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We extend the result of Kirk-Saliga and we generalize Alfuraidan and Khamsi theorem for reflexive graphs. As a consequence, we
obtain the ordered version of Caristi’s fixed point theorem. Some concrete examples are given to support the obtained results.

1. Introduction

Fixed point theory is one of the most useful tools in
mathematics; it is used to solve many existence problems
such as differential equations, control theory, optimization,
and several other branches (for the literature see [1]). The
most well-known fixed point result is Banach contraction
principle [2]; it is famous for its applications, proving the
existence of solution of integral equations by converting
the problem to fixed point problem (see [3]). Recall that
a point 𝑥 ∈ 𝑋 is called a fixed point for a map 𝑇 :𝑋 → 𝑋 if 𝑇𝑥 = 𝑥. Due to its importance, this theorem
found a number of generalizations and extensions in many
directions; for more details see [4] and the references therein.
In 1976, Caristi (see [5]) gave an elegant generalization of
Banach contraction principle, where the assumption that
“𝑇 : 𝑋 → 𝑋 is continuous” is dropped and replaced by
a weak assumption. Since then, various proofs, extensions,
and generalizations are given by many authors (see [6–8]).
It is worth mentioning that Caristi’s fixed point theorem is
equivalent to the Ekeland variational principle [8]. Also, it
characterizes the completeness of the metric space as showed
by Kirk in [9]. Among those generalizations, there is Kirk-
Saliga fixed point theorem (see [10]) which states that any
map𝑇 : 𝑋 → 𝑋 has a fixed point provided that𝑋 is complete
metric space and there exist an integer 𝑝 ∈ N and a lower

semicontinuous function 𝜑 : 𝑋 → [0,∞) such that

𝑑 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑝𝑥) (1)

and𝜑(𝑇𝑥) ≤ 𝜑(𝑥) for any 𝑥 ∈ 𝑋. Formore on the latter result,
one can consult [11].

Recently, Ran and Reurings [12] extend the Banach
contraction principle in the context of partially ordered set
where the contraction is restricted to the comparable ele-
ments which allowed them to give a meaningful application
to linear and nonlinear matrix equations. Moreover, Nieto
and Rodŕıguez-López in [13] have weakened the continuity
assumption using a more suitable condition where the order
is combinedwith the topological properties. Formore details,
one can consult [14, 15]. Also, in [16] Alfuraidan and Khamsi
gave an analogue version of Caristi’s fixed point theorem
in the setting of partially ordered metric space where the
inequality holds only for comparable elements. However,
the new approach in their work is mixing the concept of
the reflexive acyclic digraph with fixed point results. In this
article, we discuss an extension of Kirk-Saliga result and
we generalize Alfuraidan and Khamsi theorem for reflexive
graphs. As a corollary, we obtain the ordered version of
Caristi’s fixed point theorem. Some concrete examples are
given to support the obtained results. Throughout this paper
we denote by N the set of all integers and by N∗ the set of all
positive integers.
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2. Preliminaries

We start by recalling some basic notions on graphs borrowed
from [17].

Definition 1. Let 𝑉 be an arbitrary set.

(i) A directed graph, or digraph, is a pair 𝐺 = (𝑉, 𝐸),
where𝐸 is a subset of theCartesian product𝑉×𝑉.The
elements of𝑉 are called vertices or nodes of𝐺 and the
elements of 𝐸 are the edges also called oriented edges
or arcs of 𝐺. An edge of the form (V, V) is a loop on V.
Another way to express that𝐸 is a subset of𝑉×𝑉 is to
say that 𝐸 is a binary relation over𝑉. Given a digraph𝐺, the set of vertices (of edges) of𝐺 is denoted by𝑉(𝐺)
(𝐸(𝐺)).

(ii) The digraph 𝐺 = (𝑉, 𝐸) is said to be transitive if
whenever (𝑥, 𝑦) ∈ 𝐸 and (𝑦, 𝑧) ∈ 𝐸, (𝑥, 𝑧) ∈ 𝐸.

Definition 2. A digraph 𝐺 = (𝑉, 𝐸) is said to be reflexive ifΔ fl {(V, V) | V ∈ 𝑉} is a subset of 𝐸. Otherwise, every vertex
has a loop.

Definition 3. Let 𝐺 = (𝑉, 𝐸) be a digraph.
(i) A vertex 𝑥 is said to be isolated if for all vertex 𝑦 ̸= 𝑥,

we have neither (𝑥, 𝑦) ∈ 𝐸 nor (𝑦, 𝑥) ∈ 𝐸.
(ii) Two vertices 𝑥, 𝑦 ∈ 𝑉. A path in 𝐺, from (or joining)𝑥 to 𝑦, is a sequence of vertices 𝑝 = {𝑎𝑖}0≤𝑖≤𝑛, 𝑛 ∈ N∗

such that 𝑎0 = 𝑥, 𝑎𝑛 = 𝑦 and (𝑎𝑖, 𝑎𝑖+1) ∈ 𝐸, for all𝑖 ∈ {0, 1, . . . , 𝑛 − 1}. The integer 𝑛 is the length of the
path 𝑝. If 𝑥 = 𝑦 and 𝑛 > 1, the path 𝑝 is called a
directed cycle. An acyclic digraph is a digraph which
has no directed cycle.

(iii) We denote by 𝑦 ∈ [𝑥]𝐺 the fact that 𝑦 can be reached
from 𝑥 by means of a path in 𝐺.

Ametric space (𝑋, 𝑑) endowedwith a digraph𝐺 such that𝑉(𝐺) = 𝑋 is denoted by (𝑋, 𝑑, 𝐺). The following notion of
regularity is borrowed from Alfuraidan and Khamsi in [16]
that considered it for posets.

Definition 4. Let (𝑋, 𝑑, ⪯) be a partially orderedmetric space.
We say that 𝑋 satisfies the condition (OSC) if for any
decreasing sequence {𝑥𝑛} ⊆ 𝑋 that is convergent to 𝑥 ∈ 𝑋,𝑥 = inf{𝑥𝑛 : 𝑛 ∈ N}.

In the setting of digraphs, the analogue of the infimum of
chain may be stated as follows.

Definition 5. Let (𝑋, 𝑑, 𝐺) be metric space endowed with a
digraph. We say that 𝑋 satisfies the condition (OSCL) if for
any sequence {𝑥𝑛} ⊆ 𝑋 that is convergent to 𝑥 ∈ 𝑋 and for
all 𝑛 ∈ N, 𝑥𝑛+1 ∈ [𝑥𝑛]𝐺, 𝑥 ∈ [𝑥𝑛]𝐺 for all 𝑛 ∈ N and if
there exists 𝑦 ∈ 𝑋 such that 𝑦 ∈ [𝑥𝑛]𝐺, for all 𝑛 ∈ N, then𝑦 ∈ [𝑥]𝐺.

Remark 6. Let (𝑋, 𝑑, ⪯) be a partially ordered metric space.
Let 𝐺⪯ be the digraph associated with the order ⪯ (see [16]).
One can see that

𝑥 ⪯ 𝑦 ⇐⇒ (𝑦, 𝑥) ∈ 𝐸 (𝐺⪯) ⇐⇒ 𝑥 ∈ [𝑦]𝐺⪯ . (2)

Under the above observations, the (OSCL) property is
reduced to the (OSC) condition.

Let 𝜔 be the first transfinite ordinal and let Ω be the first
uncountable transfinite ordinal. 𝜔 is the order type of N “the
set of integers” and Ω is the order type of R the set of real
numbers. Note that, for each 𝜉 < Ω, 𝜉 is countable.
Proposition 7 (see [11]). The following is valid:

(i) The ordinal Ω cannot be attained via sequential limits
of countable ordinals. That is if {𝛼𝑛} is an ascending
sequence of countable ordinals, then the ordinal

𝛼 = sup {𝛼𝑛} = lim𝛼𝑛 (3)

is countable too.

(ii) Each second kind countable ordinal is attainable via
such sequences. In other words: if 𝛼 < Ω is of
second kind (ordinal limit), then there exists a strictly
ascending sequence {𝛼𝑛} of countable ordinals with
property (3).

The following result is needed throughout this work; for
the proof see [18, Proposition A.6, pp. 284].

Proposition 8. Suppose that a sequence {𝑥𝛼}𝛼∈Ω ⊆ R is
bounded and either nonincreasing or nondecreasing. Then
there exists 𝛽 ∈ Ω such that 𝑥𝛼 = 𝑥𝛽 for allΩ > 𝛼 ≥ 𝛽.

We conclude this section by the following useful defini-
tions.

Definition 9. Let (𝑋, 𝑑, 𝐺) be metric space endowed with a
digraph,𝑝 ∈ N and𝜑 : 𝑋 → [0, +∞[ a lower semicontinuous
function. Let 𝑇 : 𝑋 → 𝑋 be a self-mapping. We say the
following:

(1) 𝑇 is a 𝐺-monotone if for all (𝑥, 𝑦) ∈ 𝑋2,
𝑥 ∈ [𝑦]𝐺 󳨐⇒ 𝑇𝑥 ∈ [𝑇𝑦]𝐺 . (4)

(2) 𝑇 is a 𝐺-Caristi mapping if for all 𝑥 ∈ 𝑋,

𝑇𝑥 ∈ [𝑥]𝐺 󳨐⇒ 𝑑 (𝑇𝑥, 𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑥) . (5)

(3) 𝑇 is a 𝐺-Kirk-Saliga mapping if for all 𝑥 ∈ 𝑋,

𝑇𝑥 ∈ [𝑥]𝐺 󳨐⇒ {{{
(KS1) : 𝑑 (𝑇𝑥, 𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑝𝑥) ;
(KS2) : 𝜑 (𝑇𝑥) ≤ 𝜑 (𝑥) . (6)
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3. Main Results

Theorem10. Let (𝑋, 𝑑, 𝐺) be a completemetric space endowed
with a reflexive digraph satisfying the (OSCL) condition. Let𝑇 : 𝑋 → 𝑋 be a 𝐺-monotone and 𝐺-Kirk-Saliga mapping. If
there exists an element 𝑥0 ∈ 𝑋 such that 𝑇𝑥0 ∈ [𝑥0]𝐺, then 𝑇
admits a fixed point in 𝑋.

Proof. If𝑝 = 0 then𝑇𝑥 = 𝑥, for all𝑥 ∈ 𝑋 such that𝑇𝑥 ∈ [𝑥]𝐺.
Assume that 𝑝 ≥ 1 and consider the function 𝜙 defined from𝑋 into [0, +∞[ by

𝜙 (𝑥) = 𝑝−1∑
𝑖=0

𝜑 (𝑇𝑖𝑥) , ∀𝑥 ∈ 𝑋. (7)

The idea of the proof is to construct a transfinite orbit (𝑥𝛼)𝛼∈Ω,
where Ω is the first uncountable ordinal satisfying, for each𝛼 ∈ Ω,

𝐴(𝛼): 𝑇𝑥𝛼 = 𝑥𝛼+1;
𝐵(𝛼): 𝑥𝛼 = lim𝜆→𝛼−𝑥𝜆, whenever 𝛼 is an ordinal limit;
𝐶(𝛼): 𝑥𝛼 ∈ [𝑥𝜇]𝐺, whenever 𝜇 ≺ 𝛼;
𝐷(𝛼): 𝑑(𝑥𝛼, 𝑥𝜇) ≤ 𝜙(𝑥𝜇) − 𝜙(𝑥𝛼), whenever 𝜇 ⪯ 𝛼.

Consider the sequence {𝑥𝑛} defined for each 𝑛 ∈ N by𝑥𝑛+1 = 𝑇𝑥𝑛. Since 𝑇𝑥0 ∈ [𝑥0]𝐺 and using the monotony of𝑇, we obtain 𝑥𝑛+1 ∈ [𝑥𝑛]𝐺 for each 𝑛 ∈ N. According to
(KS2), the nonnegative sequence {𝜙(𝑥𝑛)} is decreasing and
then converges. From (KS1), we get that for all integers 𝑛 > 𝑚

𝑑 (𝑥𝑚, 𝑥𝑛) ≤
𝑛−1∑
𝑖=𝑚

𝑑 (𝑥𝑖, 𝑥𝑖+1) ≤
𝑛−1∑
𝑖=𝑚

𝜙 (𝑥𝑖) − 𝜙 (𝑥𝑖+1)
≤ 𝜙 (𝑥𝑚) − 𝜙 (𝑥𝑛) .

(8)

Hence, {𝑥𝑛} is a Cauchy sequence and then converges to 𝑥𝜔 ∈𝑋. Let us put 𝑥𝜔+1 = 𝑇𝑥𝜔. Clearly the properties 𝐴(𝛼)–𝐷(𝛼)
are satisfied for each 𝛼 ≤ 𝜔. Let 𝛽 ∈ Ω. Assume that the orbit{𝑥𝛼}𝛼<𝛽 has been defined. We need to define 𝑥𝛽 and show
that the four properties 𝐴(𝛽)–𝐷(𝛽) hold. For that, we have
to distinguish two cases, when 𝛽 is an immediate successor
or 𝛽 is an ordinal limit. Clearly 𝐴(𝛽) and 𝐵(𝛽) are satisfied;
let us focus on 𝐶(𝛽) and𝐷(𝛽).
Claim 1 (C(𝛽) holds)
Case 1. Assume that 𝛽 is an ordinal limit; that is, there exists
a strictly ascending sequence (𝛽𝑛)𝑛 of ordinals inΩ such that𝛽 = sup{𝛽𝑛; 𝑛 ∈ N} and 𝛽𝑚 ⪯ 𝛽𝑛 ≺ 𝛽 whenever 𝑚 ≤ 𝑛. Since𝐷(𝛼) holds for all 𝛼 ≺ 𝛽, we get

𝑑 (𝑥𝛽𝑛 , 𝑥𝛽𝑚) ≤ 𝜙 (𝑥𝛽𝑚) − 𝜙 (𝑥𝛽𝑛) , (9)

which implies that (𝜙(𝑥𝛽𝑛))𝑛 is decreasing sequence in [0,∞)
and hence it is convergent.Then (𝑥𝛽𝑛) is Cauchy sequence, so
it converges in𝑋. Set 𝑥𝛽 = lim𝑛→∞𝑥𝛽𝑛 . By (OSCL) property,
we obtain 𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 for all 𝑛 ∈ N. Let 𝛼 ≺ 𝛽. There exists𝑛0 ∈ N such that for each 𝑛 ≥ 𝑛0 we have

𝛼 ⪯ 𝛽𝑛 ≺ 𝛽, (10)

and thus for each 𝑛 ≥ 𝑛0,
𝑥𝛽𝑛 ∈ [𝑥𝛼]𝐺 , 𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 󳨐⇒ 𝑥𝛽 ∈ [𝑥𝛼]𝐺 . (11)

Since 𝛼 is taken arbitrary, we obtain 𝐶(𝛽).
Case 2. Assume that 𝛽 is an immediate successor; there exists𝛼 ≺ 𝛽 such that 𝛽 = 𝛼 + 1.

(i) If 𝛼 is an immediate successor, there exists an ordinal𝜇 such 𝛼 = 𝜇 + 1. From 𝐶(𝛼), we have 𝑥𝛼 ∈ [𝑥𝜇]𝐺
and using the 𝐺-monotonicy of 𝑇 it follows that 𝑥𝛽 ∈[𝑥𝛼]𝐺 and so 𝐶(𝛽) holds.

(ii) If 𝛼 is an ordinal limit, from Proposition 7, there
exists an ascending sequence {𝛼𝑛} ⊂ Ω such that𝛼 = sup{𝛼𝑛 : 𝑛 ∈ N}. From 𝐵(𝛼) we have 𝑥𝛼 =
lim𝑛→+∞𝑥𝛼𝑛 . Using the (OSCL) condition, we have𝑥𝛼 ∈ [𝑥𝛼𝑛]𝐺. Since 𝑇 is 𝐺-monotone, 𝑥𝛽 ∈ [𝑥𝛼𝑛+1]𝐺
and as 𝑥𝛼𝑛+1 ∈ [𝑥𝛼𝑛]𝐺, we get 𝑥𝛽 ∈ [𝑥𝛼𝑛]𝐺. Again,
(OSCL) insures that 𝑥𝛽 ∈ [𝑥𝛼]𝐺. Then 𝐶(𝛽) holds.

Claim 2 (D(𝛽) holds)
Case 1. Assume that 𝛽 is ordinal limit. Let 𝛼 ≺ 𝛽. There exists𝑛0 ∈ N such that for each 𝑛 ≥ 𝑛0 we have

𝛼 ⪯ 𝛽𝑛 ≺ 𝛽. (12)

Then we get for each 𝑛 ≥ 𝑛0 that
𝑑 (𝑥𝛼, 𝑥𝛽𝑛) ≤ 𝜙 (𝑥𝛼) − 𝜙 (𝑥𝛽𝑛) , (13)

and for all 𝑖 ∈ {0, 1, . . . , 𝑝 − 1}
lim
𝑛→∞

𝑇𝑖𝑥𝛽𝑛 = lim
𝑛→∞

𝑥𝛽𝑛+𝑖 = 𝑥𝛽. (14)

Since 𝜑 is lower semicontinuous, we get

𝜑 (𝑥𝛽) ≤ lim inf
𝑛→∞

𝜑 (𝑇𝑖𝑥𝛽𝑛) . (15)

From 𝐶(𝛽), we have 𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 for all 𝑛 ∈ N. Using the
same argument as above, we get 𝑇𝑥𝛽 ∈ [𝑥𝛽𝑛]𝐺 and (OSCL)
insures that 𝑇𝑥𝛽 ∈ [𝑥𝛽]𝐺. Hence, for all 𝑖 ∈ {0, 1, . . . , 𝑝 − 1},
𝑇𝑖+1𝑥𝛽 ∈ [𝑇𝑖𝑥𝛽]𝐺. This implies that

𝜑 (𝑇𝑝𝑥𝛽) ≤ 𝜑 (𝑇𝑝−1𝑥𝛽) ≤ ⋅ ⋅ ⋅ ≤ 𝜑 (𝑇𝑥𝛽) ≤ 𝜑 (𝑥𝛽) . (16)

By passing to limit superior in inequality (13), it follows that

𝑑 (𝑥𝛼, 𝑥𝛽) ≤ 𝜙 (𝑥𝛼) − lim inf
𝑛→+∞

𝜙 (𝑥𝛽𝑛)

≤ 𝜙 (𝑥𝛼) −
𝑝−1∑
𝑖=0

lim inf
𝑛→+∞

𝜑 (𝑇𝑖𝑥𝛽𝑛)
≤ 𝜙 (𝑥𝛼) − 𝑝𝜑 (𝑥𝛽) ≤ 𝜙 (𝑥𝛼) − 𝜙 (𝑥𝛽) .

(17)

Hence,𝐷(𝛽) holds.
Case 2. Assume that 𝛽 = 𝛼 + 1 is an immediate successor; we
have shown above that 𝐶(𝛽) holds. Then 𝑇𝑥𝛼 = 𝑥𝛽 ∈ [𝑥𝛼]𝐺
and by assumption we get

𝑑 (𝑥𝛼, 𝑥𝛽) ≤ 𝜙 (𝑥𝛼) − 𝜙 (𝑥𝛽) , (18)
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and for all 𝛾 ⪯ 𝛼, we have
𝑑 (𝑥𝛾, 𝑥𝛼) ≤ 𝜙 (𝑥𝛾) − 𝜙 (𝑥𝛼) . (19)

The triangle inequality implies that

𝑑 (𝑥𝛾, 𝑥𝛽) ≤ 𝜙 (𝑥𝛾) − 𝜙 (𝑥𝛽) , (20)

for each 𝛾 ⪯ 𝛽, which completes the proof of 𝐷(𝛽) in both
cases.

Thus, the orbit (𝑥𝛼)𝛼∈Ω is well constructed. Since {𝜙(𝑥𝛼)}
is nonincreasing on {𝑥𝛼} and Ω is uncountable, there must
exist 𝛼0 ∈ Ω such that 𝜙(𝑥𝛼) is constant for all 𝛼 ⪰ 𝛼0. From𝐷(𝛼0 + 1), we get

𝑑 (𝑥𝛼0+1, 𝑥𝛼0) ≤ 𝜙 (𝑥𝛼0) − 𝜙 (𝑥𝛼0+1) = 0. (21)

Hence, 𝑇𝑥𝛼0 = 𝑥𝛼0+1 = 𝑥𝛼0 .
We support our result by giving an example of a mapping

which is 𝐺-Kirk-Saliga mapping, for some integer 𝑝 > 1, but
not 𝐺-Caristi.
Example 11. Consider the metric space (𝑋, 𝑑), where 𝑋 =[0, 1] and 𝑑(𝑥, 𝑦) = |𝑥 − 𝑦|, for all 𝑥, 𝑦 ∈ 𝑋. Endow 𝑋 with
the directed graph 𝐺 = (𝑋, 𝐸) represented in Figure 1, where

𝐸 = Δ ∪ {(√1
2 , 0) , (1, 0) , ( 1

2𝑛 , 0) , ( 1
2𝑛 ,

1
2𝑛+1 ) : 𝑛

∈ N
∗} .

(22)

Consider the function 𝜑 : 𝑋 → [0, +∞[ defined by

𝜑 (𝑥) = {{{
√𝑥, if 𝑥 ∈ [0, 1[ ;
0, if 𝑥 = 1, (23)

and themapping𝑇 : 𝑋 → 𝑋 defined by𝑇𝑥 = 𝑥2, if 𝑥 ∈ [0, 1[;
𝑇1 = √1/2.

One can see that 𝑇1 ∉ [1]𝐺, 𝑇√1/2 ∉ [√1/2]𝐺 and
𝑋𝐺 fl {𝑥 ∈ 𝑋 : 𝑇𝑥 ∈ [𝑥]𝐺} = {0, 1

2𝑛 : 𝑛 ∈ N
∗} . (24)

We verify the following assertions:

(i) (𝑋, 𝑑) is complete and 𝑇 is 𝐺-monotone obviously.
(ii) 𝐺 satisfies the (OSCL) property. Indeed, let {𝑥𝑛} be

a sequence in 𝑋 such that {𝑥𝑛} converges to some𝑥 ∈ 𝑋 and 𝑥𝑛+1 ∈ [𝑥𝑛]𝐺, for all 𝑛 ∈ N. Two cases
to distinguish are as follows:

(1) There exists 𝑛0 ∈ N such that𝑥𝑛 = 𝑥𝑛0 , for all 𝑛 ≥𝑛0. Then for all 𝑛 ≥ 𝑛0, 𝑥𝑛 = 𝑥. If 𝑥 is an isolated
vertex, the (OSCL) is obviously satisfied. If not,𝑦 ∈ [𝑥𝑛]𝐺 for all 𝑛 ∈ N implies 𝑦 ∈ [𝑥]𝐺. Thus,
(OSCL) is satisfied.
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Figure 1: Graph 𝐺 (the loops and the isolated vertices are not
represented).

(2) For all 𝑘 ∈ N, there exists𝑚𝑘 ∈ N such 𝑥𝑚𝑘 ̸= 𝑥𝑘.
Then {𝑥𝑛} ⊆ {1/2𝑛 : 𝑛 ∈ N}; that is, there exists
a nondecreasing function 𝜓 : N → N such that
𝑥𝑛 = 1/2𝜓(𝑛) for all 𝑛 ∈ N, and 𝑥 = 0. If 𝑦 ∈[𝑥𝑛]𝐺 for all 𝑛 ∈ N, then 𝑦 = 0. Thus, (OSCL) is
satisfied.

(iii) 𝑇 is 𝐺-kirk-Saliga mapping in 𝑋 with 𝑝 = 3. Indeed,
for all 𝑥 ∈ 𝑋𝐺,

𝑥 − 𝑥2 ≤ √𝑥 − 𝑥4 ⇐⇒
𝑑 (𝑥, 𝑇𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇3𝑥) , (25)

but 𝑇 is not 𝐺-Caristi mapping, since

𝑑 (1
2 , 𝑇

1
2) > 𝜑(1

2) − 𝜑(𝑇1
2) . (26)

(iv) 𝑇0 ∈ [0]𝐺.
and 𝑇 admits a fixed point in𝑋 which is 0.

If we remove the (OSCL) property, we are not certain that
the fixed point will be obtained. Let us illustrate that by this
counterexample.

Example 12. Replace in the above example the digraph 𝐺 by
the digraph 𝐺󸀠 represented in Figure 2, where

𝐸󸀠 = Δ ∪ {( 1
2𝑛 , 0) , ( 1

2𝑛 , 1) , ( 1
2𝑛 ,

1
2𝑛+1 ) : 𝑛 ∈ N

∗} , (27)

and we consider the mapping 𝑇 : 𝑋 → 𝑋 defined as follows:

𝑇0 = 1;
𝑇𝑥 = 𝑥2, if 𝑥 ∈ ]0, 1[ ;
𝑇1 = 0.

(28)

One can see that 𝐺󸀠 satisfies (OSC) property but does not
satisfy the (OSCL), since 1/2𝑛 → 0 and for all 𝑛 ∈ N,0 ∈ [1/2𝑛]𝐺󸀠 and 1 ∈ [1/2𝑛]𝐺󸀠 but 1 ∉ [0]𝐺󸀠 . The mapping 𝑇
satisfies all others conditions of Theorem 10 but has no fixed
point in𝑋.
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Figure 2: Graph 𝐺󸀠 (the loops and the isolated vertices are not
represented).

Corollary 13. Let (𝑋, 𝑑, 𝐺) be a complete metric space
endowed with a reflexive digraph which satisfies the (OSCL)
property. Let 𝑛 = ∏𝑘𝑖=0𝑝𝛼𝑖𝑖 , where 𝑝𝑖 is prime integer and(𝑘, 𝛼𝑖) ∈ N×N∗, for each 𝑖 ∈ {0, 1, . . . , 𝑘}, and let𝑇 : 𝑋 → 𝑋 be
a 𝐺-monotone mapping such that there exists 𝑗 ∈ {0, 1, . . . , 𝑘},
for all 𝑥 ∈ 𝑋,

𝑇𝑝𝑗𝑥 ∈ [𝑥]𝐺 󳨐⇒ {{{
max {𝑑 (𝑥, 𝑇𝑝𝑖𝑥) : 𝑖 ∈ {0, 1, . . . , 𝑘}} ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑛𝑥) ,
𝜑 (𝑇𝑝𝑗𝑥) ≤ 𝜑 (𝑥) . (29)

Then 𝑇 admits a fixed point in 𝑋 provided that there exists an
element 𝑥0 ∈ 𝑋 such that 𝑇𝑥0 ∈ [𝑥0]𝐺.
Proof. Clearly,𝑇𝑝𝑗 satisfies all conditions ofTheorem 10; then
there exists 𝑥 ∈ 𝑋 such that 𝑇𝑝𝑗𝑥 = 𝑥 and so, 𝑇𝑛𝑥 = 𝑥. Since𝑇𝑝𝑗𝑥 ∈ [𝑥]𝐺, we get from (29) that

𝑑 (𝑥, 𝑇𝑝𝑖𝑥) ≤ 𝜑 (𝑥) − 𝜑 (𝑇𝑛𝑥) = 0,
∀𝑖 ∈ {0, 1, . . . , 𝑘} \ {𝑗} . (30)

Now, let 𝑖 ∈ {0, 1, . . . , 𝑘} \ {𝑗}; then 𝑇𝑝𝑖𝑥 = 𝑥. By Bezout
identity, there exists (𝑢, V) ∈ Z2 such that 𝑢V ≤ 0 and𝑝𝑗𝑢 + 𝑝𝑖V = 1. Without loss of generality, we suppose that
𝑢 < 0 and V > 0. Since 𝑇𝑝𝑗𝑥 = 𝑥 and 𝑇𝑝𝑖𝑥 = 𝑥, then𝑇1−𝑝𝑗𝑢𝑥 = 𝑇𝑥 and 𝑇𝑝𝑖V𝑥 = 𝑥. Since 𝑝𝑖V = 1 − 𝑝𝑗𝑢, then𝑇𝑥 = 𝑥.

We conclude this work by a discussion about preordered
sets.

Let (𝑋, ⩽) be a preordered set; that is, the binary relation
“⩽” is reflexive and transitive.

Given a reflexive digraph𝐺 = (𝑋, 𝐸), we can always define
a preorder ⩽𝐺 on𝑋 as follows:

𝑥⩽𝐺 𝑦 ⇐⇒ 𝑥 ∈ [𝑦]𝐺 . (31)

Conversely, if (𝑋, ⩽) is a preordered set, we define the reflexive
digraph𝐺⩽ as follows: two vertices 𝑥, 𝑦 ∈ 𝑋 are connected by
an arc from 𝑥 to 𝑦 if 𝑥 ⩽ 𝑦. Note that 𝐺⩽ is transitive (i.e.,
if (𝑥, 𝑦) ∈ 𝐸(𝐺⩽) and (𝑦, 𝑧) ∈ 𝐸(𝐺⩽); then (𝑥, 𝑧) ∈ 𝐸(𝐺⩽)),
so 𝑥 ∈ [𝑦]𝐺⩽ ⇔ (𝑥, 𝑦) ∈ 𝐸(𝐺⩽). These remarks lead to the
following definition.

Definition 14. Let (𝑋, ⩽) be a preordered set.We say that (𝑋, ⩽) satisfies the (OSCL) condition if and only if 𝐺⩽ satisfies the
(OSCL) condition.

We shall say that 𝑇 : 𝑋 → 𝑋 is ⩽-monotone (resp.,⩽-Kirk-Saliga) mapping if 𝐺⩽-monotone (resp., 𝐺⩽-Kirk-
Saliga) mapping.

An analogue version of Theorem 10 in the setting of the
preordered metric spaces may be stated as follows.

Theorem 15. Let (𝑋, 𝑑, ⩽) be a preordered complete metric
space satisfying the (OSCL) condition. Let 𝑇 : 𝑋 → 𝑋 be
a ⩽-monotone and ⩽-Kirk-Saliga mapping. If there exists an
element 𝑥0 ∈ 𝑋 such that 𝑇𝑥0 ⩽ 𝑥0, then 𝑇 admits a fixed
point in𝑋.

Remark 16. If moreover the above binary relation ⩽ is
antisymmetric (i.e., (𝑥 ⩽ 𝑦 and 𝑦 ⩽ 𝑥) imply 𝑥 = 𝑦), we
obtain, from Remark 6, the following result established by
Alfuraidan and Khamsi.

Corollary 17 (see [16, Theorem 5]). Let (𝑋, 𝑑, ⩽) be a com-
plete partially ordered metric space satisfying the property
(OSC). Let 𝑇 : 𝑋 → 𝑋 be a ⩽-monotone and ⩽-Kirk-Saliga
mapping with 𝑝 = 1. If there exists an element 𝑥0 ∈ 𝑋 such
that 𝑇𝑥0 ⩽ 𝑥0, then 𝑇 admits a fixed point in𝑋.
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