-

View metadata, citation and similar papers at core.ac.uk brought to you byff CORE

provided by Crossref

Okut et al. Genetics Selection Evolution 2013, 45:34 G enetics

http://www.gsejournal.org/content/45/1/34 .
P gs€) 9 Selection
Evolution

RESEARCH Open Access

Predicting expected progeny difference for
marbling score in Angus cattle using artificial
neural networks and Bayesian regression models

Hayrettin Okut'?", Xiao-Liao Wu'?, Guilherme JM Rosa'*, Stewart Bauck®, Brent W Woodward®,
Robert D Schnabel’, Jeremy F Taylor’ and Daniel Gianola'**

Abstract

Background: Artificial neural networks (ANN) mimic the function of the human brain and are capable of
performing massively parallel computations for data processing and knowledge representation. ANN can capture
nonlinear relationships between predictors and responses and can adaptively learn complex functional forms, in
particular, for situations where conventional regression models are ineffective. In a previous study, ANN with
Bayesian regularization outperformed a benchmark linear model when predicting milk yield in dairy cattle or grain
yield of wheat. Although breeding values rely on the assumption of additive inheritance, the predictive capabilities
of ANN are of interest from the perspective of their potential to increase the accuracy of prediction of molecular
breeding values used for genomic selection. This motivated the present study, in which the aim was to investigate
the accuracy of ANN when predicting the expected progeny difference (EPD) of marbling score in Angus cattle.
Various ANN architectures were explored, which involved two training algorithms, two types of activation functions,
and from 1 to 4 neurons in hidden layers. For comparison, BayesCm models were used to select a subset of optimal
markers (referred to as feature selection), under the assumption of additive inheritance, and then the marker effects
were estimated using BayesCrm with 11 set equal to zero. This procedure is referred to as BayesCpC and was
implemented on a high-throughput computing cluster.

Results: The ANN with Bayesian regularization method performed equally well for prediction of EPD as BayesCpC,
based on prediction accuracy and sum of squared errors. With the 3K-SNP panel, for example, prediction accuracy
was 0.776 using BayesCpC, and ranged from 0.776 to 0.807 using BRANN. With the selected 700-SNP panel,
prediction accuracy was 0.863 for BayesCpC and ranged from 0.842 to 0.858 for BRANN. However, prediction
accuracy for the ANN with scaled conjugate gradient back-propagation was lower, ranging from 0.653 to 0.689 with
the 3K-SNP panel, and from 0.743 to 0.793 with the selected 700-SNP panel.

Conclusions: ANN with Bayesian regularization performed as well as linear Bayesian regression models in
predicting additive genetic values, supporting the idea that ANN are useful as universal approximators of functions
of interest in breeding contexts.

* Correspondence: okut.hayrettin@gmail.com

1Department of Animal Sciences, University of Wisconsin, Madison, WI 53706,
USA

’Department of Animal Science, Biometry and Genetics Branch, University of
Yuzuncu Yil, Van 65080, Turkey

Full list of author information is available at the end of the article

© 2013 Okut et al, licensee BioMed Central Ltd. This is an Open Access article distributed under the terms of the Creative

() BioMed Central Commons Attribution License (http://creativecommons.org/licenses/by/2.0), which permits unrestricted use, distribution, and

reproduction in any medium, provided the original work is properly cited.

https://core.ac.uk/display/208042334?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
mailto:okut.hayrettin@gmail.com
http://creativecommons.org/licenses/by/2.0

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

Background

The availability of genome-wide dense marker panels for
many species of plants and animals has opened doors
for incorporating genomic information into practical
breeding programs, an approach known as genomic se-
lection [1]. It is now easy to generate genome-wide scans
with more than one million SNPs (single nucleotide
polymorphisms) but these huge databases pose chal-
lenges in computational capacity, data analysis and inter-
pretation of results for genomic selection [2]. For
example, even with an initial screening to reduce the
number of markers to less than ten thousand SNPs, it is
still not feasible for most computational platforms to
evaluate all combinations of SNP associations, even when
low-dimension interactions are explored [3]. Hence, re-
duction of dimensionality and feature extraction arguably
play pivotal roles in current genomic studies [4]. The in-
tensive computation inherent in these problems has al-
tered the course of methodological developments, and the
same is true for genomic selection [5].

In the genome-enabled prediction of genetic merit for
breeding purposes, parametric statistical methods tend
to make strong assumptions about functional forms and
the statistical distribution of marker effects. On the one
hand, ridge regression best linear unbiased prediction
assumes that all markers have an effect on the trait of
interest, and that these effects share a common variance
in their distribution. This simple assumption is obviously
not true in reality. On the other hand, hierarchical linear
Bayesian regression models, such as BayesA and BayesB
[1], allow marker effects to be estimated with differential
shrinkage. However, posterior inference, in particular for
the variances of marker effects, depends heavily on the
prior assumptions used in these models [6]. Hence,
BayesCrnt [7] was proposed to overcome some of the
above mentioned drawbacks. A BayesCm model postu-
lates an unknown probability m that a SNP has no effect
at all on the trait, while all non-zero SNP effects are as-
sumed to be random samples from a normal distribution
with null mean and a common variance. Recently, there
has been interest in the use of non-parametric methods
for the prediction of quantitative traits, such as reprodu-
cing kernel Hilbert space regressions [8,9], radial basis
function models [10] and non-parametric Bayesian models
with Dirichlet process priors [11]. These nonparametric
methods make weaker assumptions and can be more flex-
ible for describing complex relationships [12].

Artificial neural networks (ANN), also known as
neuro-computational models, provide an appealing alter-
native for genome-enabled prediction of quantitative
traits [13,14]. These machine learning methods can act
as universal approximators of complex functions [15] be-
cause they are capable of capturing nonlinear relationships
between predictors and responses and can adaptively learn

Page 2 of 13

complex functional forms, through a series of transforma-
tions (i.e, activation functions) driven by parameters.
Multilayer feed-forward is the most common architecture
used in ANN, which consists of neurons assembled into
layers. The first layer is called the input layer (the left-
most layer of the ANN) that accepts data (e.g., SNP geno-
types) from sources external to the network, and the last
layer (the right-most layer) is called the output layer that
contains output units of the network. In between these
two layers are so-called hidden layers, because their values
are not observed in the training set. Hence, an ANN archi-
tecture is specified by the number of layers, the number of
neurons in each layer, and the type of activation functions
that are used. Neurons in each layer are connected to the
neurons from the previous and the subsequent layer
through adaptable synaptic weights.

The network weights are evaluated in two steps: the
feed-forward and the back-propagation steps. In the
feed-forward step, information comes from the input
layer and each unit evaluates its activation function,
which is transmitted to the units connected to the out-
put layer. The back-propagation step consists of running
the whole network backwards to minimize the error
function in the space of weights using the method of
gradient descent. A set of weights that minimizes the
error function is considered to be a solution of the
learning problem for the ANN.

Determination of the number of neurons to be placed
in the hidden layer is a critical task in the design of
ANN. A network with an insufficient number of neurons
may not be capable of capturing complex patterns. In con-
trast, a network with too many neurons will suffer from
over-parameterization, leading to over-fitting and poor
predictive ability of yet to be observed data. Two popular
techniques to overcome the over-fitting problem in ANN
models are Bayesian regularization and cross-validated
early stopping (CVES). Bayesian regularization (BR) con-
strains (shrinks) the magnitude of the networks weights,
improves generalization and allows bias in parameter esti-
mates towards values that are considered to be plausible,
while reducing their variance; thus, there is a bias-
variance trade-off [13]. Unlike other back-propagation
training algorithm methods that use a single set of param-
eters, BR considers all possible values of network parame-
ters weighted by the probability of each set of parameters.
In practice, Bayesian regularized ANN can be computa-
tionally more robust and cost-effective than standard
back-propagation nets because they can reduce or elimin-
ate the need for lengthy cross-validation.

With cross-validated early stopping (CVES) methods,
the training data set is split into a new training and a
validation set and a gradient descent algorithm is applied
to the new training data set. The ANN performs an it-
erative process, first using the training data set to

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

calculate the weight and bias estimates, and then applies
these parameter estimates in the validation data set to
calculate the prediction errors. The process iterates re-
peatedly, substituting parameter estimates from the
training data set into the validation data set to find the
smallest possible average prediction errors for the valid-
ation data set. Training ceases when the error in the val-
idation data set increases in certain consecutive epochs
(iterations) in order to avoid the problem of over-fitting
(the number of consecutive epochs is 6 by default in
MATLAB). The ANN parameter estimates with the best
performance in the validation set is then used on the test-
ing data to evaluate the predictive ability of the network.

In a previous study, ANN with BR outperformed a
benchmark linear model when predicting milk yield in
dairy cattle or grain yield of wheat [14]. However, be-
cause breeding values are defined in terms of linear
functions based upon additive inheritance, the predictive
performance of ANN relative to linear additive systems
is of some interest. This motivated the present study, in
which the aim was to investigate the accuracy of ANN
for predicting expected progeny differences (EPD) for
marbling score in Angus cattle relative to hierarchical
linear Bayesian regression models. Various ANN archi-
tectures were explored, which involved two training
algorithms, two types of activation functions, and from 1
to 4 neurons in hidden layers.

Methods
Data sets
The data contained 3079 registered Angus bulls, geno-
typed with the Illumina BovineSNP50 BeadChip, from
which the SNP content for the Illumina Bovine3K

Page 3 of 13

BeadChip [16] was extracted. After data quality control
and screening, a total of 2421 polymorphic SNPs were
retained for analysis. The target variable to be predicted
was EPD for marbling score, which had been computed
by the American Angus Association using BLUP (best
linear unbiased prediction) for each of these animals,
based upon their pedigree data and progeny carcass and
ultrasound data [17]. In animal breeding, an EPD is de-
fined as the predicted performance of a future offspring
of an animal for a particular trait (marbling score), cal-
culated from measurement(s) of the animal’s own per-
formance and/or the performance of its relatives under
the assumption of additive inheritance. Hence, EPD rep-
resent a typical linear system since the EPD of an indi-
vidual can be represented as a linear function of the
EPD of relatives and a residual term that reflects the fact
that an individual inherits a random sample of the genes
present within its parents. The distribution of marbling
score EPD in the Angus sample was symmetric and
suggested a normal distribution (Figure 1), with mean
and standard deviation estimated at 0.0265 and 0.254,
respectively [18].

Statistical methods

Artificial neural networks

A schematic presentation of a multilayer perceptron
(MLP) feed-forward of an ANN is presented in Figure 2.
This is a multi-layer feed-forward neural network with a
single middle (hidden) layer and four neurons. Training
an ANN involves the minimization of an error function
that depends on the network’s synaptic weights (the w’s
in Figure 2), and these weights are iteratively updated by
a learning algorithm, to approximate the target variable.

175 | Mean 0.0265 Skewness 0.468
StdDev 0.254 Kurtosis ~ 0.356
Range 1.920 L~ Interquartile 0.330

15,0 ; \

/ —
125 \
/ A
/ \
100 Vi T
\
. / L\
7]
50 /
25
0 T I T T \ T T T
055 045 035 025 015 005 005 015 025 035 045 055 065 075 08 095 105 115 125 135
Marb
Figure 1 Histogram and density plot of deregressed expected progeny differences for marbling score for 3079 Angus cattle.

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

Page 4 of 13

Input layer Hidden layer, 4 neurons hyperbolic tangent Output layer, 1 neuron linear activation

Figure 2 Schematic representation of a three-layer feed-forward neural network. Genotypes for 2421 (or 700) SNPs were used as inputs
Xj={li=1,2,...,n}, where n is the number of individuals with genotypes; each SNP was connected to up to 4 neurons via coefficients wy;
where k denotes neuron and j denotes SNP; here, w; is a weight from a hidden layer units to the output unit, f; is an activation function applied
to hidden layer units (e.g. the hyperbolic tangent), g is an activation function applied to the output layer unit (e.g., linear), b and b? are biases

of hidden and output layer units, and y is a predicted value.

The updating is usually accomplished by back-propagating
the error, which is essentially a non-linear least-squares
problem [19]. Back-propagation is a supervised learning
algorithm based on a suitable error function, the values of
which are determined by the target (i.e., marbling EPD)
and the mapped (predicted) outputs of the network (i.e.,
fitted values of marbling EPD). Weights in an MLP archi-
tecture are determined by a back-propagation algorithm
to minimize the sum of squares of errors using gradient-
descent methods [13]. During the training, weights and
biases in the ANN are successively adjusted based on the
input and the desired output. Each iteration of feed-
forward in a MLP constitutes two sweeps: forward acti-
vation to produce a desired output, and backward
propagation of the computed error to update the values
for the weights and biases. The forward and backward
sweeps are repeatedly performed until the ANN solution
agrees with the desired value to within a pre-specified
tolerance [20,21].

Let x} = (xlj,xzj ,x,,,) be a row vector that con-
tains SNP genotypes for all i = 1,...,n individuals, for
the /™ SNP, where j = 1,....,p, and p = 700 (referred
to as the 700-SNP panel) or p = 2421 (referred to as
the 3K-SNP panel). In an ANN, SNP genotypes are
connected to each neuron in a single hidden layer via
weights wy;, for k=1, ..., K neurons, with each weight
defining a specific SNP-neuron connection with ap-

propriate biases (intercepts), b(ll),bgl), ,b;(l), each
pertaining to a specific neuron. The input into
neuron k, prior to activation is expressed linearly as

»

b,((l) + Zwijj, where p =700 or 2421, and b,((1> is the
=1

bias parameter defined in the hidden layer and this

quantity is then transformed using some linear or

nonlinear activation function (f;) as:

)4
Si (b(kl) +> Wk;‘%‘) : (1)

J=1

The above is the output of the hidden layer, which in
turn is delivered to the output layer (e.g., each neuron k
in the hidden layer sums ANN input x; after multiplying
them by the strengths of the respective connection
weights, wy;, and adds biases b, and then computes its
output as a function of the sum), and is collected as:

K)4
b2+ wif, (bm + Wiixf> ; (2)
k=1 =1

where wy is the weight specific to the k™ neuron (k= 1,
2,..,K), and b? is the bias parameter defined in the
output layer. Next, quantity (2) is activated with the fol-
lowing function:

K

g)=¢ [Z wif i () + b?

k=1

: (3)

The above yields the fitted marbling EPD, y,, for each
individual in the training set. Finally, the predicted value
of marbling score EPD can be computed in the testing set
using a formula similar to (3). We used the hyperbolic

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

tangent sigmoid and linear (identity) activation functions
in the hidden and output layers, respectively.

We used BR and scaled conjugate gradient (SCQG)
back-propagation as training algorithms. The basic idea
of back-propagation algorithms is to adjust weights in
the steepest descent direction (negative of the gradient),
such that the objective function decreases most rapidly
[22]. However, in practice, this does not necessarily pro-
duce the fastest convergence, although the function
may decrease most rapidly along the negative of the
gradient. Several conjugate gradient algorithms have
been proposed, in which a search is performed along
conjugate directions, generally leading to faster conver-
gence to a local function minimum than steepest des-
cent directions [22,23]. On the one hand, with the
exception of SCG, the conjugate gradient algorithms
use linear searches at each iteration and thus, are com-
putationally expensive as they require that the network
response to all training inputs be computed several
times for each search. On the other hand, the SCG al-
gorithm combines a model-trust region approach with
the conjugate gradient approach and uses a step size
scaling mechanism to avoid time-consuming linear
searches [23]. Hence, SCG can significantly reduce the
number of computations performed in each iteration,
but may require more iterations to converge than do the
other conjugate gradient algorithms [22]. SCG uses the
CVES technique to prevent over-fitting, which is com-
monly used in neural networks and can improve their
predictive ability (generalization).

Training proceeds as follows. Let the data set be D =
{y, (x;}i= 1,...n}, where x; is a vector of inputs (SNP geno-
types) for individual i and y is a vector of target variables
(EPD). Once a set of weights, w, is assigned to the con-
nections in the networks, this defines a mapping from
the input x; to the output y,. Let M denote a specific
network architecture (in terms of numbers of neurons
and choice of activation functions), then the typical ob-
jective function used for training a neural network using
CVES is the sum of squared prediction errors (Ep):

n

Ep(Dlw, M) = (53" (4)

i=1

for n input-target pairs defining D.

Regularization produces shrinkage of parameter esti-
mates towards some plausible values, while at the same
time reducing their variance. In Bayesian models, re-
gularization techniques involve imposing certain prior
distributions on the model parameters. In Bayesian
ANN (e.g., BRANN), the objective function that was
specified in (4) has an additional term that penalizes
large weights, in the hope of achieving a smoother map-
ping. Gradient-based optimization is then used to

Page 5 of 13

minimize the following function, equal to a penalized
log-likelihood,

F = BEp(D|w, M) +05EW(W|M)7 (5)

where Ey (w|M) is the sum of squares of network
weights, M is the ANN architecture, and a and S are
positive regularization parameters that must be esti-
mated. The second term on the right hand side of (5),
known as weight decay, favors small values of w and de-
creases the tendency of a model to over-fit the data.
Hence, training involves a tradeoff between model com-
plexity and goodness of fit. Large values of a lead to pos-
terior densities of weights that are highly concentrated
around zero, so that the weights effectively disappear,
the model discounts connections in the network [24,25],
and complex models are automatically self-penalized.
From equation (5), if « << f3, the fitting or training algo-
rithm places the most weight on goodness of fit. If a >>
B, emphasis is placed on reducing the magnitude of the
weights at the expense of goodness of fit, while produ-
cing a smoother network response [26].

In an empirical Bayesian framework, the “optimal”
weights are those that maximize the conditional poster-
ior density P(w|D, a, 8, M), which is equivalent to min-
imizing the regularized objective function F in equation
(5). Minimization of F is identical to finding the (locally)
maximum a posteriori estimates of w, denoted wMP
which minimize Ej, using the back-propagation training
algorithms [24]. However, this is possible only if n > m,
where m is the number of parameters to be estimated.

Bayes theorem yields the posterior density of a and 3 as:

P(Dla, B, M)P(a, BiM)

P(‘XHB|D:M) = P(D‘M)

If the prior density P(a, 8| M) is uniform, maximization
of P(a, 5|D, M) with respect to @ and f is equivalent to
maximization of P(D|a, 8, M). Bayesian optimization of
the regularization parameters requires computation of
the Hessian matrix of the objective function F evaluated
at the optimum point w** [27], but directly computing
the Hessian matrix is not always necessary. As proposed
by MacKay [28], the Gauss-Newton approximation to the
Hessian matrix can be used if the Levenberg-Marquardt
optimization algorithm is employed to locate the mini-
mum of F [13,29,30]. The Levenberg—Marquardt training
algorithm [31] achieves second-order training speed with-
out computing the Hessian matrix. Briefly, the Hessian
matrix is approximated as:

H=7J7J, (7)

where J is the Jacobian matrix that contains first deriva-
tives of the network errors with respect to network

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

parameters (the weights and biases). The gradient is com-
puted as:

g=Je, (8)

and network parameters are updated as:
Wic1 = wi=(J'J + ul) x J'e. 9)

Here, 4 is Levenberg's damping factor, which is ad-
justed at each iteration and guides the optimization
process. If the reduction of error sum of squares is
rapid, a smaller value of y is used to bring the algo-
rithm closer to the Gauss—Newton algorithm. Alterna-
tively, the damping factor is increased to give a step
to gradient descent direction if an iteration provides
insufficient reduction in the error sum of squares [32].
Optimal values of regularization parameters, a and f,
in BRANN can be calculated as:

and
p__ -y
B = 2Ep(wWhP)’ (11)

where 0 < y=m - 20" 5HMP) "1 < m the number of
effective parameters in the neural network, and m is
the total number of parameters. Here HM® is the max-
imum a posteriori estimate of H described in (7).

BayesCrmr and BayesC with m = 0
Consider the following linear model:

»
¥i =M+inj“/+ei, (12)
j=1

j=

where y; is the marbling score EPD for the i™ animal; p
is the overall mean; a; is the substitution effect associ-
ated with the ™ SNP (j=1, ..., p); x; is an indicator vari-
able corresponding to the genotype at the /™ SNP (0, 1,
2) for the i™ individual, and e~N (0,02) is a residual
term, where o2 is the residual variance.

The BayesCrt model [7] assumes that each SNP effect
is null with probability 7, or that it follows a normal dis-
tribution, N (0, 0%), with probability 1- 7, i.e.:

wlr o2d N (0,02) with probability (1-) (13)
177l =0 with probability 7
Here, ¢2 is a variance common to all non-zero SNP

1
effects, which is assigned a scaled inverse chi-square dis-

tribution, x~*(va,s?) . Furthermore, the value of 7 is

Page 6 of 13

unknown and needs to be inferred, with the prior distri-
bution of 77 taken to be uniform between 0 and 1,

~Uniform(0,1). (14)

A Bernoulli indicator variable, &, is introduced to fa-
cilitate sampling from the mixtures of the SNP effects,
as follows:

p(8ifm) = w0 (1-m)”.

Hence, unconditionally, the variable «; follows a
univariate-t distribution, If(O,Sfr7 va), if §;=1, or is equal
to zero otherwise [6]. Posterior inference of unknown
parameters in the Bayesian model via Markov chain
Monte Carlo (MCMC) implementation is described in
[7]. With a subset of, say k<p, selected markers, the
statistical model takes the same form as (12), replacing p
with k for the number of markers.

By assuming that all k of the selected SNPs (based on
the posterior model probability and including the fre-
quency of marker k during MCMC) have non-null
effects on the quantitative trait, we define a BayesCn
model with 7 =0, which was used for the statistical in-
ference and model cross-validation subsequent to selec-
tion of markers (referred to as post-selection hereafter).
So, posterior inference in BayesCrnt with 7 = 0 was as for
BayesC 7, except that 7 was fixed at zero and hence sam-
pling of the indicator vector 8 was no longer relevant.

Computational implementation
MATLAB [31] was used to fit the ANN. Each neural net-
work consisted of three layers (i.e., input, hidden and out-
put layers). The number of neurons in a single hidden
layer varied from 1 to 4. Each ANN had 2421 (or 700) in-
puts (SNPs). Before processing, MATLAB automatically
rescaled all input and output variables using the
“mapminmax” function such that they resided in the range
[-1, +1], to enhance numerical stability. Two combina-
tions of activation functions were used: (i) a set of hyper-
bolic tangent sigmoidal activation functions from the
input layer to the hidden layer, plus a linear activation
function from the hidden layer to the output layer, and (ii)
a set of linear activation functions from the input layer to
the hidden layer and from the hidden layer to the output
layer. Training was stopped if any of the following criteria
were met: (i) a maximum number (1000) of epochs was
reached, (ii) performance had met a pre-specified (the
performance function for feed-forward networks is the
mean square error) level, (iii) the gradient was below a
suitable target, or (iv) the Levenberg-Marquardt parameter
exceeded 10",

For each ANN architecture, eight replicates were run.
Each replicate was independently initialized, in order to
eliminate spurious effects caused by the starting values,

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

and to improve predictive ability. The results were pre-
sented as averages across the eight replicates per ANN
architecture.

BayesCnt with m set equal to zero (referred to as the
BayesCpC procedure) was implemented via a high-
throughput computing pipeline to select SNPs for post-
selection statistical inference and cross-validation [5].
This pipeline ran multiple chains for both feature selec-
tion and cross-validation. A three-fold cross-validation
approach was employed, in which the whole dataset was
divided into three approximately equal portions, with
two-thirds used for training and one-third used for test-
ing, and the portions used for training and testing were
rotated three times. Each cross-validation experiment
was randomly replicated eight times. Three parallel
MCMC chains were run for each feature-selection ana-
lysis, and each consisted of 50 000 iterations after a
burn-in of 5000 iterations, thinned every tenth iterate.
MCMC sampling for each cross-validation consisted of
100 000 iterations, with a burn-in of 10 000 iterations,
thinned every tenth iterate.

Results

Determination of an optimal SNP panel size

The predictive performance of each ANN was examined
using either the 3K-SNP panel or an optimal subset of 700
selected SNPs. The latter were derived from the 3K-panel,
selected using the BayesCpC procedure with three-fold
cross-validation. This was accomplished by examining the
prediction performance of varying panel sizes from 100 to
2400 SNPs in 100-SNP increments, and the optimal set
that gave the best prediction in cross-validations was iden-
tified. The reason for not choosing the optimal subset
based on ANN models was because the selection tasks
with a grid of 24 candidate SNP-panels of varying sizes
were too computationally intensive for BRANN. Never-
theless, the parallel-BayesCpC pipeline handled this task
easily, because all jobs were submitted to run in parallel
on a cluster of dedicated computers.

As shown in Figure 3a, the correlation between marb-
ling score EPD and their fitted values in the training set
(referred to hereafter as fitting accuracy) increased al-
most monotonically with panel size, until reaching a
plateau at a panel size of 1400 SNPs. However, the
correlation between marbling score EPD and their pre-
dicted values in the testing set (referred to hereafter as
predictive accuracy) reached its peak (0.863) with a
panel size of 700 SNPs, and decreased thereafter. The
decrease in prediction accuracy with > 700 selected
SNPs possibly reflects over-fitting in the training set,
which, in this case, happened much before the panel size
exceeded the training set size (i.e., approximately 2000
animals). Hence, with Bayesian regression models, pre-
diction using more SNPs may not necessarily yield better

Page 7 of 13

results than prediction using a smaller panel, yet the op-
timal panel size may depend on many factors. In this
study, we empirically chose the 700-SNP subset as the
optimal panel. The fitting accuracy in the training set
and predictive accuracy in the testing set using the opti-
mal 700-SNP subset are illustrated in Figure 3b.

Determination of an optimal ANN architecture

The performance of the ANN architectures was exa-
mined based on the sum of squared errors (SSE) of
prediction with a 3K panel, averaged over eight inde-
pendent replicates of each ANN, for both BRANN and
SCGANN. Each ANN had a distinct combination of
training algorithm, transformation method, and number
of neurons, but both, BRANN and SCGANN, had an
input of 3K SNPs. The average SSE ranged from 13.936
to 16.882 for BRANN, and from 36.531 to 39.571 for
SCGANN. Smaller SSE were produced by BRANN with
nonlinear activation functions and from 2 to 4 neurons,
and by SCGANN with nonlinear activation functions
and from 1 to 4 neurons. There was no evidence that
more complex networks (e.g., with more neurons or a
non-linear transformation function) produced better
predictions than the linear model, as the ANN were
similar in terms of their SSE. Possibly, this was because
marbling score EPD is estimated under an additive
model of inheritance in which additive genetic merit has
a linear relationship with SNP effects. Nevertheless,
BRANN performed as well as the linear models when
predicting this linear system. Also, BRANN consistently
produced a more accurate prediction of marbling score
EPD than did SCGANN. On average, SSE obtained from
BRANN were about 40% to 50% of those obtained from
SCGANN (Figure 4). This is attributed to the use of
Bayesian regularization, which handles over-fitting better
than does the SCG back-propagation.

Predictive performance using the 3K-SNP panel

BRANN and BayesCpC performed very similarly with
the 3K-SNP panel and both methods yielded higher pre-
diction accuracies than did SCGANN (Figure 5). On
average, the correlation in the training set was 0.941
with BayesCpC. This correlation ranged from 0.942 to
0.967 with BRANN, and from 0.796 to 0.897 with
SCGANN. The average correlation (in the testing set)
was 0.776 with BayesCpC, and ranged from 0.776 to
0.807 with BRANN, and from 0.653 to 0.689 with
SCGANN. In general, these correlations increased
slightly with the number of neurons, but no consistent
pattern was observed (Figure 5).

With the 3K-SNP panel, the number of SNPs (i.e., 2421)
exceeded the number of animals (~2000 animals) in the
training set. This means that there were more parameters
to be estimated than data points, even when all SNPs

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

Page 8 of 13

a Training
0.96
0.94
0.92
0.9
0.88
0.86
0.84
0.82
0.8
0.78
0.76
0.74
0.72
0.7

Correlations

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18

Number of Selected Markers X 100

=== Testing

19 20 21 22 23 24

b Training set: Corr = 0.9205
= _]
R
=
=
= w2
B <=
=
=
g S
Input values
Testing set: Corr = 0.8629
= _|
g
B 5
= -
g =
L T
a. C') -

Input values

Figure 3 Selection of an optimal SNP panel size for predicting marbling score expected progeny difference (EPD) using the Bayes CpC
approach. (a) Correlations between marbling score EPD and their fitted (predicted) values in the training and testing sets, where the SNP panel
consisted of 100, 200,..., 2400 markers, respectively; (b) correlation between EPD (input values) and fitted values in the training set (upper) and
correlation between EPD (input values) and predicted values in the testing set for the optimal set of 700 SNPs (lower).

entered the model linearly. This explains the better pre-
dictive performance of BRANN over SCGANN: Bayesian
regularization imposes a penalty for model complexity
and prevents over-fitting, while SCGANN captures both
signal and noise in the training set, leading to poor predic-
tion. The results illustrate that ANN with Bayesian
regularization can behave better than ANN with SCG
back-propagation. BRANN penalize the estimation of
large weights to achieve a smoother mapping, which leads
to effectively more parsimonious models.

In the BayesCpC procedure, the BayesCnt model pos-
tulates that a portion, m, of all SNPs have no effect on
marbling EPD. In a high-density SNP panel, m is typically
expected to be large, meaning that the portion of “sig-
nal” SNPs, 1 - m, is small, and the chance of over-fitting
is reduced. Using the Illumina Bovine3K SNP genotypes,

the posterior mean (standard deviation) of m was 0.621
(0.0830), based on 2421 polymorphic SNPs; this means
that, on average, 918 SNPs were fitted in the model at
each MCMC iteration. Hence, over-fitting was not a
concern. Posterior densities for m are shown in Figure 6
and were computed using posterior samples obtained
from each of the three parallel chains and from all
pooled samples of the three chains. The density plots for
the three parallel chains highly resembled each other
and had similar means, indicating that convergence and
length of the MCMC chains were appropriate for . We
noticed that the estimate of m obtained from the 3K
panel was smaller than that based on BovineSNP50 geno-
types, because the latter has typically been greater than
0.95 [5]. Thus, it would seem that, with a low-density SNP
panel, the interpretation of SNPs having putatively non-

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

Page 9 of 13

39 4
36 -
33 4
30
27 A
24
21 A

18 -

12 -

Linear 1neuron

—4—BRANN

15 ‘—__‘h*\

2 neurons

Figure 4 Sum of squared errors (y-axis) in the testing sets, computed as averages from eight replicates for Bayesian neural networks
(BRANN) and ANN coupled with the SCG algorithm (SCGANN), for ANN with different numbers of neurons.

SCGANN

3 neurons 4 neurons

zero effects on the target traits should be taken with cau-
tion, because many could be distant from the functional
genes or quantitative trait loci. We also observed that the
selected number of SNPs having non-zero effects based
on BayesCr in the training set did not correspond to the
number of SNPs in the optimal SNP panel for prediction
(918 vs 700 SNPs). We suspect that parameter m in a
BayesCmt model does not fully inform on the size of an op-
timal SNP panel for prediction; a model that describes
variation in a training set well does not necessarily yield

the best predictions when generalized beyond the training
set. This phenomenon is referred to as poor generalization
in machine learning methods [12].

Predictive performance using the700-SNP panel

Unlike the case with 3K-SNPs, prediction using the
selected 700-SNPs was not challenged by over-fitting.
Hence, we observed a smaller difference in prediction
performance between BRANN and SCGANN because
regularization was not a decisive issue in the prediction.

1.2
@Training mTesting

1

0.8 ,,—I

0.6

0.4

0.2

0+ T T

o o

Q 5 5§ ¢ g ¢ 5 5§ g g ¢
S g 3 § 5 S g 3 g g
2 = z 9] @ @ = z 9] @ [}
> | P4 p=4 p=4 | zZ zZ b4
© - | | | - | | |
om [™ < [N ™ <

«—SCGAN —

|
i

Figure 5 Correlations between marbling score expected progeny differences in the training (testing) sets and their fitted (predicted)
values using BayesCpC and BRANN and SCGANN with different numbers of neurons in the hidden layer and using the 3K-SNP panel.
'training = correlations in the training sets; testing = correlations in the testing sets; “BayesCpC = Bayesian regression model, where the BayesCn
model is used for feature selection and BayesCrr with 11 = 0 is used for post-selection statistical inference and cross-validation; BRANN = artificial
neural network with Bayesian regularization; SCGANN = artificial neural network with scaled conjugate gradient back-propagation.

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

Page 10 of 13

n — n -

~ - <
2 o 2o -
= =
j -
8 o A~

o — o -

T T T T T T T T T T T T T T
03 04 05 06 07 08 09 0.3 04 05 06 0.7 08 09
Chain #1 Chain #2

0 — o -

< - < —
2 o 2o
7 B
o o
8 A N

o - o -

T T T T T T T T T T T T T T
03 04 05 06 0.7 08 0.9 03 04 05 06 0.7 08 0.9
Chain #3 pooled
Figure 6 Posterior density for parameter m in the BayesCrr model obtained from three parallel chains and from pooled samples of the
three chains.
J

With the 700-SNP panel, the predictive performance of
BayesCpC was slightly better than that of BRANN,
possibly because the subset of SNPs was optimal, at least
as selected by BayesCpC. As expected, BayesCm and
BRANN outperformed SCGANN in the prediction of
marbling score EPD but differences in performance were
smaller with the 700-SNP panel than with the 3K-SNP
panel. Average prediction accuracy was 0.863 with
BayesCpC and ranged from 0.843 to 0.858 with BRANN,
whereas the average prediction accuracy with SCGANN
ranged from 0.743 to 0.793. For both BRANN and
SCGANN, the difference in predictive accuracy between
the linear and non-linear activation functions was negli-
gible (Figure 7).

Discussion

We investigated the predictive performance of ANN in
comparison to a hierarchical Bayesian regression model,
using 3K-SNP and 700-SNP panels. The 700 SNPs were
preselected from the former based upon their power to
predict marbling EPD. Various ANN architectures to
predict marbling score EPD were examined, in conjunc-
tion with two training algorithms, two types of activation
functions, and from 1 to 4 neurons in the hidden layer.
We did not observe significant differences in predictive
accuracy between linear and non-linear models, prob-
ably because the relationship between marbling score
EPD and SNP effects is theoretically linear. An EPD
produces a smoothed data point based on additive

inheritance, and this smoothing may mask non-linear
variation in the response variable. A better way to
analyze this trait would be to remove variation due to
contemporary groups from the field data and then
analyze individual marbling phenotypes, but this was not
possible here because we did not have access to the raw
data, which were, in general, collected on progeny of the
genotyped bulls. The accuracy of EPD varies between in-
dividuals, which suggests that the residuals may be
heteroscedastic due to unequal prediction error vari-
ances. An alternative is to use deregressed EPD as the
target variable, for which the parent averages are re-
moved and appropriate weights can be applied to ac-
count for heteroscedastic residuals [33]. Some reports
suggest that training on deregressed EBV could generate
higher accuracy of genome-enhanced breeding values
than training on EBV [34]. However, the main purpose
of the present research was to investigate the predictive
performance of ANN in comparison with Bayesian re-
gression models in a linear system. We used EPD instead
of deregressed proofs because correct deregression in-
volves matrix operations (the data available were incom-
plete for correct deregression), or approximations. Both
EPD and deregressed EPD are heteroscedastic because
of an unequal amount of information, but the neural
network software used did not allow for incorporation of
heteroscedasticity in a straightforward manner.

In genomic selection, the joint estimation of a genome-
wide SNP set is challenging due to the so-called “large p,

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

Page 11 of 13

BTraining mTesting
0.9
25| R
0.8 i it
e]
5 %
0.7 % i
o i
0.6 i
3% |
0.5 ?’é et
5 %
0.4 .
| |
0.3 o i]
: {1 | B :
0.2 o o :
i 1
. L LB -
0.1 H o o i {24 i
%Q 1 1
i 1 A i + +
o LB . i 2 £ 152
(6] (2] 1] (2] c (2] 2] 1]
2 c c c S c c c
Q g g 2 5 e e S
[> > > [> = =
[0 [[() Z [() ()
g ! Z| Z| Z| ! Z| Z| Z\
m ~ ™ < - ~ ™ <
|<— BRANN —’| |‘; SCGANN 4"

Figure 7 Correlations between marbling score expected progeny differences in the training (testing) sets and their fitted (predicted) values
using BayesCpC and BRANN and SCGANN with different numbers of neurons in the hidden layer and using 700 SNPs. 'training = correlations
in the training sets; testing = correlations in the testing sets; “BayesCpC = Bayesian regression model, where BayesCr is used for feature selection and
BayesCr with 11 = 0 is used for post-selection statistical inference and cross-validation; BRANN = artificial neural network with Bayesian regularization;
SCGANN = artificial neural network with scaled conjugate gradient back-propagation.

small #” problem, meaning that there are many more pa-
rameters to estimate than there are data points. This leads
to over-fitting of the model in the training set and poor
predictive performance when generalized to the testing set.
With the 3K-panel, the number of animals (n ~ 2000) in
the training data set was less than the number of SNP
markers (p = 2421). Hence, over-fitting might occur with
linear regression models. The same is true for ANN
models. In the ANN with 4 neurons, for example, there
were approximately 9700 weights and bias parameters to
estimate, which is much more than the number of data
points in the training set. Hence, variance shrinkage (as oc-
curs in the hierarchical Bayesian regression models) or
Bayesian regularization (as occurs in BRANN) plays a cru-
cial role in attenuating “over-fitting” and attaining reprodu-
cible predictive performance. In ANN, the effective
number of parameters used in the model is typically less
than the total number of weights, because some weights
do not contribute due to shrinkage. Thus, over-fitting is at-
tenuated and a model that generalizes well can potentially
be attained [35]. In BRANN with the 3K-panel, for ex-
ample, the effective number of parameters was 1282, 1213,
1031, 999 and 998, respectively, for linear and 1-, 2-, 3-
and 4-neuron nonlinear architectures. These numbers are
much smaller than the actual number of parameters in the
models or the number of data points (ranging from 1946
to 2060 EPD) in the training set.

On the one hand, parametric statistical approaches
have limited flexibility for modeling high-order non-
linear interactions that may be important for complex
traits [36,37]. On the other hand, neural networks have

the potential to capture nonlinear relationships and may
be useful in the study of quantitative traits under complex
gene action, given suitable inputs. In a previous study, it
was shown that non-linear neural networks outperformed
a benchmark linear model when predicting phenotypes,
especially in inbred wheat lines where cryptic gene inter-
actions are expected [14]. In the present study, the pre-
dictive ability of BRANN was similar to that of BayesCpC
with the 3K-panel and the selected 700-SNP panel. In
addition, there was no difference in predictive ability be-
tween linear-ANN and non-linear ANN. We expected this
because marbling score EPD are estimated under an addi-
tive linear model and so they should be predicted ad-
equately under an ANN with a linear activation function.
Nevertheless, we found that non-linear ANN with Bayesian
regularization behaved as well as the linear models when
predicting an additive target. Our results support the idea
that ANN with Bayesian regularization can act as univer-
sal approximators of linear or non-linear functions of
interest in breeding contexts.

Although BRANN consistently yielded better predictions
than SCGANN, computing time with BRANN may restrict
the application of these models. BRANN training updates
the weights and biases using Levenberg-Marquardt op-
timization, and its computing time can increase drastically
with the number of SNPs included in the model. For ex-
ample, while it took only about 4 minutes to perform 1000
iterations for a BRANN with 1 neuron for the 700-SNP
panel, 112 minutes were required for the 3K-SNP panel.
The 3K-SNP analysis also consumed tens of times more
memory. Thus, the application of BRANN to high-density

Okut et al. Genetics Selection Evolution 2013, 45:34
http://www.gsejournal.org/content/45/1/34

chips (say 50K SNP or higher) is a significant challenge and
improvements in the algorithms are needed before BRANN
can be practically applied to genomic selection. One solu-
tion is to use (distributed) parallel computing, as we did
with the high-throughput computing pipeline that imple-
ments hierarchical Bayesian regression models [38]. The
SCG training algorithm was proposed to avoid the time-
consuming search employed in BRANN, with significantly
reduced computing time per iteration. However, the SCG
back-propagation approach yielded worse predictions than
both BRANN and the Bayesian regression models.

Finally, we found that feature selection may be import-
ant for Bayesian regression models because a model
using all SNPs did not necessarily give the best predic-
tion of marbling EPD. This situation is unlike ridge re-
gression best linear unbiased prediction, or the G-BLUP
method [38,39], where a model that includes all markers
would typically be favored due to the increase in accur-
acy that comes with including additional markers.

Conclusions

ANN with Bayesian regularization can perform as well
as linear Bayesian regression models in predicting addi-
tive genetic values. ANN may be useful for predicting
complex traits using high-dimensional genomic informa-
tion and capture nonlinearities, and do so adaptively.
While the selection of models of varying dimensions
may be an issue worth exploring, it brings tremendous
computing challenges, particularly when the data set is
large. Hence, high-performance computing will be re-
quired for genomic selection using Bayesian regression
models or artificial neural networks.

Competing interests
The authors declare that they have no competing interests.

Authors’ contributions

HO conceived and performed computations and drafted the manuscript;
X-LW conceived, carried out the study, advised for computations, and
revised the manuscript; RDS, JFT and BWW collected the samples and RDS
and JFT generated the genotypes; GIMR, SB, BWW, RDS, JFT and DG helped
conceive and coordinate the study, provided critical insights and revised the
manuscript. All authors read and approved the final manuscript.

Acknowledgments

This research was supported by the University of Wisconsin (UW)
Foundation, and a Genomic Selection Grant by Merial Ltd. JFT was
supported by National Research Initiative grants number 2008-35205-04687
and 2008-35205-18864 from the USDA Cooperative State Research,
Education and Extension Service and grant number 2009-65205-05635 from
the USDA Agriculture and Food Research Initiative.

Author details

1Department of Animal Sciences, University of Wisconsin, Madison, WI 53706,
USA. 2Departmem of Animal Science, Biometry and Genetics Branch,
University of Yuzuncu Yil, Van 65080, Turkey. *Department of Dairy Science,
University of Wisconsin, Madison, WI 53706, USA. “Department of Biostatistics
and Medical Informatics, University of Wisconsin, Madison, WI 53706, USA.
GeneSeek, a Neogen Company, Lincoln, NE 68521, USA. ®NextGen
Consulting, Atlanta, GA, USA. "Division of Animal Sciences, University of
Missouri, Columbia, MO 65211, USA.

Page 12 of 13

Received: 12 January 2013 Accepted: 2 August 2013
Published: 11 September 2013

References

1. Meuwissen THE, Hayes BJ, Goddard ME: Prediction of total genetic value
using genome-wide dense marker maps. Genetics 2001, 157:1819-1829.

2. Pereira BDB, Rao CR: Data mining using neural networks: A quide for
statisticians. 2009 http://www.textbookrevolution.org/index.php/Book:
Data_Mining_using_Neural_Networks_-_A_Guide_for_Statisticians.

3. Miller DJ, Zhang Y, Yu G, Liu Y, Chen L, Langefeld CD, Herrington D, Wang
Y: An algorithm for learning maximum entropy probability models of
disease risk that efficiently searches and sparingly encodes multilocus
genomic interactions. Bioinformatics 2009, 25:2478-2485.

4. LiuY, Duan W, Paschall J, Saccone NL: Artificial neural networks for
linkage analysis of quantitative gene expression phenotypes and
evaluation of gene x gene interactions. BMC Proc 2007, 1:547.

5. Wu XL, Sun C, Beissinger TM, Rosa GJM, Weigel KA, De L, Gatti N, Gianola D:
Parallel Markov chain Monte Carlo - bridging the gap to high-
performance Bayesian computation in animal breeding and genetics.
Genet Sel Evol 2012, 44:29.

6. Gianola D, Delos Campos G, Hill WG, Manfredi E, Fernando R: Additive
genetic variability and the Bayesian alphabet. Genetics 2009, 183:347-363.

7. Habier H, Fernando RL, Kizilkaya K, Garrick JD: Extension of the Bayesian
alphabet for genomic selection. BMC Bioinformatics 2011, 12:186.

8. Gianola D, van Kaam JBCHM: Reproducing kernel Hilbert spaces
regression methods for genomic assisted prediction of quantitative
traits. Genetics 2008, 178:2289-2303.

9. delos Campos G, Gianola D, Rosa GJM: Reproducing kernel Hilbert spaces
regression: A general framework for genetic evaluation. J Anim Sci 2009,
87:1883-1887.

10. Long N, Gianola D, Rosa GMJ, Weigel KA, Kranis A, Gonzalez-Recio O: Radial
basis function regression methods for predicting quantitative traits
using SNP markers. Genet Res 2010, 92:209-225.

11. Gianola D, Wu XL, Manfredi E, Simianer H: A non-parametric mixture
model for genome-enabled prediction of genetic value for a
quantitative trait. Genetica 2010, 138:959-977.

12. Bishop CM: Kernel methods. In Pattern Recognition and Machine Learning.
Singapore: Springer; 2006:291-357.

13. Okut H, Gianola D, Rosa JMR, Wiegel AK: Prediction of body mass index in
mice using dense molecular markers and a regularized neural network.
Genet Res (Camb) 2011, 93:189-201.

14. Gianola D, Okut H, Wiegel KA, Rosa GJM: Predicting complex quantitative
traits with Bayesian neural networks: a case study with Jersey cows and
wheat. BMC Genet 2011, 12:87.

15. Alados I, Mellado JA, Ramos F, Alados-Arboledas L: Estimating UV
erythemal irradiance by means of neural networks. Photochem Photobiol
2004, 80:351-358.

16. Boichard D, Chung H, Dassonneville R, David X, Eggen A, Fritz S, Gietzen KJ,
Hayes BJ, Lawley CT, Sonstegard TS, Van Tassell CP, VanRaden PM, Viaud-
Martinez KA, Wiggans GR, Bovine Consortium LD: Design of a bovine low-
density SNP array optimized for imputation. PLoS One 2012, 7:3.

17. American Angus Association® Carcass EPDs; 2013 [http//www.angus.org/
pub/Adv/CarcassEPDInsert.pdf]

18. Decker JE, Vasco DA, McKay SD, McClure MC, Rolf MM, Kim J, Northcutt SL,
Bauck S, Woodward BW, Schnabel RD, Taylor JF: A novel analytical
method, Birth Date Selection Mapping, detects response of the Angus
(Bos taurus) genome to selection on complex traits. BMC Genomics 2012,
13:606.

19. Gopalakrishnan K: Effect of training algorithms on neural networks aided
pavement diagnosis. Int J Eng Sci Technol 2010, 2:83-92.

20. Haykin S: Multilayer perceptrons. In Neural Networks: A Comprehensive
Foundation. 2nd edition. New York: Prentice-Hall; 2008:178-227.

21, Hajmeer M, Basheer |, Cliver DO: Survival curves of Listeria
monocytogenes in chorizos modeled with artificial neural networks.
Food Microbiol 2006, 23:561-570.

22. Beal MH, Hagan MT, Demuth HB: Linear filters. In Neural Network Toolbox™
6 Users Guide. Natick: The Math Works Inc; 2010:135-154.

23. Moller FM: A scaled conjugate gradient algorithm for fast supervised
learning. Neural Netw 1993, 6:525-533.

24. MacKay JCD: Neural networks. In Information Theory, Inference and Learning
Algorithms. Cambridge: Cambridge University Press; 2008:467-548.

http://www.textbookrevolution.org/index.php/Book:Data_Mining_using_Neural_Networks_--_A_Guide_for_Statisticians
http://www.textbookrevolution.org/index.php/Book:Data_Mining_using_Neural_Networks_--_A_Guide_for_Statisticians
http://www.angus.org/pub/Adv/CarcassEPDInsert.pdf
http://www.angus.org/pub/Adv/CarcassEPDInsert.pdf

Okut et al. Genetics Selection Evolution 2013, 45:34 Page 13 of 13
http://www.gsejournal.org/content/45/1/34

25. Titterington DM: Bayesian methods for neural networks and related
models. Statist Sci 2004, 19:128-139.

26. Foresee FD, Hagan MT: Gauss-Newton approximation to Bayesian
learning. In Proceedings of the International Conference on Neural Network:
9-12 June 1997. Houston: IEEE; 1997:1930-1935. https://getinfo.de/app/
Gauss-Newton-Approximation-to-Bayesian-Learning/id/BLCP%
3ACN021209036.

27. Xu M, Zeng G, Xu X, Huang G, Jiang R, Sun W: Application of Bayesian
regularized BP neural network model for trend analysis, acidity and
chemical composition of precipitation in North. Water Air Soil Poll 2006,
172:167-184.

28. MacKay DJC: Bayesian interpolation. Neural Comput 1992, 4:415-447.

29. Lampinen J, Vehtari A: Bayesian approach for neural networks review and
case studies. Neural Netw 2001, 14:257-274.

30. Shaneh A, Butler G: Bayesian learning for feedforward neural network
with application to proteomic data: the glycosylation sites detection of
the epidermal growth factor-like proteins associated with cancer as a
case study. In Canadian Al LNAI 4013. Edited by Lamontagne L, Marchand L.
Berlin Heidelberg: Springer-Verlag; 2006:110-121.

31. Demuth H, Beale M, Hagan M: Backpropagation. In Neural Network
Toolbox™ 6 User's Guide. Natick: The Math Works, Inc; 2009:155-227.

32. de Souza C: Neural Network Learning by the Levenberg-Marquardt Algorithm
with Bayesian Regularization. 2009 [http://crsouza.blogspot.com/feeds/posts/
default/]

33. Garrick DJ, Taylor JF, Fernando RL: Deregressing estimated breeding
values and weighting information for genomic regression analyses.
Genet Sel Evol 2009, 41:55.

34. Ostersen T, Christensen OF, Henryon M, Nielsen B, Su G, Madsen P:
Deregressed EBV as the response variable yield more reliable genomic
predictions than traditional EBV in pure-bred pigs. Genet Sel Evol 2011,
43:38.

35. Winkler DA, Burden FR: Modelling blood-brain barrier partitioning using
Bayesian neural nets. J Mol Graph Model 2004, 22:499-505.

36. Gianola D, Fernando RL, Stella A: Genomic-assisted prediction of genetic
value with semiparametric procedures. Genetics 2006, 173:1761-1776.

37. Moore HJ: Detecting, characterizing, and interpreting nonlinear gene-
gene interactions using multifactor dimensionality reduction. Adv Genet
2010, 72:101-116.

38. Wu XL, Beissinger TM, Bauck S, Woodward B, Rosa GJM, Weigel KA, De Leon
N, Gianola D: A primer on high-throughput computing for genomic
selection. Front Genet 2011, 2:1-10.

39. Luan T, Woolliams JA, Lien S, Kent M, Svendsen M, Meuwissen THE: The
accuracy of genomic selection in Norwegian Red Cattle assessed by
cross validation. Genetics 2009, 183:1119-1126.

doi:10.1186/1297-9686-45-34

Cite this article as: Okut et al.: Predicting expected progeny difference
for marbling score in Angus cattle using artificial neural networks and
Bayesian regression models. Genetics Selection Evolution 2013 45:34.

Submit your next manuscript to BioMed Central
and take full advantage of:

¢ Convenient online submission

¢ Thorough peer review

* No space constraints or color figure charges

¢ Immediate publication on acceptance

¢ Inclusion in PubMed, CAS, Scopus and Google Scholar

* Research which is freely available for redistribution

www.biomedcentral.com/submit

Submit your manuscript at (BiolMled Central

https://getinfo.de/app/Gauss-Newton-Approximation-to-Bayesian-Learning/id/BLCP%3ACN021209036
https://getinfo.de/app/Gauss-Newton-Approximation-to-Bayesian-Learning/id/BLCP%3ACN021209036
https://getinfo.de/app/Gauss-Newton-Approximation-to-Bayesian-Learning/id/BLCP%3ACN021209036
http://crsouza.blogspot.com/feeds/posts/default/
http://crsouza.blogspot.com/feeds/posts/default/

	Abstract
	Background
	Results
	Conclusions

	Background
	Methods
	Data sets
	Statistical methods
	Artificial neural networks
	BayesCπ and BayesC with π = 0
	Computational implementation

	Results
	Determination of an optimal SNP panel size
	Determination of an optimal ANN architecture
	Predictive performance using the 3K-SNP panel

	Predictive performance using the700-SNP panel

	Discussion
	Conclusions
	Competing interests
	Authors’ contributions
	Acknowledgments
	Author details
	References

