slower than binary BP and requires more mem-
ory. Each edge must transmit the entire PMF (L values).
The update equations at the check node are also slow. A
faster fast Fourier transform belief propagation (FFT-BP)
algorithm still requires two FFT operations for every edge.
Typically, FFT-BP is considered to be O(qb) times slower
than binary BP. There are lower complexity non-binary BP
algorithms in the literature, but discussing their relative
merits is beyond the scope of this article. In general, GBP
is expected to be faster than non-binary BP.
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Figure 5 Comparison of the performance of the proposed system on the foreman sequence. Performance of the proposed system on the
foreman sequence compared to the DISCOVER codec, the H.264 intra codec, and the FF system.
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Figure 6 Comparison of the performance of the proposed system on the coastguard sequence. Performance of the proposed system on the
coastguard sequence compared to the DISCOVER codec, the H.264 intra codec, and the FF system.

We include some execution-time experimental results
showing the decoding time in Table 2. These results were
produced under the same conditions as for the encoder.
In contrast to the encoder, a publicly available executable
was used to produce the run-time results for the decoder
of the DISCOVER codec.
The table shows the average decoding time for a WZ

frame as measured when NG = 2. From the table one
can see that the proposed system runs faster than the
DISCOVER codec in all simulations. While this is not

proof that the system will always be faster, it does indicate
that real field decoding does not represent a complexity
increase.

8 Simulation results and discussion
The system presented in this paper is tested on four stan-
dard test sequences: foreman, coastguard, soccer and hall
monitor. The sequences are all QCIF format with a frame
rate of 15 Hz. All the rate-distortion curves show results
for the average bit rate and the distortion as calculated
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Figure 7 Comparison of the performance of the proposed system on the soccer sequence. Performance of the proposed system on the soccer
sequence compared to the DISCOVER codec, the H.264 intra codec, and the FF system.
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Figure 8 Comparison of the performance of the proposed system on the hall monitor sequence. Performance of the proposed system on the
hall monitor sequence compared to the DISCOVER codec, the H.264 intra codec, and the FF system.

over all the frames in the entire sequence (key and WZ
frames). All sequences consist of 150 frames.
The system will be compared against the H.264 intra

codec, the DISCOVER codec [1], which is a feedback-
based benchmark system in DVC literature, and a system
previously developed by the authors [8], adapted for this

paper, which will be called the ‘FF system’ in this section.
All the results for the proposed system were obtained
without binning, thus D = 1, to ensure that there are no
decoding failures.
The finite field (FF) system is the same as in [8] and uses

the same side information as the proposed system but uses

Table 4 Bjontegaardmetric results

GOP size 2 4 8

Sequence Type Disc Prop FF Disc Prop FF Disc Prop FF

Foreman Full Rate 10.40 13.80 26.05 42.23 106.74 1567.70 91.31 206.78 -

DSNR −0.40 −0.89 −1.47 −1.55 −3.60 −5.35 −2.76 −5.70 −8.74

Mid Rate 5.13 8.37 18.45 33.87 99.27 −48.09 78.63 277.07 -

DSNR −0.25 −0.50 −0.91 −1.43 −3.16 −4.49 −2.65 −5.45 −8.00

Coastguard Full Rate −17.88 −9.88 −3.41 −9.04 37.46 77.84 26.65 193.56 378.17

DSNR 0.98 0.14 −0.08 0.41 −1.61 −2.03 −0.90 −3.89 −5.20

Mid Rate −19.33 −12.71 −7.42 −12.93 30.60 48.49 18.68 48.83 −91.21

DSNR 1.07 0.50 0.27 0.58 −1.14 −1.47 −0.75 −3.44 −4.45

Soccer Full Rate 90.04 115.72 310.00 167.53 279.95 - 233.58 449.35 -

DSNR −2.86 −3.74 −5.89 −4.35 6.36 −9.99 −5.24 −8.06 −12.79

Mid Rate 85.63 123.33 321.26 164.38 304.88 - 230.12 571.79 -

DSNR −2.69 −3.61 −5.65 −4.07 −6.20 −9.41 −4.93 −7.95 −12.10

Hall Full Rate −28.44 −36.57 −35.37 −42.01 −40.34 −41.54 −41.67 −15.18 −30.27

Monitor DSNR 2.64 3.04 2.77 3.94 2.26 1.98 3.96 0.63 0.66

Mid Rate −30.52 −39.49 −38.42 −44.77 −45.54 −45.96 −44.75 −28.28 −24.17

DSNR 2.83 3.68 3.20 4.58 4.24 2.75 5.27 3.23 −0.47

The Bjontegaard metric for rate-distortion performance as measured against the H.264 intra code. ‘Disc’ refers to the DISCOVER codec, ‘Prop’ refers to the proposed
codec and ‘FF’ refers to the finite field codec.
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Figure 9 Comparison of the performance of the proposed system on all four sequences. Performance of the proposed system on all four
sequences compared to the FF system using the SSIM metric. The results are shown for GOP sizes of 2 and 4.

non-binary codes defined over Galois fields. The modifi-
cation for this paper is that it also uses the same estimated
rate without feedback. The purpose of using the FF sys-
tem is to highlight the effect of using real field coding
while keepingmost other aspects, such as the SI, constant.
Comparisons with competing systems, while interesting,
are more difficult to interpret. Key frames were encoded
using the reference implementation of the intra mode of
the H.264 codec. The QP parameters used are similar to
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Figure 10 Standard deviation for all sequences, GOP = 2.
Standard deviation of the PSNR over the four test sequences for both
the proposed system as well as the FF system as a function of the
profile number (rate). The same rate is used for both systems and the
GOP size is 2.

those used by the DISCOVER codec and are provided in
Table 3.
In the performance results for the foreman, coast-

guard, soccer and hall monitor, sequences can be seen in
Figures 5, 6, 7 and 8, respectively. The Bjontegaard differ-
ential rate and peak signal-to-noise ratio (PSNR) metrics
[39,40] were calculated for the proposed system, the FF
system and the DISCOVER codec as measured against the
H.264 (intra) results. The results can be seen in Table 4.
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Figure 11 Standard deviation for all sequences, GOP = 4.
Standard deviation of the PSNR over the four test sequences for both
the proposed system as well as the FF system as a function of the
profile number (rate). The same rate is used for both systems and the
GOP size is 4.
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Figure 12 Standard deviation for all sequences, GOP = 8.
Standard deviation of the PSNR over the four test sequences for both
the proposed system as well as the FF system as a function of the
profile number (rate). The same rate is used for both systems and the
GOP size is 8.

In the table, ‘DSNR’ refers to the differential PSNR, and
‘Rate’ refers to the percentage difference in rate. The ‘Type’
column indicates whether the full range of RD points was
considered or only the mid range.
The same trends are apparent in all the sequences.

The proposed system performs comparably with the DIS-
COVER codec in the low-rate regime, but then deviates
and performs less well in the high-rate regime. The FF-
based system and the proposed system perform similarly
in the coastguard sequence for the GOP size equal to 2
and 4. In all other cases, the proposed system has better
performance. The performance gain when the GOP size is
equal to 2 is small, but increases at higher rates. The per-
formance gain is also larger for GOP sizes equal to 4 and
8. In general, the performance loss of the proposed system

as measured against the DISCOVER codec increases with
the GOP size.
In order to objectively analyse the perceptual quality of

the proposed system, we include two sets of results. First,
we include the performance of the proposed system and
the FF system on all three sequences as measured using
the structural similarity (SSIM) metric in Figure 9, as it is
considered to measure perceptual quality better than the
PSNR metric for a given frame. From the figure, one can
see that the performance is similar for all three sequences
when the GOP size is equal to 2. However, when the GOP
size increases to 4, the proposed system performs better.
Secondly, to evaluate the perceptual quality of the entire

sequence, we analyse the variance of the PSNR for each
sequence. Figure 10 shows the standard deviation of the
PSNR for the two systems over all profiles and all test
sequences for a GOP size of 2. From the figure, it can be
seen that in all cases, the standard deviation of the pro-
posed system is less than that of the FF system. Figures 11
and 12 show the standard deviation of the PSNR for GOP
sizes of 4 and 8 respectively. A similar trend is visible for
these cases as well. A large variance in distortion results in
unpleasant flicker in the video sequence. While the pro-
posed system and the FF system have similar average R-D
performance for GOP equal to 2, subjectively, the quality
of the FF system appears worse because of image flicker-
ing. The proposed system on the other hand has a gentler
degradation in image quality resulting in less flickering.
As an example, Figure 13 shows the same frame coded

at the same rate by the two systems. The estimated rate
is obviously lower than required. As a result, the quality
in the FF system degraded significantly while the visual
quality in the proposed system degraded much less. As a
caveat, no attempt was made in the FF system to detect
and ameliorate decoding failures. In cases where the esti-
mated rate was high enough, the FF system decoded
correctly and produced a higher quality frame than the
proposed system.
Though the results are not plotted, the systems pre-

sented in [16] and [17] both have better average R-D per-
formance than the proposed system and achieve similar

Figure 13 Comparison of the same frame encoded and decoded using FF system and proposed system. Both frames used the same rate.
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average R-D performance as the DISCOVER codec. Using
low complexity motion estimation at the encoder, they
are able to achieve accurate rate estimation. The addition
of hashes further improves the performance of these sys-
tems. The exact complexity and run-time losses incurred
by the motion estimation are not available. The SSIM
and PSNR variance results for these systems are also not
available.
For the proposed system, it is expected that employing

a similar low complexity motion estimation algorithm at
the encoder will improve the accuracy of the rate estima-
tion and by extension the average R-D performance of the
proposed system as well. Furthermore, accurate rate esti-
mation will allow for binning as described in Section 5.4,
which can further improve the average rate-distortion
performance. Hashing and more advanced SI creation
methods could also be employed.

9 Conclusion
This paper proposed a new approach to feedback sup-
pression in DVC systems that relies on codes defined over
the real field. Despite the removal of the feedback path,
the encoder complexity was not significantly increased,
since no motion estimation was performed at the encoder.
The system showed average R-D performance compara-
ble to that of a feedback-based system at low rates. At
high rates, there was a reduction in performance com-
pared to feedback-based systems. However, compared to
conventional finite-field-based feedback-free systems, the
variance in the distortion was reduced. This resulted in
improved perceptual visual quality.
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