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We have studied the effects of radiation on the boundary layer flow and heat transfer of
an electrically conducting micropolar fluid over a continuously moving stretching surface
embedded in a non-Darcian porous medium with a uniform magnetic field. The trans-
formed coupled nonlinear ordinary differential equations are solved numerically. The
velocity, the angular velocity, and the temperature are shown graphically. The numerical
values of the skin friction coefficient, the wall couple stress, and the wall heat transfer rate
are computed and discussed for various values of parameters.
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1. Introduction

Eringen [7] introduced the concept of micropolar fluid in an attempt to explain the be-
havior of a certain fluid containing polymeric additives and naturally occurring fluids
such as the phenomenon of the flow of colloidal fluids, real fluid with suspensions, liquid
crystals, and animal blood. The theory of thermomicropolar fluids has been developed
by Eringen [8], taking into account the effect of microelements of fluids on both the kine-
matics and conduction of heat. Micropolar fluid theory has been used to describe in detail
the effect of dirt in journal bearing, see [2, 11, 14, 22]. The review articles by Ariman et
al. [4, 5] describe some of the various applications which have been explored.

Boundary layer on continuous surface is an important type of flow occurring in a
number of technical problems. Examples may be found in continuous casting, glass fiber
production, metal extrusion, hot rolling, textiles, and wire drawing (see [3, 20]). Sakiadis
[17] initiated the theoretical study of boundary layer on a continuous semi-infinite sheet
moving steadily through an otherwise quiescent fluid environment, whereas its heat
transfer aspect was studied by Tsou et al. [23]. Karwe and Jaluria [9] carried out a nu-
merical study of the transport arising due to the movement of a continuous heated body.
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2 MHD boundary layer micropolar fluid in a porous medium

The boundary layer flow of a micropolar fluid past a semi-infinite plate has been studied
by Peddieson and Mcnitt [13] whereas a similarity solution for boundary layer flow near
stagnation point was presented by Ebert [6]. The boundary layer flow of micropolar flu-
ids past a semi-infinite plate was studied by Ahmadi [1], taking into account the gyration
vector normal to the xy-plane and the microinertia effects. Flow and heat transfer of a mi-
cropolar fluid past a continuously moving plate are studied by Takhar and Soundalgekar
[18, 21]. By drawing the continuous strips through a quiescent electrically conducting
fluid subject to a magnetic field, the rate of cooling can be controlled and final product of
desired characteristics can be achieved. Kelson and Farrell [10] studied micropolar flow
over a porous stretching sheet with strong suction or injection.

Flow and heat transfer through porous media have several practical engineering appli-
cations such as transpiration cooling, packed bed chemical reactors, geothermal systems,
crude oil extraction, ground water hydrology, and building thermal insulation. We know
that the radiation effect is important under many nonisothermal situations. If the en-
tire system involving the polymer extrusion process is placed in a thermally controlled
environment, then radiation could become important. The knowledge of radiation heat
transfer in the system can perhaps lead to a desired product with sought characteristic.
Recently, the effects of radiation on the flow and heat transfer of a micropolar fluid past
a continuously moving plate have been studied by many authors, see [12, 15]. Raptis
[16] studied the boundary layer flow of a micropolar fluid through non-Darcian porous
medium. The problem of hydromagnetic boundary layer micropolar fluid flow over a
continuously moving stretching surface through a fluid saturated porous medium with
radiation is therefore an important one. It is now proposed to study the flow and heat
transfer of an electrically conducting micropolar fluid on a continuously moving plate
embedded in a non-Darcian porous medium in the presence of a uniform magnetic field
and radiation.

2. Mathematical formulation

Consider a steady, two-dimensional laminar flow of an incompressible, electrically con-
ducting micropolar fluid over a continuously moving stretching surface embedded in a
non-Darcian porous medium which issues from a thin slit. The x-axis is taken along the
stretching surface in the direction of the motion and y-axis is perpendicular to it. We
assume that the velocity is proportional to its distance from the slit. A uniform magnetic
field B0 is imposed along y-axis. Then under the usual boundary layer approximations,
the flow and heat transfer of a micropolar fluid in porous medium with the non-Darcian
effects included are governed by the following equations [16].

(i) The equation of continuity is

∂u

∂x
+
∂v

∂y
= 0. (2.1)

(ii) The equation of momentum is

u
∂u

∂x
+ v

∂u

∂y
= ν

∂2u

∂y2
+ k1

∂N

∂y
− νϕ

k
u− cϕu2− σB2

0

ρ
u. (2.2)
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(iii) The equation of angular momentum is

G1
∂2N

∂y2
− 2N − ∂u

∂y
= 0. (2.3)

(vi) The equation of energy is

u
∂T

∂x
+ v

∂T

∂y
= K

ρCp

∂2T

∂y2
− 1
ρCp

∂qr
∂y

. (2.4)

(v) The boundary conditions are

y = 0 : u= ax, v = 0, T = Tw, N = 0,

y −→∞ : u−→ 0, T −→ T∞, N −→ 0,
(2.5)

where ν = (μ+ S)/ρ is the apparent kinematic viscosity, μ is the coefficient of dynamic
viscosity, S is a constant characteristic of the fluid, N is the microrotation component,
k1 = S/ρ(> 0) is the coupling constant,G1(> 0) is the microrotation constant, ρ is the fluid
density, u and v are the components of velocity along x and y directions, respectively, ϕ
is the porosity, k is the permeability of the porous medium, c is Forchheimer’s inertia
coefficient, T is the temperature of the fluid in the boundary layer, T∞ is the temperature
of the fluid far away from the plate, Tw is the temperature of the plate, K is the thermal
conductivity, Cp is the specific heat at constant pressure, σ is the electrical conductivity,
B0 is an external magnetic field, and qr is the radiative heat flux.

We now introduce the following transformations:

η =
(
a

ν

)1/2

y, ψ = (aν)1/2x f (η),

N =
(
a3

ν

)1/2

xg(η), θ = T −T∞
Tw −T∞ ,

u= ∂ψ

∂y
, v =−∂ψ

∂x
.

(2.6)

Using the Rosselant approximation [19], we have

qr =
(
−4σ0

3k0

)
∂T4

∂y
, (2.7)

where σ0 is the Stefan-Boltzmann constant and k0 is the mean absorption coefficient.
Substituting expressions in (2.6)-(2.7) into (2.1)–(2.5), we have

f ′′′ + f f ′′ +Lg′ − (D−1
a +R

)
f ′ − (1 +α) f ′2= 0, (2.8)

Gg′′ − (2g + f ′′)= 0, (2.9)

3Fθ′′ + 3FPr f θ′ + 4Pr
[
(1 + rθ)3θ′′ + 3r(1 + rθ)2θ′2

]= 0, (2.10)
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where L = k1/ν denotes the coupling constant parameter; D−1
a = ϕν/ka denotes the in-

verse Darcy number; R = (σ0B
2
0)/ρa denotes the magnetic parameter; α = cϕx denotes

the inertia coefficient parameter; G = G1a/ν denotes the microrotation parameter; Pr =
(νρCp)/k denotes the Prandtl number; F = (ρCpk0ν)/(4σ0T3∞) denotes the radiation pa-
rameter; and r = (Tw −T∞)/T∞ is the relative difference between the temperature of the
surface and the temperature far away from the surface.

The corresponding boundary conditions are

f (0)= 0, f ′(0)= 1, θ(0)= 1, g(0)= 0,

f ′(∞)= 0, θ(∞)= 0, g(∞)= 0.
(2.11)

In the above equations, a prime denotes differentiation with respect to η. In the case
of L= 0 and α= 0, (2.8) together with the boundary conditions f (0)= 0, f ′(0)= 1, and
f ′(∞)= 0 has an exact solution in the form

f (η)= 1√
1 +D−1

a +R

(
1− e(−

√
1+D−1

a +R)η
)
. (2.12)

The shear stress at the surface of the plate is given by [9],

τw =−
∣∣∣∣(μ+ S)

du

dy
+ SN

∣∣∣∣
y=0

. (2.13)

The skin-friction coefficient is given by

c f =
(

2τ
ρU2

)
y=0
=−2

√
Rex f

′′(0), (2.14)

where Rex =Ux/ν is the local Reynolds number.
The couple stress at the wall is given by the following:

mw =G1

(
∂N

∂y

)
y=0
= Rex

(
G1U

x2

)
g′(0). (2.15)

From the temperature field, we can now study the rate of heat transfer. It is given by

qw =−K
(
∂T

∂y

)
y=0

. (2.16)

From (2.6), (2.15) is reduced to

qw =−K
(
Tw −T∞

)√ u0

2νx
θ′(0). (2.17)

The numerical values of f ′′(0), θ′(0), and g′(0) are displayed in Table 3.1.
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Table 3.1. Values of − f ′′(0), g′(0), and −θ′(0) with L= 0.1, G= 2, α= 0.2, and r = 0.3.

D−1
a R Pr F − f ′′(0) g′(0) −θ′(0)

2 1 7 1 2.02742 0.334229 0.272683

2 1 7 0.1 2.02742 0.334229 0.203909

2 1 7 1 2.02742 0.334229 0.272683

2 1 0.72 1 2.02742 0.334229 0.245378

2 1 7 1 2.02742 0.334229 0.272683

2 2 7 1 2.26029 0.346146 0.265989

2 1 7 1 2.02742 0.334229 0.272683

0.5 1 7 1 1.61666 0.307951 0.288118

Table 3.2. Comparison between analytical and numerical values of f ′′(0) for various values of D−1
a

and R with L= 0 and α= 0.

D−1
a R Analytical Numerical

1 0 −1.41421 −1.41442

1 2 −2.00000 −2.00000

1 3 −2.23607 −2.23607

2 3 −2.44949 −2.44949

1 3 −2.23607 −2.23607

0.5 3 −2.12132 −2.12132

3. Solutions and discussion

The system of coupled nonlinear ordinary differential equation (2.8)–(2.10) together
with the boundary conditions (2.11) is solved numerically by using the fourth-order
Runge-kutta method along with the shooting technique. In order to assess the accuracy
of the present numerical method, we have compared our numerical results obtained for
the skin-friction coefficient taking L= 0 and α = 0 in (2.8) with those obtained analyti-
cally. The analytical and numerical values of − f ′′(0) for various values of D−1

a and R are
tabulated in Table 3.2. The numerical values of − f ′′(0) are in good agreement with the
obtained analytical values.

We have considered in some detail the influence of the physical parameters D−1
a , R, Pr ,

and F on the velocity, microrotation, and temperature distributions which are shown in
Figures 3.1–3.6. Figures 3.1 and 3.2 show the velocity, angular velocity, and temperature
profiles for various values of the magnetic parameter R, respectively. Application of a
transverse magnetic field normal to the flow direction gives rise to a resistive drag-like
force acting in a direction opposite to that of flow. This has a tendency to reduce both the
fluid velocity and angular velocity and increase the fluid temperature. This is indicative
from the decreases in the fluid velocity f , the angular velocity g and increases in the
temperature θ as shown in Figures 3.1 and 3.2, respectively.
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Figure 3.1. Velocity and microrotation distributions for various values of R.

0.2

0.4

R= 1
R= 2

0.6

0.8

q

1

1 2 3

h

4

Da
�1 = 2

F = 1
Pr = 7

Figure 3.2. Temperature distributions for various values of R.

Figures 3.3 and 3.4 display the influence of the inverse Darcy number D−1
a on the ve-

locity and the temperature profiles, respectively. It is obvious that the presence of porous
medium causes higher restriction to the fluid, which reduces both the velocity and the
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Figure 3.3. Velocity and microrotation distributions for various values of D−a 1.
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Figure 3.4. Temperature distributions for various values of D−a 1.

angular velocity and enhanced the temperature. Figures 3.5 and 3.6 depect the influ-
ence of the Prandtl number Pr and the radiation parameter F on the temperature dis-
tributions, respectively. It is observed that the temperature at fixed values of η decreases
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Figure 3.5. Temperature distributions for various values of Pr .
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Figure 3.6. Temperature distributions for various values of F.

with an increase in the Prandtl number Pr as shown in Figure 3.5. This is in agreement
with the physical fact that the thermal boundary thickness decreases with the increase of
Pr . Figure 3.6 displays the variation of temperature for different values of the radiation
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parameter F. We observe that the temperature decreases as the radiation parameter F
increase.

Table 3.1 displays numerical results for the skin friction coefficient, wall couple stress,
and the wall heat transfer rate for various values of D−1

a , R, Pr , and F. We observe from
this table that the skin friction coefficient and wall couple stress increase with the increase
of R or D−1

a and the wall heat transfer rate decreases with the increase of R or D−1
a . This

is because, as mentioned before, increases in R or D−1
a cause respective decreases in the

velocity, the angular velocity, and the temperature, respectively. This results in increasing
and decreasing the slopes of velocity and temperature, respectively. This has the direct
effect of increasing the skin-friction coefficient, the wall couple stress and decreasing the
rate of wall heat transfer as shown in Table 3.1. Also the wall heat transfer rate increases
with the increase of Pr . Furthermore, the negative values of the wall temperature gradient,
for all values of the parameters, are indicative of the physical fact that the heat flows from
the surface to the ambient fluid.

4. Conclusions

The problem of hydromagnetic boundary layer flow and heat transfer of an electrically
conducting micropolar fluid on a continuously moving stretching surface embedded in a
non-Darcian porous medium in the presence of radiation was investigated. The resulting
partial differential equations, which describe the problem, are transformed into ordinary
differential equations by using similarity transformations. Numerical evaluations were
performed and graphical results were obtained.

It was found that both the velocity and the angular velocity are decreased as either the
inverse Darcy number or the magnetic parameter was increased. Also it is observed that
the temperature decreased as the Prandtl number or the radiation parameter increased.
Analysis of the tables shows that the skin-fricition coefficient is found to increase with
the increase of magnetic parameter or of the inverse Darcy number. Also, we found that
the wall heat transfer rate increased as the Prandtl number or the radiation parameter
increased, while it decreased as the magnetic parameter or the inverse Darcy number
increased.
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