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Hashing has been widely deployed to perform the Approximate Nearest Neighbor (ANN) search for the large-scale image retrieval
to solve the problem of storage and retrieval efficiency. Recently, deep hashing methods have been proposed to perform the
simultaneous feature learning and the hash code learning with deep neural networks. Even though deep hashing has shown the
better performance than traditional hashing methods with handcrafted features, the learned compact hash code from one deep
hashing network may not provide the full representation of an image. In this paper, we propose a novel hashing indexing method,
called the Deep Hashing based Fusing Index (DHFI), to generate a more compact hash code which has stronger expression ability
and distinction capability. In our method, we train two different architecture’s deep hashing subnetworks and fuse the hash codes
generated by the two subnetworks together to unify images. Experiments on two real datasets show that ourmethod can outperform
state-of-the-art image retrieval applications.

1. Introduction

With the rapidly growing of images on the Internet, it
is extremely difficult to find relevant images according to
different people’s needs. For example, nowadays the volume
of images is becoming larger and larger, and a database having
millions of images is quite common. Thus, a great deal of
time and memory would be used in a linear search through
the whole database. Moreover, images are always represented
by real-valued features, so that the curse of dimension often
occurred in many content-based image search engines and
applications.

To address the inefficiency and the problem of memory
cost of real-valued features, the ANN search [1] has become
a popular method and a hot research topic in recent years.
Among existing ANN techniques, hashing approaches are
proposed to map images to compact binary codes that
approximately preserve the data structure in the original
space [2–6]. Due to the high query speed and low memory

cost, the hashing and image binarization techniques have
become themost popular and effective techniques to enhance
identification and retrieval of information using content-
based image recognition [4, 7–16]. Instead of real-valued
features, images are represented by binary codes so that the
time and memory costs of search can be greatly reduced [17].
However, the retrieval performance of most existing hashing
methods heavily depends on the features they used, which
are basically extracted in an unsupervisedmanner, thusmore
suitable for dealing with the visual similarity search than the
semantic similarity search.

As we all know, the Convolutional Neural Network
(CNN) has demonstrated its impressive learning power on
image classification [5, 18–20], object detection [21], face
recognition [22], and many other vision tasks [23–25]. The
CNNused in these tasks can be regarded as a feature extractor
guided by the objective function, specifically designed for the
individual task [5]. The successful applications of CNN in
various tasks imply that the features learned by CNN can well

Hindawi
Applied Computational Intelligence and So Computing
Volume 2017, Article ID 9635348, 8 pages
https://doi.org/10.1155/2017/9635348

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208035611?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/9635348


2 Applied Computational Intelligence and Soft Computing

capture the underlying semantic structure of images in spite
of significant appearance variations. Moreover, hashing with
the deep learning network has shown that both feature repre-
sentation and hash coding can be learned more effectively.

Inspired by the robustness of CNN features and the high
performance of deep hashing methods, we propose a binary
code generating and fusing framework to index large-scale
image datasets, named Deep Hashing based Fusing Index
(DHFI).

In our method, firstly, we train two different deep pair-
wise hashing networks which take image pairs along with
labels to indicate whether the two images are similar as
training inputs and produce binary codes as outputs. Then,
we merge the hash codes produced by the two subnetworks
together and regard the merged hash code as a fingerprint
or binary index of an image. Under these two stages, images
can be easily encoded by forward propagating through the
network and then merging the network outputs to binary
hash code representation.

The rest of the paper is organized as follows: Section 2
discusses the related work to the method. Section 3 describes
DHFI method in detail. Section 4 extensively evaluates the
proposed method on two large-scale datasets. Section 5 gives
concluding remarks.

2. Related Work

Existing learningmethods can be divided into two categories:
data-independent methods and data-dependent methods [8,
24, 26, 27].

The hash function in data-independent methods is typi-
cally randomly generated and is independent of any training
data. The representative data-independent methods include
locality-sensitive hashing (LSH) [1] and its variants. Data-
dependent methods try to learn the hash function from some
training data, which is also called learning to hash (L2H)
methods [15, 26]. L2H methods can achieve comparable or
better accuracy with shorter hash codes when compared
to data-independent methods. In real applications, L2H
methods have become more popular than data-independent
methods.

Existing L2H methods can be further divided into two
categories: unsupervised hashing and supervised hashing
refer to a comprehensive survey [28].

Unsupervised hashing methods use the unlabeled train-
ing data only to learn hash functions and encode the input
data points to binary codes. Typical unsupervised hashing
methods include reconstruction error minimization [29, 30],
graph based hashing [3, 31], isotropic hashing (IsoHash) [9],
discrete graph hashing (DGH) [32], scalable graph hashing
(SGH) [33], and iterative quantization (ITQ) [8].

Supervised hashing utilizes information, such as
class labels, to learn compact hash codes. Representative
supervised hashing methods include binary reconstruction
embedding (BRE) [7], Minimal Loss Hashing (MLH) [34],
Supervised Hashing with Kernels (KSH) [4], two-step
hashing (TSH) [35], fast supervised hashing (FastH) [12],
and latent factor hashing (LFH) [36]. In the pipelines of
these methods, images are first represented by handcrafted

visual descriptor feature vectors (e.g., GIST [37], HOG
[38]), followed by separate projection and quantization steps
to encode vectors into binary hash codes. However, such
handcrafted feature represents the low level information of
a picture whose construction process is independent of the
hash function learning process, and the resulting features
might not be optimally compatible with hash codes.

Recently, as the deep learning has shown its effective
image representation power on high level semantic infor-
mation in a picture, then, a lot of feature learning based
deep hashing methods have recently been proposed and
have shown their better performance than traditional hashing
methods with handcrafted features, such as convolutional
neural network hashing (CNNH) [39], network in network
hashing (NINH) [40], deep hashing network (DHN) [41],
and deep pairwise supervised hashing (DPSH) [15]. CNNH
is proposed by Xia et al. The CNNH method first learns the
hash codes from the pairwise labels and then tries to learn
the hash function and feature representation from image
pixels based on hash codes. Lai et al. improved the two-stage
CNNH by proposing NINH. NINH uses a triplet ranking
loss to preserve relative similarities and the hash codes of
images are encoded by dividing and encoding modules.
Moreover, this method is a simultaneous feature learning
and hash coding deep network so that image representations
and hash codes can improve each other in the joint learning
process. DHN further improves NINH by controlling the
quantization error in a principled way and devising a more
principled pairwise cross entropy loss to link the pairwise
Hamming distances with the pairwise similarity labels, while
DPSH learns hash codes by learning features and hash codes
simultaneously with pairwise labels. Due to the fact that
different components in deep pairwise supervised hashing
(DPSH) can give feedback to each other, DPSH outperforms
other methods in image retrieval application as far as we
know.

In this work, we further improve the retrieval accuracy
by two steps: (1) training two different architecture’s deep
hashing subnetworks and (2) fusing the hash codes generated
by the two subnetworks to unify images so that the merged
codes can represent more semantic information and support
each other. These two important stages constitute the DHFI
approach.

3. The Proposed Approach

In this section, we describe our method in detail. We first
train two different architecture’s deep hashing subnetworks.
Then, we perform each image through the subnetworks to
generate binary hash codes and fuse the hash codes generated
by the same image together. For the first step discussed in
Section 3.1, we follow the simultaneous feature learning and
hash code learning method of [15]. The major novelty of our
method is training two deep hashing subnetworks and fusing
the hash codes generated by the two subnetworks together to
index images.

3.1. Subnetwork Training. We have 𝑛 images (feature points)
𝜒 = {𝑥1, 𝑥2, . . . , 𝑥𝑛} and the training set of supervised hashing
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Figure 1: The end-to-end deep hash network learning architecture.

with pairwise labels also contains a set of pairwise labels 𝑆 =
{𝑠𝑖𝑗} with 𝑠𝑖𝑗 ∈ {0, 1}, where 𝑠𝑖𝑗 = 1 means that 𝑥𝑖 and 𝑥𝑗 are
similar and 𝑠𝑖𝑗 = 0means that 𝑥𝑖 and 𝑥𝑗 are dissimilar. Here,
the pairwise labels typically refer to semantic labels provided
with manual efforts.

The goal of supervised hashing with pairwise labels is to
learn a binary code 𝑏𝑖 ∈ {−1, 1}𝑐 for each point 𝑥𝑖, where𝑐 is the code length. The binary code 𝐵 = {𝑏𝑖}𝑛𝑖=1 should
preserve the similarity in 𝑆. More specifically, if 𝑠𝑖𝑗 = 1, then
binary codes 𝑏𝑖 and 𝑏𝑗 should have a low Hamming distance;
if 𝑠𝑖𝑗 = 0, the binary codes 𝑏𝑖 and 𝑏𝑗 should have a high
Hamming distance. In general, we can write the binary code
as 𝑏𝑖 = ℎ(𝑥𝑖) = [ℎ1(𝑥𝑖), ℎ1(𝑥𝑖), . . . , ℎ𝑐(𝑥𝑖)]𝑇, where ℎ(𝑥𝑖)
is the hash function to learn. For the subnetworks training
step, we use the model and learning method called deep
pairwise supervised hashing (DPSH) from Li et al.Themodel
is an end-to-end deep learning method, which consists of
two parts: the feature learning part and the objective function
part.

The feature learning part has seven layers, which are
the same as those of fast architecture’s Convolutional Neural
Network (CNN-F) in [42, 43].

As for the objective function part, given the binary codes
𝐵 = {𝑏𝑖}𝑛𝑖=1 for all the images, the likelihood of pairwise labels
𝑆 = {𝑠𝑖𝑗} can be defined as that of LFH [36]:

𝑝 (𝑠𝑖𝑗 | 𝐵) = {
{{
𝜎 (Ω𝑖𝑗) , 𝑠𝑖𝑗 = 1
1 − 𝜎 (Ω𝑖𝑗) , 𝑠𝑖𝑗 = 0, (1)

whereΩ𝑖𝑗 = (1/2)𝑏𝑇𝑖 𝑏𝑗 and 𝜎(Ω𝑖𝑗) = 1/(1 + 𝑒−Ω𝑖𝑗). Please note
that 𝑏𝑖 ∈ {−1, 1}𝑐. When taking the negative log-likelihood
of the observed pairwise labels in 𝑆, the problem becomes an
optimization problem:

min
𝐵

𝐽1 = − log𝑝 (𝑆 | 𝐵) = −∑
𝑆𝑖𝑗∈𝑆

log𝑝 (𝑠𝑖𝑗 | 𝐵)

= −∑
𝑆𝑖𝑗∈𝑆

(𝑠𝑖𝑗Ω𝑖𝑗 − log (1 − 𝑒Ω𝑖𝑗)) .
(2)

The optimization problem above canmake the Hamming
distance between two similar images (points) as small as
possible and make the Hamming distance between two
dissimilar images (points) as large as possible simultaneously.
While the problem is a discrete optimization problem, which
is difficult to solve, we follow the strategy designed by Li et
al., to reformulate the problem as follows:

min
𝐵,𝑢

𝐽2 = −∑
𝑠𝑖𝑗∈𝑆

(𝑠𝑖𝑗𝜃𝑖𝑗 − log (1 + 𝑒𝜃𝑖𝑗))

s.t. 𝑢𝑖 = 𝑏𝑖, ∀𝑖 = 1, 2, . . . , 𝑛,
𝑢𝑖 ∈ 𝑅𝑐×1, ∀𝑖 = 1, 2, . . . , 𝑛,
𝑏𝑖 ∈ {−1, 1}𝑐 , ∀𝑖 = 1, 2, . . . , 𝑛,

(3)

where 𝜃𝑖𝑗 = (1/2)𝑢𝑇𝑖 𝑢𝑗 and 𝑈 = {𝑢𝑖}𝑛𝑖=1. And the problem can
be continually optimized by moving the equality constraints
in the equation to the regularization terms.

min
𝐵,𝑢

𝐽3

= −∑
𝑠𝑖𝑗∈𝑆

(𝑠𝑖𝑗𝜃𝑖𝑗 − log (1 + 𝑒𝜃𝑖𝑗)) + 𝜂
𝑛

∑
𝑖=1

𝑏𝑖 − 𝑢𝑖22 ,
(4)

where 𝜂 is the regularization term.
A fully connected hash layer is designed between the two

parts to integrate them to awhole framework.The framework
is shown in Figure 1. Please note that two images are input into
the framework at each training time, and the loss function is
based on pair labels of images.

For the hash layer, we set

𝑢𝑖 = 𝑊𝑇𝜙 (𝑥𝑖; 𝜃) + v, (5)

where 𝜃 denotes all the parameters of the first seven layers in
the feature learning part, 𝜙(𝑥𝑖; 𝜃) denotes the output of the
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Figure 2: The deep hashing based fusing index learning architecture.

seventh layer associated with image (point) 𝑥𝑖, 𝑊 ∈ R4096×𝑐

denotes a weight matrix, and V ∈ R𝑐×1 is a bias vector.
After connecting the feature learning part and the objec-

tive function together, the problem of learning becomes

min
𝐵,𝑈

𝐽3 − ∑
𝑠𝑖𝑗∈𝑆

(𝑠𝑖𝑗𝜃𝑖𝑗 − log (1 + 𝑒𝜃𝑖𝑗))

+ 𝜂
𝑛

∑
𝑖=1

𝑏𝑖 − (𝑊𝑇𝜙 (𝑥𝑖; 𝜃) + V)
2

2
.

(6)

In each subnetwork, following Li et al., we also adopt the
minibatch based strategy and alternatingmethod to learn the
parameters containing𝑊, V, 𝜃, and𝐵. We sample aminibatch
of images (points) from the whole training set and each
subnetwork learns based on these sampled images (points).
Then, we optimize one parameter with other parameters
fixed. 𝑏𝑖 can be directly optimized as follows:

𝑏𝑖 = sgn (𝑢𝑖) = sgn (𝑊𝑇𝜙 (𝑥𝑖; 𝜃) + V) . (7)

We use the back-propagation method to learn other
parameters 𝑊, V, and 𝜃. Specially, we can compute the
derivatives of the loss function with respect of 𝑢𝑖 as follows:

𝜕𝐽
𝜕𝑢𝑖 =

1
2 ∑
𝑗:𝑠𝑖𝑗∈𝑆

(𝑎𝑖𝑗 − 𝑠𝑖𝑗) 𝑢𝑗 + 1
2

⋅ ∑
𝑗:𝑠𝑗𝑖∈𝑆

(𝑎𝑗𝑖 − 𝑠𝑗𝑖) 𝑢𝑗 + 2𝜂 (𝑢𝑖 − 𝑢𝑗) ,
(8)

where 𝑎𝑖𝑗 = 𝜎((1/2)𝑢𝑇𝑖 𝑢𝑗). Then, we can update the parame-
ters𝑊, V, and 𝜃 by back-propagation:

𝜕𝐽
𝜕𝑊 = 𝜙 (𝑥𝑖; 𝜃) ( 𝜕𝐽

𝜕𝑢𝑖)
𝑇

,
𝜕𝐽
𝜕𝑉 = 𝜕𝐽

𝜕𝑢𝑖 ,
𝜕𝐽

𝜙 (𝑥𝑖; 𝜃) = 𝑊 𝜕𝐽
𝜕𝑢𝑖 .

(9)

In ourmethod, we trained two deep hashing subnetworks
by utilizing the learning algorithm in [15]. More specially,
the CNN-F and the Caffe-alex [18] pretrained networks are
separately used in the feature learning part of the different
subnetworks.

3.2. Hash Codes Generating and Fusing. After we have suc-
cessfully completed the training of subnetworks, we can only
get the hash codes for images in the training data. We still
have to predict the hash codes for other images which did
not appear in the training set. For any image 𝑥𝑞 ∈ 𝑋, we let
it through each subnetwork to predict its hash codes just by
forward propagation:

𝑏𝑞 = ℎ (𝑥𝑞) = sgn (𝑊𝑇𝜙 (𝑥𝑞; 𝜃) + V) . (10)

Thus we can get two hash codes related to 𝑥𝑞. We
concatenate the two different hash codes learned from the
two different subnetworks together in a vector way and use
the concatenated code as the latest hash code of 𝑥𝑞. The hash
code generating and fusing process is shown in Figure 2.

4. Experiments

4.1. Experimental Settings. All our experiments for DHFI are
completed with MatConvNet [43] on a NVIDIA K40 GPU
server.

In this section, we conduct extensive evaluations of the
proposed method on two widely used benchmark datasets
with different kinds of images: CIFAR-10 andNUS-WIDE. (1)
The CIFAR-10 [44] dataset consists of 60K 32 × 32 color tiny
images which are categorized into 10 classes (6K tiny images
per class). It is a single-label dataset in which each image
belongs to one of the 10 classes. (2) The NUS-WIDE dataset
[45, 46] has nearly 270K images collected from the web. It
is a multilabel dataset in which each image is annotated with
one ormultiple class labels in 81 semantic concepts. Following
[15, 40], we only use the images from the 21 most frequent
classes. For these classes, the number of images in each class
is at least 5K.

The experimental protocols in [15] are also employed
in our experiments. In CIFAR-10, 1000 images (100 images
per class) are randomly selected as the query set. For the
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Table 1: Accuracy in terms of MAP compared to two different deep DPSH models.

Method CIFAR-10 NUS-WIDE
24 bits 32 bits 48 bits 64 bits 24 bits 32 bits 48 bits 64 bits

DPSH1 0.727 0.744 0.757 0.768 0.822 0.838 0.845 0.850
DPSH2 0.686 0.714 0.745 0.736 0.828 0.838 0.846 0.849
DHFI 0.750 0.768 0.774 0.788 0.836 0.854 0.860 0.864

unsupervised methods, we use the rest images as the training
set. For the supervised methods, we randomly select 5000
images (500 images per class) from the rest of the images as
the training set. The pairwise label set 𝑆 is constructed based
on the image class labels, where two imageswill be considered
to be similar if they share the same class label.

In NUS-WIDE, 2100 query images from 21 most frequent
labels (100 images per class) are randomly sampled as the
query set by following the strategy used in [15, 39, 40]. For the
supervisedmethods, we randomly select 500 images per class
from the rest images as the training set.The pairwise label set
𝑆 is constructed based on the image class labels. It means that
two images will be considered to be similar if they share at
least one common label.

Following [15], we compare our method to several state-
of-the-art hashingmethods, including SH [31], ITQ [8], SPLH
[47], KSH [4], FastH [12], LFH [36], SDH [13], DPSH [15],
CNNH [39], DHN [41], DSH [5], and NINH [40]. Note that
SH and ITQ are unsupervised hashingmethods and the other
methods are supervised hashing methods. DPSH, CNNH,
DHN, andDSH are four deep hashingmethods with pairwise
labels, while NINH is a triplet-based method. Beyond this,
we also evaluate the nondeep hashing methods with deep
features extracted by the CNN-F.

For hashing methods which use handcrafted features, we
represent each image in CIFAR-10 by a 512-dimensional GIST
vector. Andwe represent each image inNUS-WIDEby a 1134-
dimensional low level feature vector, including 64-D color
histogram, 144-D color correlogram, 73-D edge direction
histogram, 128-D wavelet texture, 225-D block-wise color
moments, and 500-D SIFT features.

For deep hashing methods, we first resize all images to
224 × 224 pixels and then directly use the raw image pixels
as input and adopt the CNN-F network which has been
pretrained on the ImageNet dataset to initialize the layers of
feature learning part. Similar initialization strategy has also
been adopted by other deep hashing methods [48].

For our method, we learn the hash codes separately from
different architecture’s pretrained networks; we use the fast
architecture’s Convolutional Neural Network (CNN-F) and
Caffe-alex network to initialize the parameters.

4.2. Results and Discussion. The mean average precision
(MAP) is often used to measure the accuracy in large-
scale image retrieval applications. As most existing hashing
methods, the MAP is used to measure the accuracy of the
proposedmethod. For fair comparison, all of themethods use
identical training and test sets. In this paper, the MAP value
is calculated based on the top 5000 returned neighbors for

NUS-WIDE dataset. The best MAP for each category in the
tables are shown in boldface.

Firstly, to verify the effectiveness of deep binary hash code
fusing, we compare ourmethod to two different architecture’s
deep pairwise supervised hashingmodels; one uses theCNN-
F pretrained model in the feature learning part and the
other uses the Caffe-alex pretrained model in the feature
learning part. The MAP results are listed in Table 1. Please
note that DPSH1 uses CNN-F and DPSH2 uses Caffe-
alex pretrained model. By comparing DHFI to DPSH1 and
DPSH2, we find that DHFI can dramatically outperform both
of them. It means that the integrated hash codes learned from
different architecture’s deep hashing subnetworks can get a
better solution than hash codes generated from independent
subnetwork.

Secondly, the MAP results of all methods are listed in
Tables 2 and 3. Please note that, in Table 2, DPSH, DSH,
DHN, NINH, and CNNH are deep hashing methods, and all
the other methods are nondeep methods with handcrafted
features. The results of NINH, CNNH, KSH, and ITQ are
from [15, 39, 40], the results of DPSH are from [15], the
results of DSH are from [5], and the results of DHN are
from [41]. Please note that the above experimental settings
and evaluation metrics are exactly the same as that in [15,
39, 40]. Hence, the comparison is reasonable. We can find
that our method dramatically outperforms other baselines,
including unsupervised methods, supervised methods with
handcrafted features, and deep hashing methods with feature
learning.

To further verify the effectiveness of the deep binary
hash code fusing, we compare DHFI to other nondeep
methodswith deep features extracted by the fast architecture’s
Convolutional Neural Network (CNN-F). The results are
shown in Table 3, where the notation of “+CNN” denotes
that the methods use deep features as input. We can find that
ourmethod outperforms all the other nondeep baselines with
deep features.

5. Conclusion

In this paper, we proposed a “two-stage” deep hashing based
fusing index method for image retrieval. In the proposed
method, we train two different architecture’s deep hashing
networks at first and then merge the hash codes generated
from separate networks together to unify an image. Due to
the fact that hash codes are learned from different networks
and they may provide different information and supplement
each other, the proposed method can learn better codes than
other hashing methods. Experiments on real datasets show
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Table 2: Accuracy in terms of MAP compared to hashing methods.

Method CIFAR-10 NUS-WIDE
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SH 0.127 0.128 0.126 0.129 0.454 0.406 0.405 0.400
ITQ 0.162 0.169 0.172 0.175 0.452 0.468 0.472 0.477
SPLH 0.171 0.173 0.178 0.184 0.568 0.589 0.597 0.601
LFH 0.176 0.231 0.211 0.253 0.571 0.568 0.568 0.585
KSH 0.303 0.337 0.346 0.356 0.556 0.572 0.581 0.588
SDH 0.285 0.329 0.341 0.356 0.568 0.600 0.608 0.637
FastH 0.305 0.349 0.369 0.384 0.621 0.650 0.665 0.687
CNNH 0.439 0.476 0.472 0.489 0.611 0.618 0.625 0.608
NINH 0.552 0.566 0.558 0.581 0.674 0.697 0.713 0.715
DHN 0.555 0.594 0.603 0.621 0.708 0.735 0.748 0.758
DSH 0.616 0.651 — 0.661 0.548 0.551 — 0.562
DPSH 0.713 0.727 0.744 0.757 0.747 0.822 0.838 0.845
DHFI 0.613 0.750 0.768 0.774 0.807 0.836 0.854 0.860

Table 3: Accuracy in terms of MAP compared to nondeep methods with deep features.

Method CIFAR-10 NUS-WIDE
12 bits 24 bits 32 bits 48 bits 12 bits 24 bits 32 bits 48 bits

SH + CNN 0.183 0.164 0.161 0.161 0.621 0.616 0.615 0.612
ITQ + CNN 0.237 0.246 0.255 0.261 0.719 0.739 0.747 0.756
SPLH + CNN 0.299 0.330 0.335 0.330 0.753 0.775 0.783 0.786
LFH + CNN 0.208 0.242 0.266 0.339 0.695 0.734 0.739 0.759
KSH + CNN 0.488 0.539 0.548 0.563 0.768 0.786 0.790 0.799
SDH + CNN 0.478 0.557 0.584 0.592 0.780 0.804 0.815 0.824
FastH + CNN 0.553 0.607 0.619 0.636 0.779 0.807 0.816 0.825
DHFI 0.613 0.750 0.768 0.774 0.807 0.836 0.854 0.860

that our method has superior performance over state-of-the-
art image retrieval applications.
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