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Abstract

The quality of service of mobile satellite reception can be improved by using multi-satellite diversity (angle diversity).
The recently finalised MiLADY project targeted therefore on the evaluation and modelling of the multi-satellite
propagation channel for land mobile users with focus on broadcasting applications. The narrowband model
combines the parameters from two measurement campaigns: In the U.S. the power levels of the Satellite Digital
Audio Radio Services were recorded with a high sample rate to analyse fast and slow fading effects in great detail. In a
complementary campaign signals of Global Navigation Satellite Systems (GNSS) were analysed to obtain information
about the slow fading correlation for almost any satellite constellation. The new channel model can be used to
generate time series for various satellite constellations in different environments. This article focuses on realistic state
sequence modelling for angle diversity, confining on two satellites. For this purpose, different state modelling
methods providing a joint generation of the states ‘good good’, ‘good bad’, ‘bad good’ and ‘bad bad’ are compared.
Measurements and re-simulated data are analysed for various elevation combinations and azimuth separations in
terms of the state probabilities, state duration statistics, and correlation coefficients. The finally proposed state model
is based on semi-Markov chains assuming a log-normal state duration distribution.
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1 Introduction
Satellites play an important role in today’s commer-
cial broadcasting systems. In cooperation with terres-
trial repeaters they can ensure uninterrupted service of
multimedia content (e.g. audio and video streaming) to
stationary, portable, and mobile receivers. However, in
case of mobile reception fading regularly disrupts the sig-
nal transmission due to shadowing or blocking objects
between satellite and receiver. To mitigate these fading
effects, diversity techniques such as angle diversity (mul-
tiple satellites) and time diversity (interleaving) are attrac-
tive. For link-level studies of the land mobile satellite
(LMS) channel, statistical channel models are frequently
used that are able to generate timeseries of the received
fading signal. Statistical LMS channel models describe
several fading processes of the received signal: slow vari-
ations of the signal are caused by obstacles between the

*Correspondence: daniel.arndt@tu-ilmenau.de
1Ilmenau University of Technology, Ilmenau, Germany
Full list of author information is available at the end of the article

satellite and the receiver, which induce varying shadow-
ing conditions of the direct signal component. Fast signal
variations are caused by multipath effects due to static
or moving scatterers in the vicinity of the mobile termi-
nal. For short time periods these two components (slow
and fast variations) are usually modelled by a station-
ary stochastic processes, e.g., as a Loo-distributed fading
signal [1]. For longer time periods the received signal
can not assumed to be stationary. Therefore, statistical
LMS channel models describe different receive states to
assess the large dynamic range of the received signal. The
states correspond to slow varying environmental condi-
tions (e.g. line of trees, buildings, line-of-sight (LOS)) in
the transmission path. Traditional LMS channel models
simulate series of three states (‘line-of-sight’, ‘shadowed’,
and ‘blocked’) or two states (‘good’ state and ‘bad’ state) by
using Markov or semi-Markov concepts.
While several LMS channel models for single-satellite

systems are already available and consolidated [2-4],
models for multi-satellites systems are of ongoing interest
for modern transmission standards, e.g. DVB-SH [5].

© 2012 Arndt et al.; licensee Springer. This is an Open Access article distributed under the terms of the Creative Commons
Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and reproduction
in any medium, provided the original work is properly cited.



Arndt et al. EURASIP Journal onWireless Communications and Networking 2012, 2012:228 Page 2 of 21
http://jwcn.eurasipjournals.com/content/2012/1/228

Early studies on multi-satellite transmission were carried
out in 1992. Based on circular scans of fisheye-camera
pictures in different environments an empirical model
was developed describing the correlation coefficient
between two satellite signals depending on their azimuth
separation [6]. In 1996 a statistical channel model for two
correlated satellites based on first-order Markov chains
was developed [7]. The state sequence generation is based
on state transition probabilities of two independent satel-
lites. Both satellites are combined by a state correlation
parameter which can be taken from empirical models.
Due to its simplicity this modelling approach is frequently
used today. However, first-order Markov chains have limi-
tations in state durationmodelling, as their state durations
follow an exponential distribution. Studies in [8-10] found
that this condition does not hold for the LMS channel.
Nevertheless, a correct state duration modelling is of high
interest for the optimal configuration of physical layer
and link layer parameters for modern broadcasting stan-
dards with long time interleaving (e.g. for physical layer
interleaver size, link layer protection time). Therefore,
different concepts improving the state duration modelling
were introduced: semi-Markov chains [10] and dynamic
Markov chains [9]. For these approaches some exemplary
parameters for the single-satellite reception are pub-
lished. However, an intense study for multi-satellite state
duration modelling and a corresponding channel model
including parameters for different environments and
orbital positions does not exist so far. In this sense, a new
channel model for two or more satellites was developed
in the context of the project MiLADY (Mobile satellite
channeL with Angle DiversitY ) [11]. This project covered
two measurement campaigns in the U.S. and in Europe: In
the first campaign the power levels of the Satellite Digital
Audio Radio Services (SDARS) satellites (S-Band) were
recorded synchronously with a sample rate of 2.1 kHz.
The signals allow to study slow and fast fading effects
in combination with angle diversity for a limited set of
elevation and azimuth angle combinations. A second
measurement campaign was carried out in the area of
Erlangen in Germany to record the carrier-to-noise spec-
tral density ratio (C/N0) from Global Navigation Satellite
System (GNSS) satellites in the L-Band. The C/N0 allows
a comprehensive analysis of the state correlation (line of
sight, shadowed/blocked) for multiple satellites for a wide
range of elevation and azimuth angle combinations.
This article focuses on the state sequence generation

for a dual-satellite channel model. The parameters are
derived from the measurements for different modelling
approaches assuming two states per satellite (‘good’,
‘bad’). Chosen models are: first-order Markov approach
[7], semi-Markov approach [10], and dynamic Markov
approach [9]. To assess the performance of these models,
correlation coefficients, state probabilities and state

duration statistics are gained from re-simulated state
sequences and compared with the measurement data. As
state sequence modelling is only a part of a complete
LMS channel model, we describe an overall LMS channel
model and give the complete set of parameters.
The article is organised as follows: In Section 2 basics of

the LMS channel and of different state modelling methods
for single- and dual-satellite reception are explained. Fur-
ther on, these methods are compared on an exemplary
scenario for two satellites. Section 3 gives an overview on
the GNSS and SDARS measurements and the data pro-
cessing to derive the channel states. In Section 4 the state
models are compared on a high number of receive sce-
narios with the measurements. The evaluation criteria are
state probabilities and state duration statistics. Finally, in
Section 5 the conclusions are drawn.

2 Statistical channel modelling for single-satellite
and dual-satellite systems

The statistical approach of generating time series for the
LMS propagation channel includes two processes: First,
the very slow fading components of the channel due to
varying shadowing conditions between the satellite and
the receiver are modelled in terms of channel states.
LMS models with three states [3], namely ‘line-of-sight’,
‘shadowed’, and ‘blocked’, or two states [2,4] ‘good’ and
‘bad’ are available in the literature. Once the channel
states are modelled, in a second process the amplitudes
of direct and indirect signal components are generated.
They depend on the current state and the receive environ-
ment. In common narrowband LMS propagation models
the fading is described as a combination of log-normal,
Rice and Rayleigh models.
In Figure 1 the two-state approach according to Prieto-

Cerdeira et al. [4] is illustrated. This model describes
two states: a ‘good’ state (corresponding to LOS/light
shadowing), and a ‘bad’ state (corresponding to heavy
shadowing/blockage). Within each state a Loo-distributed
fading signal [1] is assumed. It includes a slow fading
component (lognormal fading) corresponding to varying
shadowing conditions of the direct signal, and a fast fad-
ing component due to multipath effects. The Loo model
is described by three parametersMA, �A, andMP, denot-
ing the mean and standard deviation of the lognormal
component, and the multipath power, respectively. After
each state transition a random Loo parameter triplet is
generated following a statistical distribution. The distribu-
tion of the Loo parameter triplets depends on the current
state, and further on the receive environment of the ter-
minal. This two-state model is an evolution of an earlier
three-state model [3], where the Loo parameter triplet for
each state was fixed within a given environment and ele-
vation. The versatile Loo parameter selection of the newer
model enables a more realistic modelling over the full
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Figure 1 Signal components of a two-state LMS channel model.

dynamic range of the received signal. Therefore, the two-
state model from Prieto-Cerdeira et al. [4] was extended
for the new multi-satellite narrowband model developed
within the MiLADY project.
Focus of this article is the state sequence modelling for

single- and dual-satellite systems, assuming two states per
satellite: ‘good’ state and ‘bad’ state. For this purpose, dif-
ferent state modelling methods are compared with the
measurement data in terms of the state probability, state
duration probability, and correlation coefficient. More-
over the practicability of various state generation methods
in terms of generating a database, e.g. for different envi-
ronments and elevation angles, is assessed.

2.1 Channel state models for single-satellite systems
Three types of state modelling approaches for single-
satellite systems are found in the literature:

• First-order Markov model [3]
• Dynamic Markov model [9]
• Semi-Markov model [10]

In the following themain characteristics of thesemodels
are described.

2.1.1 First-order Markovmodel
A Markov model is a special random process for generat-
ing discrete samples corresponding to channel states s of a
predefined sample length. For a first-order Markov model,
each state depends only on the previous state. The con-
ditional probabilities of state sn+1 given the state sn are
described by state transition probabilities pij. Therefore,
the only parameter of the Markov chain is the state tran-
sition probability matrix (STPM) Ptrans ∈ R

N×N
0+ with N

being the number of states (cf. Figure 2a). The main char-
acteristic of a first-order Markov chain is, that it enables
an exact modelling of the state probability and the average
state duration. It satisfies

p·[Ptrans − I]= 0 (1)

with p being the row vector of the equilibrium state
probabilities, the unity matrix I, and the zero vector 0.
The average state duration is calculated by

D̄ = 1
1 − pii

· 1
�d

, (2)
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Figure 2 Single-satellite state models assuming two states. (a)
First-order Markov model. (b) Dynamic Markov model. (c)
Semi-Markov model.
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where pii is the state transition probability between two
equal states, and�d denotes the sampling distance (frame
length).
The probability that the Markov chain stays in state i for

n consecutive samples is given by

Pi(D = n�d) = pn−1
ii · (1 − pii), n ∈ N , (3)

In this article the function P(D) will be further denoted
as state duration probability density function (SDPDF).
The SDPDF of the first-order Markov chain follows an
exponential distribution.

2.1.2 DynamicMarkovmodel
Results in [9,10] have shown that an exponential SDPDF
is no accurate approximation for the LMS channel. There-
fore, to improve the state duration modelling dynamic
Markov chains were introduced [9]. For dynamic Markov
chains the state transition probability is a function of the
current state duration n (cf. Figure 2b)

pij = f (n) . (4)

For this purpose, the two-dimensional STPM is
extended to a three-dimensional state transition proba-
bility tensor (STPT) Ptrans ∈ R

N×N×nmax
0+ , where nmax

corresponds to the maximum state length obtained from
the measurements with Dmax = nmax�d.
Using the dynamic Markov model, the probability that

the state duration is equal to D is

Pi(D = n�d) = (1−pii(n�d))·
n−1∏
r=1

pii(r�d), n ∈ N .

(5)

If the values for the STPT are directly derived from the
measured state sequence (assuming a sample length of e.g.
�d = 1m), the dynamic Markov model enables an exact
reproduction of the state probabilities as well as an exact
re-modelling of the measured SDPDF. A significant dis-
advantage is the high number of parameters required to
describe the STPT.
In [9] some model approximations are proposed to

reduce the number of required parameters of the STPT:

• partial dynamic Markov model: From Equation (5) it
is derived that an exact state duration modelling
requires only a subset of the STPT. Only the
transition coefficients pii(n) need to change as a
function of the current state duration. For a two-state
model the remaining values pij(n) can be recalculated
easily with pij(n) + pii(n) = 1. For a multi-state
model some additional coefficients SiZ are required to
calculate the relative ratio between the state transition
probabilities pij(n). The coefficients are derived from
the STPT Ptrans at position n = 1 for each state i

pii(1) + Si1(1) + Si2(1) + · · · + SiZ(1) = 1 , with
SiZ(1) = pij(1), i �= j. (6)

Then, to calculate the relative coefficients at positions
pij(n > 1) it holds:

pii(n)+kSi1+kSi2+· · ·+kSiZ =1 , with kSiZ =pij(n).
(7)

• approximated partial dynamic Markov model: For a
further reduction of the model parameters, the
function pii(n) can be approximated by a curve fit. In
[9], a piecewise linear approximation at 8 predefined
values of the state duration D = n�d is proposed.
Assuming this, a two-state model would require 8 · 2
parameters for state sequence generation. A
multi-state model would need 8 · N parameters to
describe the functions pii(n) (with N being the
number of states) and further N(N − 1) parameters
to describe the relative ratios SiZ between the
coefficients pij(n), i �= j (Equation (6)).

2.1.3 Semi-Markovmodel
Another Markov approach is the semi-Markov model
introduced in [10] to enable a correct state duration mod-
elling. In contrast to the first-order- and dynamic Markov
model, the state transitions do not occur at concrete time
intervals. In fact, the time interval of the model staying in
state i depends directly on its SDPDF. As with the Markov
models, the state transitions are described with the state
transition probability pij, but with i �= j. Assuming a
single-satellite model of only two states, the state transi-
tion probability is pij = 1 (cf. Figure 2c). The equilibrium
probability of the states can be calculated as the product of
the mean state duration D̄ and the probability of entering
a state (which is described with the STPM).
The semi-Markov model offers some options to

describe the SDPDF of each state:

• The measured state duration statistic is used without
any approximation for re-modelling, i.e., the state
duration is a random realisation of the measured
SDPDF.

P(D) = P(Dmeasured) (8)
• The measured SDPDF is approximated with a log-

normal distribution, as proposed in [4,10] individually
for the single-satellite state ‘good’ and ‘bad’. The
lognormal probability density function describing the
state duration probability P(D) is given by

P(D) = 1
Dσ

√
2π

exp
[
− (ln(D) − μ)2

2σ 2

]
, (9)

where σ is the standard deviation of ln(D) and μ is
the mean value of ln(D). Using this approximation,
only two parameters per state are required to
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describe the SDPDF. The mean state duration D̄ can
be calculated with

D̄ = exp
[
μ + 0.5σ 2] . (10)

• In [9], a piecewise exponential curve fit of the SDPDF
using four segments is proposed. Clearly, this
requires more parameters than the lognormal curve
fit, but it enables a more flexible re-modelling of the
state duration statistic.

P(D) =

⎧⎪⎪⎨
⎪⎪⎩

a1 e−b1D , D0 ≤ D ≤ D1
a2 e−b2D , D1 ≤ D ≤ D2
a3 e−b3D , D2 ≤ D ≤ D3
a4 e−b4D , D3 ≤ D ≤ D4

(11)

In any case, the STPM has to be derived from mea-
surements, which is independent from the used SDPDF
approximation.

State probability and mean state durations of semi-
Markov chains: In some cases, an approximation of the
state duration with a lognormal distribution or a piecewise
curve fit changes the mean state length and consequently
the total probability of the states. To enable an exact
description of D̄ and P anyway, a correction of the curve
fit can be implemented. For example: for the lognormal fit
the parameter μ can be modified with

μcorrected = ln
[
D̄measured
exp(0.5σ 2)

]
. (12)

2.2 Channel state models for dual-satellite systems
2.2.1 Straightforwardmethod
All of the state modelling methods for the single-satellite
reception mentioned in the previous section can be easily
adapted for dual-satellite modelling. This can be done
by combining the single-satellite states ‘good’ and ‘bad’
from two satellites to four joint states: ‘good good’, ‘good
bad’, ‘bad good’, ‘bad bad’. Therefore, Figure 3 exemplar-
ily shows the semi-Markov model for two satellites. In
case of the first-order Markov model, the 2 × 2 STPM
becomes a 4 × 4 STPM. For the dynamic Markov model a
4 × 4 × nmax STPT is required for the state series simula-
tion. In case of the semi-Markov approach a 4 × 4 STPM
and four separate state duration statistics are required
for the dual-satellite modelling (Figure 3). Once the joint
state sequence of four states is generated, it finally can be
decomposed to extract two separate single-satellite state
sequences.

2.2.2 Approximation of joint state duration statistics for
semi-Markov chains

The lognormal distribution is accepted for single-satellite
state duration modelling in the literature [4,10]. In the
sequel, we use it for the dual-satellite case, too. To illus-
trate some limitations, we discuss two border cases:
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Figure 3 Semi-Markov model for two satellites.

Example 1: Two satellites are modelled independently.
Figure 4 (left) shows an ideal lognormal distribution of
the ‘good’ state of satellites 1 and 2 and the expected
distribution of the combined state ‘good good’.
Example 2: Assuming two satellites having the same

elevation and a marginal azimuth separation. The state
sequence from satellite 2 is exactly the same as the state
sequence from satellite 1, but with a delay of 5m. As a
result, the state duration distribution for ‘good bad’ or ‘bad
good’ is limited to the range of [0m; 5m] and has a peak
at 5m (cf. Figure 4 (right)).
Both examples show that a curve-fit of the joint state

duration requires some degree of flexibility. A good
fit would be a piecewise approximation. Nevertheless,
when analysing real measurement data it is obtained that
already a (simple) lognormal fit provides good approx-
imations of the state durations, as shown later in this
article.

2.2.3 Lutzmodel
Besides the above straightforward method of extending
multiple single-satellite states to joint states, a very effec-
tive approach for two correlated satellites was introduced
in [7]. This algorithm is based on first-order Markov
chains and generates a joint STPM (4 × 4 elements)
from two independent single-satellite STPMs (each with
2 × 2 elements). Using the joint STPM, a joint sequence
of four states can be generated as mentioned above. The
high flexibility of this algorithm becomes clear, since it
requires only single-satellite parameter sets (in form of
2 × 2 STPMs), that are easy to parametrise and are already
available in literature for different elevation angles and a
high number of environments. Databases for correlation
coefficients are available for different environments, ele-
vation angles, and angular separations of the azimuth and
elevation angle [6] as well.
In contrast to this Lutz model, the above mentioned

‘straightforward methods’ need complete datasets for any
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Figure 4 Preliminary consideration for joint state distributions. Two examples for the expected distribution of the joint states with the
assumption, that the single satellite states are lognormal distributed.

combination of elevation angles, azimuth angle separa-
tions and environments to achieve the same variability.

2.3 Comparison of state models for dual-satellite systems
In this section different state modelling methods for
dual-satellite reception are compared based on an exem-
plary scenario extracted from the GNSS measure-
ments (we chose: urban environment, elevation1 = 45◦,
elevation2 = 25◦, azimuth angle separation= 45◦). Six
different approaches are applied to re-simulate this
scenario. For this purpose, Table 1 shows the joint
state probabilities PjointState, the single-satellite state
probabilities Pstate, the correlation coefficient �states, and
the number of parameters required for the models. Fur-
ther on, in Figure 5 the state duration statistics are pre-
sented for the joint states and the single-satellite states
derived from the measurements and after simulation with
different algorithms. The quality of the state duration
modelling from Figure 5 is analysed in terms of the mean
squared error (MSE) between measured and re-simulated
state duration PDF (cf. Table 2).

From Figure 5, Table 1, and Table 2 the following results
are obtained:

• first-order Markov model (Lutz model)

– perfect match of Pstate and �states according to
theory, furthermore PjointState is estimated
correctly

– some deviations between the state duration
statistics and the measurements. The MSE of
the SDPDF is high compared to other
algorithms.

• dynamic Markov model

– perfect match of PjointState, Pstate, and �states
– according to theory, joint state durations are

modelled accurate (MSE = 0)
– good (but not perfect) match of the

single-satellite state durations

Table 1 Measured and re-simulated state probabilities and state correlation coefficients using different dual-satellite
state models for an exemplary scenario: urban, elevation1 = 45◦, elevation2 = 25◦, azimuth separation = 45◦
(g. . . ‘good’-state, b. . . ‘bad’-state, gb . . . ‘good bad’-state, etc.)

Algorithm Corr. Joint state prob. (Sat1& Sat2) Sat1 Sat2 Parameters

coef. Pgg Pgb Pbg Pbb Pg Pb Pg Pb
measured (Reference) 0.15 0.32 0.46 0.05 0.16 0.78 0.22 0.37 0.63

1st order Markov (Lutz) 0.15 0.32 0.46 0.05 0.16 0.78 0.22 0.37 0.63 9

dynamic Markov 0.15 0.32 0.46 0.05 0.16 0.78 0.22 0.37 0.63 11120

partial dynamic Markov 0.10 0.35 0.37 0.10 0.17 0.72 0.28 0.45 0.55 2792

Semi-Markov, no fit 0.15 0.32 0.46 0.05 0.16 0.78 0.22 0.37 0.63 2796

Semi-Markov, lognormal fit 0.15 0.33 0.46 0.05 0.16 0.79 0.21 0.38 0.62 20

Semi-M., logn.fit + correction 0.15 0.32 0.46 0.05 0.16 0.78 0.22 0.37 0.63 20

Semi-Markov, piecew. exp. fit 0.15 0.33 0.45 0.05 0.17 0.78 0.22 0.38 0.62 64
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Figure 5 State duration statistics for different state models.Measured and resimulated state duration statistics of two single satellites (right)
and of the combined states (left) for a single scenario (urban, elevation1 = 45◦ , elevation2 = 25◦ , azimuth separation = 45◦). Each model
generates a combined state sequence of ‘good good’, ‘good bad’, ‘bad good’, and ‘bad bad’. To get the state sequences of the individual satellites
this joint sequence is decomposed afterwards. The ideal dual-satellite model should describe correctly the state duration statistics and the state
probabilities of the joint states as well as the state duration statistics and the state probabilities of each single satellite.

• partial dynamic Markov model

– perfect match of joint state durations
(MSE = 0)

– good match of the single-satellite state
durations

– despite the high model complexity, PjointState
and Pstate can not be re-modelled accurately

• semi-Markov with measured SDPDF

– perfect match of PjointState, Pstate, �states, and
joint state duration statistics

– good match of single-satellite duration
statistics

– same results as with the dynamic Markov
model, but with less parameters
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Table 2 Mean Squared Error (MSE) of the re-simulated state duration PDF to themeasured state duration PDF using
different dual-satellite state models for an exemplary scenario (cf. Figure 5)

Algorithm MSE in [10−5] MSE in [10−5] MSE in [10−5] Parameters
for Sat1&Sat2 for Sat1 for Sat2

gg gb bg bb g b g b

1st order Markov (Lutz) 0.41 0.99 1.19 0.72 0.72 1.10 0.67 1.36 9

Dynamic Markov 0 0 0 0 0.31 0.15 0.23 0.47 11120

Partial dynamic Markov 0 0 0 0 0.28 0.28 0.53 0.57 2792

Semi-Markov, no fit 0 0 0 0 0.33 0.25 0.34 0.58 2796

Semi-Markov, lognormal fit 0.23 0.17 0.19 0.13 0.39 0.38 0.45 0.67 20

Semi-Markov, logn.fit + correction 0.24 0.17 0.21 0.17 0.40 0.36 0.47 0.67 20

Semi-Markov, piecewise exp. fit 0.24 0.19 0.21 0.23 0.42 0.45 0.54 0.64 64

• semi-Markov with lognormal-fit

– marginal differences of PjointState, Pstate, and
�states from measurements

– good match of the of joint states and
single-satellite state durations: the MSE is
much lower compared to first-order Markov
models, but higher than dynamic Markov
models

• semi-Markov with lognormal-fit and correction of
mean state duration (cf. Equation (12))

– due to the modification, perfect match of
PjointState, Pstate, and �states

– since the correction of the state duration is
only marginal, the MSE is marginal greater
than the initial lognormal-fit

• semi-Markov with piecewise exponential
approximated SDPDF

– marginal differences of PjointState, Pstate, and
�states from measurements

– good match of duration statistics for joint
states and single-satellite states

Based on the previous results, Table 3 presents a com-
parison of the channel models in terms of complexity,
their accuracy for state probability modelling, and their
capability for state duration modelling.
With respect to the required number of parameters,

it can be concluded that the ‘dynamic Markov model’
(no approximations) and the ‘semi-Markov model with
measured SDPDF’ are not feasible to generate a dual-
satellite model database representing arbitrary receive
situations, although they achieve a perfect re-modelling
of state probabilities and state duration statistics. The
‘partial dynamic Markov model’ (and consequently its
approximated versions) is not able to reproduce the state
probabilities correctly. As a consequence, its applicability

for state modelling is limited. The Lutz model, the semi-
Markov model with a lognormal SDPDF, and the semi-
Markov model with a piecewise exponential approxi-
mated SDPDF achieve good modelling results by using
an acceptable number of parameters. These three mod-
els are compared in Section 4 using a large number of
receive scenarios.

2.4 Channel state models for multi-satellite systems
In general, all state models mentioned in the previous
subsections are extendable to multiple satellites. However,
the number of required parameters for the models grows
exponentially with the number of satellites. To avoid
excessive complexity for the state modelling with more
than two satellites, a ‘Master–Slave’ approach is planned
[11]. Within the Master–Slave approach it is assumed
that each ‘Slave’ satellite depends only on a ‘Master’ satel-
lite, whereas the correlation between the slaves is not
described (cf. Figure 6).

Table 3 Performance comparison of dual-satellite state
models

Algorithm State probability State duration Model
modelling modelling complexity

1st order
Markov (Lutz)

perfect bad low

Dynamic
Markov

perfect perfect high

Partial dynamic
Markov

bad perfect high

Semi-Markov,
no fit

perfect perfect high

Semi-Markov,
lognormal fit

good good medium

Semi-Markov,
logn.fit+correction

perfect good medium

Semi-Markov,
piecewise exp.
fit

good good medium
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Figure 6Master–Slave approach for multi-satellite modelling. Several ‘Slave’ satellites are modelled according to the correlation to one ‘Master’
satellite, while neglecting the correlation between the ‘Slave’ satellites. The Master–Slave method has a reduced complexity compared to the
conventional approach, where each individual correlation is described.

Some preliminary investigations of this concept for
dual-satellite reception yields that correlation coeffi-
cients, state probabilities of single satellites, and joint
state probabilities can be modelled accurately, whereas
a correct state duration modelling of the Slaves has
limitations.
To validate the Master–Slave concept for multi-satellite

reception, a statistical analysis for constellations with
at least three satellites needs to be performed. This is
addressed in near future activities.

2.5 Dual-satellite LMSmodel with correlated state
sequences

In the context of the project MiLADY, extensive satel-
lite signal measurements were analysed to develop a
new multi-satellite channel model. The basis is the two-
state model from Prieto-Cerdeira et al. [4]. It includes
a versatile selection of Loo-parameter triplets after

each state transition to describe slow and fast signal
variations.
However, the analysis of themeasurement data captured

in the MiLADY project indicate some changes to the ini-
tial two-state model [4] in terms of describing slow and
fast fading characteristics. Further on, correlation effects
for slow and fast variations between the satellites were
obtained from the data. A comprehensive study for slow
and fast fading effects is topic of ongoing work and out of
scope of this article.
For a preliminary simulation of timeseries for dual-

satellite reception, Figure 7 shows the structure of a dual-
satellite channel model with correlated state sequences. It
was found, that correlated state sequences dominates the
satellite signals correlation. They are jointly modelled in
the state sequence generator (SSG). For the simulation of
slow and fast variations, we also derived Loo parameters
from the SDARS measurements. They are to be applied

Figure 7 Building blocks of the dual-satellite channel model with correlated state sequences. Slow and fast fading can be preliminary
generated according to Prieto-Cerdeira et al. [4] without regarding a correlation between the satellites. A comprehensive study about the
correlation of small-scale signal variations as well as a modification of the ‘Slow and fast fading generator’ is out of scope of this article.
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according to Prieto-Cerdeira et al. [4] and can be found in
the Additional file 1.

3 Satellite signal measurements and data
processing for angle diversity analysis

To derive the parameters for a new multi-satellite LMS
model, two measurement campaigns were carried out in
the context of the MiLADY project.

3.1 SDARSmeasurements, U.S. east coast
In a first campaign the power levels of the SDARS satellites
(S-Band) were recorded along the east coast of the U.S.
(cf. Figure 8). The signals were sampled with 2.1 kHz, that
allows to derive all dual-satellite model parameters for
very slow variations (state parameters) and slow- and fast
variations (Loo parameters). However, based on two geo-
stationary satellites and two satellites in the high elliptical
orbit only a few orbital constellations can be gained. The
US campaign and measurement statistics were described
in detail in [11,12].

3.2 GNSSmeasurements, Erlangen, Germany
A second measurement campaign was carried out around
Erlangen (Germany) to record the carrier-to-noise spec-
tral density ratio (C/N0) from GNSS satellites in the
L-Band. Due to a permanent availability of at least eight
satellites on the hemisphere, a comprehensive analy-
sis of fading effects for a wide range of elevation and
azimuth angle combinations of multiple satellites is pos-
sible. Because of the low C/N0 resolution in time (20Hz)
and in amplitude (1 dB quantisation), only parameters for
slow variations can be derived.

The GNSS campaign was split in two parts:

• The first part of the campaign has been carried out in
July 2009. The GNSS antenna was mounted on a

measurement van at a height of 2m. A measurement
round-trip of 38 km length was driven ten times,
covering several environments (suburban, forest,
open, commercial) in and around Erlangen
(cf. Figure 8, red line).

• The second part of the measurements was done in late
September and early October 2010 by mounting the
setup onto two city buses, driving on different routes.
The GNSS antenna was mounted at a height of 3.1m.
The city buses drove an identical route for 3 days.
The covered environments were urban, suburban and
partly open rural areas. The individual routes of the
two buses spanned 7 km and 6 km in North–South
direction and 6 km and 5 km in West–East direction,
respectively (cf. Figure 8, green and yellow line).

The trials were carried out in summer and in autumn
months, where leaves were on the trees.
For the measurements a professional GNSS receiver

(built by Fraunhofer IIS by using a Javad receiver core) was
used. Beside information of vehicle speed and positioning
data, the GNSS signal includes a C/N0 estimation of the
GPS L1 carrier at 1575.420MHz. It has a dynamic range
of 20 dB and a quantisation of 1 dB. The time resolution
of the C/N0 estimation is 20Hz. At lower signal levels of
a specific satellite (e.g. during deep blockages), the GNSS
receiver loses the satellites signal synchronisation and the
C/N0 estimation of this satellite is no more available. In
terms of state detection it will be defined as ‘bad’ state.
Additional information of azimuth and elevation of the
individual satellites were captured with 1◦ resolution.
Table 4 summarises the main aspects of the two

MiLADY measurement campaigns.

3.3 Data processing and state identification
The analysis pipeline for both the SDARS and GNSS data
is similar. First, the signal is normalised to LOS level [13].

Figure 8Measurement campaigns within the project MiLADY. Left: SDARS measurements along the U.S. East Coast. Right: GNSS measurements
in area of Erlangen, Germany. The colors indicate three parts of the GNSS measurements with a van (red), and two city buses (green and yellow).
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Table 4 Overview on twomeasurement campaigns for the
parameter extraction of amulti-satellite LMSmodel

SDARSmeasurements
(USA, East Coast)

GNSSmeasurements
(Germany, Erlangen)

High sample rate (2.1 kHz) Low sample rate (20 Hz)

→ Reliable for Loo parameter
extraction and state parameter
extraction

→ Reliable for state parameter
extraction

4 satellites (2 GEO from XM, 3 HEO
from Sirius)

>20 satellites (MEO from GPS,
GLONASS)

→ Limited combinations of orbital
positions

→ Many combinations of orbital
positions

Environments: urban, suburban,
tree-shadowed, forest, commercial,
highway (open)

Environments: urban, suburban,
forest, commercial, open

Model validation for a limited set of
orbital positions

Preliminary state parameters for
many orbital positions which
need refinement and validation

Afterwards, the timeseries is re-sampled into travelled
distance units. As resolution, 1 cm and 10 cm is chosen for
the SDARS and GNSS data, respectively. State identifica-
tion is performed by global thresholding (threshold 5 dB
below LOS) of the low-pass filtered signal (sliding window
over 5m), similar to [10].
Figure 9 shows example measurement sequences from

GNSS and SDARS trials, which are separated into two
states.

3.4 Separation of data into environments and satellite
positions

3.4.1 Single-satellite analysis
Single-satellite reception depends on the kind of envi-
ronment, the elevation angle of the satellite, and the
azimuth of the satellite relative to the driving direction.
For a detailed analysis of the single-satellite state charac-
teristics, the SDARS- and GNSS measurement data were
divided into:

• different environment types ‘Urban’, ‘Suburban’,
‘Forest’, ‘Commercial’, and ‘Open’. The environment
classification for the SDARS measurement data was
performed by visual inspection of the image material
from two cameras. For the GNSS measurement data
the Land-Usage data from the European Corine
project [14] was used.

• different elevation angles from 10◦ to 90◦ in segments
of 10◦. The mean elevation angles represented by
these datasets therefore are 15◦, 25◦, . . ., 85◦,
respectively.

• four classes of driving directions (for GNSS data,
only) with the intervals 0◦ . . . 10◦, 10◦ . . . 30◦,
30◦ . . . 60◦, and 60◦ . . . 90◦.

Figure 10 shows the amount of data from SDARS and
GNSS measurements for single-satellite analysis. Due to
the limited amount of SDARS data (except highway/open
environments), different driving directions are excluded
from analysis.

3.4.2 Dual-satellite analysis
The dual-satellite (and multi-satellite) reception depends
on the kind of environment, the elevation angle of each
satellite, and the azimuth of each satellite relative to the
driving direction. Especially the angular separation of
the satellites of elevation and azimuth are crucial, since
it affects the correlation of the received signals. For a
detailed analysis of state characteristics for dual-satellite
reception, the measurement data from SDARS and GNSS
measurements were divided into:

• five environments (the same as for single-satellite
case).

• combinations of eight elevation angles as used for
single-satellite analysis. Thus, the elevation angle
separation is included as well.
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Figure 9 Exemplary measurement signals from two campaigns separated into ‘good’ state and ‘bad’ state. Left: normalised C/N from
SDARS measurements in the USA. Right: normalised C/N0 estimation at the GNSS receiver from measurements in Germany.
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Figure 10 Amount of data for single-satellite reception. Amount of data from SDARS measurements and GNSS measurements for different
environments and elevation angles. Please note that the values are only connected for better visibility.

• seven intervals of the azimuth angle separation
between the satellites (0◦ . . . 10◦, 10◦ . . . 30◦,
30◦ . . . 60◦, 60◦ . . . 90◦, 90◦ . . . 120◦, 0◦ . . . 150◦, and
150◦ . . . 180◦).

This adds up to a total of 5 · 8 · 8 · 7 = 2, 240 segments
(further denoted as receive scenario) of measurement data.
A further division into driving directions was omitted. For
a reliable dual-satellite state analysis (especially in terms
of state duration analysis) and parametrisation of the
Markov models, a minimum number of states is required.
For this purpose, we define a receive scenario as ‘valid’ if
each combined state (‘good good’, ‘good bad’, ‘bad good’,
‘bad bad’) is visited at least 50 timesa. It corresponds to a
state sequence withmore than 200 state transitions. Based
on this condition, Figure 11 presents the available receive
scenarios for the SDARS and GNSS measurements. The
dual-satellite state analysis in this article is based on the
GNSS data. A dual-satellite analysis of the SDARS data is
omitted, since the limited SDARS constellations restricts
conclusions for dual-satellite reception in dependence on
azimuth angle separation or elevation.
Figure 12 presents the amount of data within the pro-

posed 2,240 receive scenarios sorted by measurement
length, and by number of visits of the combined states.
From GNSS data, about 2,000 scenarios are valid for anal-
ysis (with ≥50 visits per combined state). In the SDARS
data only 200 valid receive scenarios are found. Tak-
ing the condition of ≥50 visits per combined state, the
shortest measurement length is ≈4 km for GNSS and
SDARS. From GNSS, about 50% of the scenarios include
more than 100 km of data. Even 1% of the scenarios con-
sists of more than 1,000 km. It allows to draw reliable
statistical conclusions for dual-satellite reception. Note
that the available measurement length for analysis does
not directly correspond to the driven distance. It rather
describes the available length after combining any of the
visible satellites.

4 Measurement results and state modelling
statistics

In this section the results of the GNSS and SDARS anal-
yses are presented in terms of state probabilities and
state duration statistics for different environments and
orbital positions of the satellites. In two subsections
the characteristics for single-satellite reception and dual-
satellite reception are addressed. Furthermore, for each
dual-satellite receive scenario the parameters for differ-
ent channel models are derived. Thus, the re-modelling
results can be compared with the measurements.

4.1 Results for the single-satellite channel
Figure 13 shows the probabilities of the ‘bad’-state
for single-satellite reception from SDARS and GNSS
measurements for different environments and elevation
angles. Since only two states are assumed, the ‘good’-state
probability is calculated with Pgood = 1 − Pbad.

The following observations can be made in Figure 13:

• The ‘bad’-state probability increases with increasing
angle between satellite azimuth and driving direction
within the interval 0◦ . . . 90◦. Except, for high
elevation angles (>70◦) the influence of the driving
direction is low. For system planning and the
application of effective fading mitigation techniques
it is important to consider the worst case
(≈90◦ azimuth).

• In general, the ‘bad’-state probability decreases with
increasing satellite elevation. The slope of the curve
depends on the driving direction.

• Comparing different environments, the ‘bad’-state
probability in urban and forest areas is on average
higher than in other environments. Also the variance
between the worst (90◦ azimuth) and best (0◦
azimuth) reception case is higher than in suburban,
commercial and forest.
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Figure 11 Available orbital constellations for dual-satellite reception. Available orbital constellations of two satellites from SDARS
measurements (coloured diamonds) and from GNSS measurements (coloured fields) quantised to seven azimuth separation sections, nine elevation
ranges and five environments. The colour indicates the measurement length. The GNSS data is further used for dual-satellite state analysis. A
dual-satellite state analysis from SDARS is omitted, since conclusions for dual-satellite reception in dependency to azimuth angle separation or
elevation are rather limited.

• In case of GNSS, for elevation angles above 70◦ the
‘bad’-state probability in urban environments is lower
than in suburban and forest environments. A reason
could be that trees reach above the streets in
suburban environments and forests, whereas in
urban the probability of trees is low.

• Comparing SDARS and GNSS measurements similar
results are obtained for urban areas only. In
suburban, forest, commercial, and open
environments a lower signal availability is obtained
for SDARS measurements. A reason could be mainly
wider streets in the U.S. than in Europe. Furthermore,
for interurban measurement sections during SDARS
trials the streets were mainly oriented towards the
satellites. Also different methods for environment
classification may have an influence to the results.

4.2 Results for the dual-satellite channel
A dual-satellite analysis was done for five different envi-
ronments, the combination of eight different elevation
angles from two satellites, and seven intervals of the
azimuth angle separation between the satellites (cf.
Figure 11). A total of 5 · 8 · 8 · 7 = 2, 240 segments of
measurement data were definedb. Due to that fact, dis-
playing the results of dual-satellite modelling is much
more complex than in the single-satellite case. Therefore,
in this article only the urban results are presented for only
a subset of receive scenarios. With regard to an accept-
able number of model parameters, four state modelling
approaches are selected and compared in this section:
the Lutz model based on first-order Markov chains, the
semi-Markov model assuming a lognormal SDPDF fit
and its modification according to Equation (12), and the
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Figure 12 Amount of data for dual-satellite reception. Amount of data for dual-satellite analysis within 2,240 receive scenarios (5 environments ·
8 × 8 elevation angles · 7 azimuth separations) sorted by measurement length (left) and by number of visits per combined state (right). The
criterion for ‘valid’ scenarios is that ≥50 visits for each joint state are achieved.

semi-Markov model assuming a piecewise exponential
SDPDF fit.

4.2.1 State correlation
Figure 14 shows the correlation coefficient between the
states �states of two satellites in dependency on the
azimuth separation derived from the measurements and
after re-simulation with three dual-satellite state models
for the urban environment. Each subplot shows a certain
combination of the two elevation angles. As this matrix of
subplots is symmetric, only the lower triangle is shown.
For a better visibility, only the elevation angles below 50◦
are shown to focus on the critical receive scenarios.

The following observations can be made in Figure 14:

• In case of small azimuth separations, both state
sequences are highly correlated (up to �states = 0.9).

(Note: For two exactly co-located satellites �states = 1
is expected, this special case is not covered in the
results.) The correlation has a minimum for azimuth
separations between 60◦ and 120◦. It can reach values
�states < 0. Towards 180◦ azimuth separation, the
correlation coefficient slightly increases.

• In case of small azimuth separation, the correlation
coefficient further depends on the elevation angle
separation between two satellites.

• The Lutz model perfectly re-simulates the correlation
coefficient. This is not surprising, as the correlation
coefficient is one parameter of the Lutz model. It
combines two independent state sequences of a
single-satellite simulator into a dual-satellite variant.

• A good fit of the correlation coefficients is also
achieved with the semi-Markov approaches assuming
a lognormal fit or a piecewise exponential fit of the
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Figure 13 Probability of the ‘bad’-state for the single-satellite reception. ‘bad’-state probabilities derived from the GNSS and SDARS
measurements for the single satellite reception in dependency to the elevation angle and the azimuth angle relative to the driving direction. The
probability of the ‘good’ state is 1 − Pbad.
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SDPDF. For only a small number of receive scenarios
the correlation coefficient deviates by ±0.1 from the
measurements. It is acceptable, since the variation of
the correlation coefficients between different
elevation angles and azimuth separations is much
higher.

• After a modification of the lognormal fit according to
Equation (12), the correlation �states generated with
the semi-Markov model matches exactly with the
measurements.

Similar to Figure 14, the Additional files 2, 3, 4 and
5 show the correlation coefficients between two satellites
for the environments Suburban, Forest, Commercial, and
Open.

4.2.2 State probability
Figure 15 shows the probabilities of the ‘bad bad’-state
Pbad bad derived from the measurements and re-simulated
with three channel models for the urban environment.
The ‘bad bad’-state is the critical system state and there-
fore requires a high modelling accuracy. The layout of
elevation angles and azimuth separations is equal to
Figure 14.

The following can be concluded from Figure 15:

• The ‘bad bad’-state probability strongly depends on
the elevation angles of the single satellites
(cf. Figure 13). Assuming 15◦ elevation of two
satellites, Pbad bad is between 0.5 and 0.7 with respect
to the azimuth angle separation. For the combination
elevation1 = 45◦ and elevation2 = 15◦ Pbad bad is
between 0.15 and 0.25. When both satellites have 45◦
elevation, Pbad bad is only between 0.05 and 0.20.

• The ‘bad bad’-state probability depends further on
the azimuth angle separation. It is related to the state
correlation between the satellites (cf. Figure 14),
whereas a low correlation coefficient results in a low
‘bad bad’-state probability and provides therefore a
high signal availability. A large variance due to the
azimuth angle separation is seen for low elevation
angles. Here, between 5◦ azimuth separation and
about 90◦ azimuth separation a reduction of Pbad bad
of 20% is obtained for elevations < 30◦.

• The Lutz model perfectly fits the state probabilities.
This is one of the great advantages of first-order
Markov chains.

• Both semi-Markov models reproduce the ‘bad
bad’-state probability with an accuracy of ±0.03 in
general. An exception is obtained for 15◦ elevation of

Figure 14 Correlation coefficients of the state sequences from two satellites in dependency to the azimuth separation and for different
elevation angle combinations derived from the measurements and recalculated with different channel models.
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both satellites, where the lognormal fit is 0.10 higher,
and the piecewise exponential fit is 0.07 lower than
the measured state probability.

• A correction of the lognormal fit provides an exact
re-production of the state probabilities.

4.2.3 Mean state duration
The mean durations of the state ‘bad bad’ (no signal
reception from both satellites) are given in Figure 16.
The results show that in worst case (15◦ elevation, small
azimuth separation) the mean blockage duration is up to
150m. If only one of the satellites has a higher elevation,
the mean duration of ‘bad bad’ is significantly lower. Val-
ues are ≈60, ≈40 and ≈20m for elevations 25◦, 35◦ and
45◦, respectively.
From Figure 16 it is obtained that the Lutz model and

the piecewise exponential curve-fit accurate describe the
mean state length. For both algorithms, only a small
difference between re-simulation and measurements is
obtained for 15◦ elevation. In case of the lognormal curve
fit (without correction) the mean duration is clearly over-
estimated for 15◦ elevation. The modified lognormal fit
reproduces exactly the mean state duration.

4.2.4 Validation of state durationmodelling
Figure 17 shows the state duration statistics for the
‘bad bad’-state for the measurements and re-simulations
with four state models for different elevation angles and
azimuth angle separations. The quality of the curve-fits is
given in Figure 18 in terms ofMSEs between themeasured
and re-modelled SDPDFc. From Figures 17 and 18 it can
be concluded that:

• As already stated, the state durations simulated with
the Lutz model (based on first-order Markov chains)
follow always an exponential distribution. It is seen
that the exponential distribution doesn’t fit the
measured state durations in an accurate manner. As
seen in Figure 17, the probability of the ‘bad
bad’-state durations between 1 and 100m are mainly
overestimated, whereas the probability of long states
above 100m is too low. A deviation of the state
duration statistic (complementary state duration
CDF) up to 20% is seen between the measurements
and the re-simulation with the Lutz model.

• Semi-Markov chains have high flexibility in state
duration modelling. It is seen that the piecewise
exponential fit as well as the lognormal fit accurately

Figure 15 Probability of the ‘bad bad’-state in dependency to the azimuth separation for different elevation angle combinations derived
from the measurements and recalculated with different channel models.
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approximate the measured state durations. The MSE
values Figure 18 underline this fact.

• Although a piecewise exponential function has higher
flexibility in curve-fitting, the lognormal fit provides
the same good results for state duration modelling.
Due to the less number of lognormal parameters per
SDPDF (2 lognormal parameters instead of 11
parameters for piecewise exp. fit with 4 segments, cf.
Equation (11)), it is the preferred semi-Markov
approximation.

4.2.5 Conclusions on dual-satellite statemodelling
For dual-satellite propagation modelling, the Lutz model
is able to describe the state probabilities and average
state durations exactly. It has a low complexity, since only
single-satellite parameters and a correlation coefficient is
needed to generate correlated state series for two satel-
lites. A weakness is the capability of correct state duration
modelling. For the optimisation of physical layer and link
layer parameters for satellite broadcasting systems with
high quality-of-service (QoS) requirements it has some
limitations, when e.g. system blockage lengths or LOS
durations are insufficiently described.
Semi-Markovmodels accurately describe the state dura-

tions of the dual-satellite LMS propagation channel. To

reduce the complexity, two variants of SDPDF approxi-
mations were analysed: a piecewise exponential fit and a
lognormal fit. The curve fits can be modified such that
the state probabilities and the correlation coefficients of
the measurements are exactly re-simulated. It has been
shown that both the piecewise exponential fit as well as
the lognormal fit describe the state duration with high
accuracy. Due to the low number of required parameters,
the lognormal distribution is the preferred curve fit of the
SDPDF.

5 Conclusions
In this article, we compared different approaches for
dual-satellite state modelling based on experimental data
from different environment types, various combinations
of two satellite elevation angles and different azimuth
angle separations.
To find an appropriate state model architecture, the

first part of this article gives a closed overview on exist-
ing state modelling approaches for single-satellite and
dual-satellite reception. Three categories of models are
presented: first-order Markov models, dynamic Markov
models, and semi-Markov models. Based on one mea-
surement example, a detailed analysis of diverse variants
of these approaches for dual-satellite state modelling is

Figure 16Mean duration of ‘bad bad’-state in dependency to the azimuth separation and for different elevation angle combinations
derived from the measurements and recalculated with different channel models.
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Figure 17 bad bad’-state duration statistics of the measurements and of different channel models for four elevation angles (with
elevation1= elevation2) and two azimuth angle separations in the urban environment.

performed. As evaluation criterion, the single- and dual-
satellite state probabilities and the state duration statis-
tics are compared with the measurements. Further on,
the practicability of the state modelling approaches in
terms of dual-satellite channel models is discussed. It
was concluded that, due to the high number of required
parameters and the high complexity, dynamic Markov
models are not feasible in terms of dual-satellite state
modelling.

In the second part of this article, three dual-satellite
modelling approaches with low complexity are analysed
on a large set of receive scenarios: a first-order Markov
model for correlated satellites (Lutz model), a semi-
Markov approach assuming a lognormal SDPDF fit, and a
semi-Markov approach assuming a piecewise exponential
SDPDF fit. For this purpose, the GNSS measurements
are separated into various receive scenarios including
five environments (urban, suburban, forest, commercial,
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Figure 18 Evaluation of the state duration fit for the ‘bad bad’-state. The Mean Squared Error (MSE) of the state duration PDF was calculated
for four different state modelling approaches.

open), 8 × 8 sections with constant elevation angles of
two satellites between 10◦ and 90◦, and seven differ-
ent intervals of the azimuth angle separation. Param-
eters for these receive scenarios has been derived for
the three selected modelling approaches. Afterwards,
the re-modelling results are compared with the mea-
surements in terms of the correlation coefficient, the
state probability and the state durations of the critical
system state ‘bad bad’ in dependency on the azimuth
angle separation and the elevation angles of two satel-
lites for the urban environment. It was shown that
the Lutz model accurately re-simulates the correlation
coefficient and the state probability, whereas the state
duration statistics are insufficiently described. The semi-
Markov models describe accurately the state probabilities,
the correlation coefficients, and also the state dura-
tion statistics. With respect to the number of param-
eters, the semi-Markov approach using a lognormal fit
of the SDPDF is the preferred model for the dual-
satellite state modelling and is proposed therefore for
the a new dual-satellite channel model for broadcasting
applications.
State parameters for the semi-Markov model as well as

for the Lutz model for single- and dual-satellite recep-
tion are found in the Additional files 6, 7, 8 and 9.

For the sake of completeness, we also derived Loo param-
eters from SDARS measurement data describing slow
and fast fading effects (cf. Additional file 1). By using
the two-state model according to Prieto-Cerdeira et al.
[4], the parameters enable a simulation of LMS time-
series for single-satellite and dual-satellite reception for
different environments, elevation angles, and azimuth
separations.
In the near future we will also focus on modelling of

the small-scale fading. By analysing the extensive SDARS
measurement data in terms of slow- and fast signal
variations within MiLADY, some modifications of the
two-state model from [4] are indicated. Recently, mod-
ifications were proposed in [15]. A validation of these
new concepts for a multi-satellite model is topic of
ongoing work.
A further task is the state analysis of multi-satellite

constellations with three or more satellites. Due to the
exponential growth of the model complexity with the
number of satellites, new concepts must be investigated.
A promising approach would be a Master–Slave con-
cept, where several ‘Slave’ satellites are modelled accord-
ing to their correlation with one ‘Master’ satellite, while
neglecting the correlation between the ‘Slave’ satellites
(cf. Section 2.4). Based on statistical parameters derived
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frommeasurement data (such as the joint state probability
for ‘bad bad bad’ for three satellites), the Master–Slave
concept will be evaluated.
To improve the consistency of a state parameter

database, activities are planned to extract state param-
eters with alternative methods, such as the analysis of
environmental images from fish-eye cameras.

6 Endnotes
a The state duration statistic of a combined state include
≥ 50 elements.
b For single-satellite analysis only 160 segments (8 eleva-
tion angles, 5 environments and 4 driving directions) were
required.
c Note: The MSE is estimated between measured and
re-simulated state duration PDF, but the figures show
the complementary CDF of the state duration for better
visibility.

Additional files

Additional file 1: Two-state model parameters derived from SDARS
measurements.

Additional file 2: Correlation coefficients of the state sequences from
two satellites in dependency on the azimuth separation and for
different elevation angle combinations derived from the
measurements and recalculated with different channel models in the
suburban environment.

Additional file 3: Correlation coefficients of the state sequences from
two satellites in dependency on the azimuth separation and for
different elevation angle combinations derived from the
measurements and recalculated with different channel models in the
forest environment.

Additional file 4: Correlation coefficients of the state sequences from
two satellites in dependency on the azimuth separation and for
different elevation angle combinations derived from the
measurements and recalculated with different channel models in the
commercial environment.

Additional file 5: Correlation coefficients of the state sequences from
two satellites in dependency on the azimuth separation and for
different elevation angle combinations derived from the
measurements and recalculated with different channel models in the
open environment.

Additional file 6: State parameters from SDARSmeasurements for a
first-order Markov model and a semi-Markov model for the
single-satellite reception. Each row corresponds to one receive scenario:
environment, elevation, driving direction with resp. to satellite azimuth.

Additional file 7: State parameters from GNSSmeasurements for a
first-order Markov model and a semi-Markov model for the
single-satellite reception. Each row corresponds to one receive scenario:
environment, elevation, driving direction with resp. to satellite azimuth.

Additional file 8: List of parameters for the semi-Markov model using
a lognormal state duration PDF for dual-satellite state modelling.
Each row corresponds to one receive scenario: environment, elevation of
satellite 1, elevation of satellite 2, azimuth angle separation. 20 parameters
per receive scenario are required: μ1, σ1, . . . , μ4, σ4 are the parameters to
describe the lognormal distribution of four joint states with the order
‘good good’, ‘good bad’, ‘bad good’, ‘bad bad’ (cf. Equation (9)); the
parameters pij (with i �= j and i, j ∈ 1, 2, 3, 4) are the state transition
probabilities according to the joint state

transition probability matrixPtrans; the state transition probabilities pii are
zero.

Additional file 9: List of parameters for the Lutz model for
dual-satellite state modelling. Each row corresponds to one receive
scenario: environment, elevation of satellite 1, elevation of satellite 2,
azimuth angle separation. The parameters for one receive scenario are a
correlation coefficient and the state transition probabilities of two satellites
(9 parameters).
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