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For a Polish Sample Space with a Borel 𝜎-field with a surjective measurable transformation, we define an equivalence relation on
sample points according to their ergodic limiting averages. We show that this equivalence relation partitions the subset of sample
points onmeasurable invariant subsets, where each limiting distribution is the unique ergodic probability measure defined on each
set. The results obtained suggest some natural objects for the model of a probabilistic time-invariant phenomenon are uniquely
ergodic probability spaces. As a consequence of the results gained in this paper, we propose a notion of randomness that is weaker
than recent approaches to Schnorr randomness.

1. Introduction

To understand the meaning of randomness several
approaches have been undertaken. Some of them include
Kolmogorov [1], Martin-Löf [2], Zvonkin and Levin [3], and
Schnorr [4] among many others.

On the initial attempts, researchers were trying to identify
when a sequence of numbers was random. The sequence
of digits of 𝜋 or sequences of computer-generated numbers
produced by an algorithm that seems to exhibit a “random
behavior” motivated the original problem. In any case of
interest, the sequences are elements of {0, 1, . . . , 9}N orRN and
researchers would like to give a criterion that decides for a
sequence to be “random.” In general, sample spaces that allow
a Polish Space structure and a surjective transformation (the
shifting transformation) embrace the interesting cases.

In this paper, we show that a natural approach for a sample
space is to consider all samples that describe the same physi-
cal time-invariant phenomenon. We would demonstrate that
this method allows for a richer probability structure. The
latter introduces a different view for randomness, in a way
that two sample objects are equivalent if they describe the
same probability phenomenon (in a way that we determine
precisely later), and, as a consequence, we give an alternative
answer to the problem of trying to define randomness.

The Ergodic Theorem and the Ergodic Decomposition
Theorem motivate our definition. Indeed, our approach goes
hand in hand with Gray [5] and extends some results of
Shields [6]. Some recent works which study the relation
between Ergodic Theory and randomness are V’yugin [7],
Gács et al. [8], and Galatolo et al. [9].

The Birkhoff-Kinchin Ergodic Theorem (See Billingsley
[10]) states that if 𝜃 is a measure preserving transformation
defined on a probability space (Ω,F, 𝑃) and 𝑋 : (Ω,F) →
(R𝑑,B(R𝑑)) is an integrable random vector, then

lim
𝑛

1
𝑛
𝑛

∑
𝑘=1

𝑋 ∘ 𝜃𝑘−1 = 𝐸 [𝑋 | F𝜃] a.e., (1)

where F𝜃 = {𝐹 ∈ F | 𝜃−1(𝐹) = 𝐹} is the 𝜎-field of
invariant sets (under 𝜃). For another interpretation of this
fact, we define for each 𝑛

𝑃𝜃𝑛 (𝜔, 𝐹) = 1𝑛
𝑛

∑
𝑘=1

1𝐹 ∘ 𝜃𝑘−1 (𝜔) for 𝐹 ∈ F. (2)

It follows that 𝑃𝜃𝑛 : Ω × F → [0, 1] defines a (finite)
kernel, where 𝑃𝜃𝑛 (𝜔, ⋅) is an ergodic measure. Moreover
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for any measurable random vector 𝑋 : (Ω,F) → (R𝑑,
B(R𝑑))

∫
Ω

𝑋𝑑𝑃𝜃𝑛 (𝜔, ⋅) = 1𝑛
𝑛

∑
𝑘=1

𝑋 ∘ 𝜃𝑘−1 (𝜔) . (3)

The Birkhoff Ergodic Theorem implies that whenever 𝜃 is
an ergodic measure preserving transformation and 𝑋 is an
integrable random vector there exists a set 𝑁𝑋 ∈ F with
𝑃(𝑁𝑋) = 0 such that for 𝜔 ∉ 𝑁𝑋

∫
Ω

𝑋𝑑𝑃𝜃𝑛 (𝜔, ⋅) 󳨀→ ∫
Ω

𝑋𝑑𝑃. (4)

Using the terminology of Gács et al. [8], if 𝜔 satisfies
(4), 𝜔 is said to be 𝜃 typical with respect to the observable
𝑋. Moreover, if the last equation holds for any bounded
continuous function 𝑋, then 𝜔 is said to be 𝜃 typical. The
latter is equivalent to the weak convergence of 𝑃𝜃𝑛 (𝜔, ⋅) →𝑃. For a review on weak convergence see Billingsley [11].
Moreover, if 𝜔 is 𝜃 typical for any effective ergodic surjective
transformation, then it is said that𝜔 is typical. For a definition
of effective ergodic transformation see Gács et al. [8].

For any computable measure 𝑃, defined on Ω = {0, 1}N,
with Borel 𝜎-field F, V’yugin [7] showed that any Martin-
Löf random sequence 𝜔 ∈ Ω is typical. For a review on
Martin-Löf randomness seeMartin-Löf [2]. Galatolo et al. [9]
generalize the last result to computable probability spaces and
𝑃-computable observables. For a discussion of the definition
and consequences of computable probability, spaces see Gács
et al. [8].

Moreover Gács et al. [8] extend the concept of Schnorr
randomness to computable probability spaces, and they show
that the idea of Schnorr randomness is weaker than the
notion of Martin-Löf randomness in this context. For a
definition of Schnorr randomness see Schnorr [4]. Gács et al.
[8] also showed that on an arbitrary computable probability
space (Ω,F, 𝑃) space with no atoms 𝜔 ∈ Ω is Schnorr
random if and only if 𝜔 is 𝜃 typical for every mixing
endomorphism 𝜃.

In this paper, we obtain another approach to randomness.
Assume that (Ω, 𝑑) is a Polish Space, with metric 𝑑, and
assume the Borel 𝜎-field F = B𝑑(Ω) on Ω. Moreover
assume a measure preserving transformation 𝜃 defined on
Ω. For most problems related to finding a reasonable def-
inition for randomness it is sufficient to assume that Ω =
RN is the sample space of real valued sequences with the
metric 𝑑(𝜔, 𝜔󸀠) = ∑𝑛 2−𝑛min(|𝜔(𝑛) − 𝜔󸀠(𝑛)|, 1), the shifting
transformation 𝜃(𝜔)(𝑛) = 𝜔(𝑛 + 1), and the sequence of
processes 𝑋𝑛(𝜔) = 𝜔(𝑛) and with a probability that makes
𝑋𝑛 independent with the same distribution 𝑃𝑋1 defined as
𝑃𝑋1(𝐹) = 𝑃(𝑋−11 (𝐹)) for all 𝐹 ∈B(R) Borel set.

With the help of the Ergodic Decomposition Theorem
(see Proposition 1) it is possible to show that there exists
a set 𝑁 ∈ F with 𝑃(𝑁) = 0 where, for any 𝜔 ∉ 𝑁,
𝑃𝜃𝑛 (𝜔, ⋅) are probability measures that converge weakly, and
the limiting distribution is an ergodic invariant probability
measure 𝑄(𝜔, ⋅) onF.

The latter suggests, in a manner to be precise by Theo-
rem3, that only samples that describe a physical phenomenon
(those whose ergodic limit is a “reasonable” probability)
should be considered as samples for any physical “reasonable
probability space.” It is also apparent, as shown byTheorem 3,
that a stronger theory can be established if other samples are
not considered.

We propose to partition the sample space according to
their weak ergodic limit: assume a measurable space (Ω,F),
as above, and assume a surjective measurable function 𝜃 :
(Ω,F) → (Ω,F). We define an equivalent relation on Ω, by
𝜔 ≅ 𝜔󸀠 iff for any bounded continuous function𝑋 : Ω → R

lim
𝑛

󵄨󵄨󵄨󵄨󵄨󵄨󵄨∫Ω𝑋𝑑𝑃
𝜃

𝑛 (𝜔, ⋅) − ∫
Ω

𝑋𝑑𝑃𝜃𝑛 (𝜔󸀠, ⋅)
󵄨󵄨󵄨󵄨󵄨󵄨󵄨 = 0. (5)

If 𝜔 ≅ 𝜔󸀠 we say that 𝜔 has the same stochastic type
of 𝜔󸀠. Clearly ≅ is an equivalence relation on elements on
Ω. Moreover if 𝑃𝜃𝑛 (𝜔, ⋅) → 𝑃 weakly and 𝜔 ≅ 𝜔󸀠 then
𝑃𝜃𝑛 (𝜔󸀠, ⋅) → 𝑃weakly, and if 𝑃 is a 𝜃 null invariant probability
(see Definition 2) then it is a 𝜃 invariant probability (see
Theorem 3).

We notice that the requirement of weak convergence of
𝑃𝜃𝑛 (𝜔, ⋅) as 𝑛 → ∞ to a probability measure is quite natural.
The latter is because for any probability space defined on a
Polish Space with a measure preserving transformation for
almost all 𝜔 the mentioned weak convergence holds (see
Proposition 1). In the case where 𝑃𝜃𝑛 (𝜔, ⋅) → 𝑃 we say that
stochastic type of 𝜔 is 𝑃.

The main contribution of this paper is Theorem 3.
Roughly speaking,Theorem3 states that any reasonable space
is divided into nonoverlapping subspaces, where on each
subspace the statistics behavior of all the points is identical,
and where these spaces have a simple statistical structure
(they are uniquely ergodic). In fact Shields [6] [Section I.4.c]
suggested in the case of finite alphabets (Ω = {1, . . . , 𝑛}Z for
some 𝑛) that, as a consequence of the Ergodic Decomposition
Theorem, such decomposition is natural.

As a result of Theorem 3, for any physical “reasonable
probability space” only the samples that describe a physical
phenomenon (those whose ergodic limit is a “reasonable”
probability) are sufficient as realizations of the sample space
to study the physical phenomenon (the other realizations are
unnecessary).

In the current stay of affairs, for any sample realization
of a probability space and any statistical application, only a
finite set of values 𝑋𝑛(𝜔) are observed, due to our technical
limitations (the amount of time required to gather data is
finite). Therefore, the assumption that any 𝜔 belongs to the
sample space (for instance in the case that Ω = RN) is a
technical assumption that it is motivated as long as it provides
a rich and consistent theory. However we are showing in
Theorem 3 that a richer theory is obtained if we restrict the
sample space to those 𝜔 whose weak ergodic limit is a 𝜃
null invariant probability. The gain achieved in the modeling
structure arises from the fact that the limiting probabilities
describing the physical phenomenon are uniquely ergodic.

Therefore, our conclusions suggest further studies could
point out to consider the uniquely ergodic probability spaces
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as natural spaces for the modeling of any physical time-
invariant phenomenon.

Also, as a consequence ofTheorem 3, and results obtained
by Gács et al. [8], a natural definition for a 𝜔 to be
random is that 𝑃𝜃𝑛 (𝜔, ⋅) converges weakly to a 𝜃 null invariant
ergodic measure (see Definition 2). In fact, it follows that
our definition of randomness extends to noncomputable
probability spaces, and by Gács et al. [8] on computable
probability spaces our notion of randomness is weaker than
Schnorr randomness (and therefore weaker than Martin-Löf
randomness).

In our approach, we do not consider any possible mixing
endomorphism. Contrary to existing methods we fix a sur-
jective transformation 𝜃. Our approach works on any Polish
Space, and it works for any probability measure (instead of
computable probability spaces).

Issues that remain open include studying the conse-
quences of modeling probability spaces as uniquely ergodic
spaces. On the side of randomness, it remains open to
examining definitions of randomness for discrete sequences
that model non-ergodic Dependent Processes and a defi-
nition of randomness for functions defined on an interval
(in the ergodic and non-ergodic cases). Finally, it remains
open to provide specific sequences that are random (or
whose limiting distribution is a particular distribution) and
to provide examples of sequences that are random in the sense
we give in this paper and are not random in the Schnorr sense
(and therefore not random in the Martin-Löf sense).

2. Randomness

The first proposition says that on “reasonable spaces,” for any
reasonable physical realization, always the ergodic averages
converge weakly to ergodic invariant measures.

Proposition 1. Assume a measure preserving transformation
𝜃 defined on a probability space (Ω,F, 𝑃), where (Ω, 𝑑) is a
Polish Space, and F = B𝑑(Ω) is the Borel 𝜎-field. Let F𝜃 be
the 𝜎-field of invariant sets (with respect to 𝜃). Define 𝑃𝜃𝑛 (𝜔, ⋅)
by (2).

There exist a set 𝑁 ∈ F with 𝑃(𝑁) = 0 where for any
𝜔 ∉ 𝑁, 𝑃𝜃𝑛 (𝜔, ⋅) are probability measures that converge weakly
to the ergodic invariant probability measure 𝑃F|F𝜃(𝜔, ⋅) where𝑃F|F𝜃(⋅, ⋅) is the regular conditional probability kernel with
respect toF𝜃 of the Ergodic Decomposition Theorem.

Proof. Assume that 𝐷 is a countable dense subset of Ω. We
notice that the class of sets A that are finite intersections
of balls with a rational radius centered at points in 𝐷 is a
countable 𝜋-system with 𝜎(A) = F. LetF0 be the countable
field generated byA. By the ErgodicDecompositionTheorem
there exists a set𝑁, with 𝑃(𝑁) = 0 such that, for 𝐹 ∈ F0,

lim
𝑛

1
𝑛
𝑛

∑
𝑘=1

1𝐹 ∘ 𝜃𝑘−1 (𝜔) = 𝑃F|F𝜃 (𝜔, 𝐹) for 𝜔 ∉ 𝑁, (6)

where𝑃F|F𝜃(𝜔, ⋅) is the ergodic invariant probabilitymeasure
corresponding to the regular conditional probability kernel
with respect toF𝜃 of the Ergodic DecompositionTheorem.

Assume an open set𝑈, then there exist 𝐴 𝑖 ∈ A, with𝑈 =
⋃∞𝑖=1 𝐴 𝑖 = ⋃∞𝑖=1 𝐵𝑖, where 𝐵𝑖 ∈ F0 can be assumed disjoint
sets with⋃𝑚𝑖=1 𝐵𝑖 = ⋃𝑚𝑖=1 𝐴 𝑖 for each𝑚 ≥ 1. It follows that for𝜔 ∉ 𝑁

lim inf
𝑛

𝑃𝑛 (𝜔, 𝑈) = lim inf
𝑛

1
𝑛
𝑛

∑
𝑘=1

1𝑈 ∘ 𝜃𝑘−1 (𝜔)

= lim inf
𝑛

𝑛

∑
𝑘=1

∞

∑
𝑖=1

1
𝑛1𝐵𝑖 ∘ 𝜃

𝑘−1 (𝜔)

= lim inf
𝑛

∞

∑
𝑖=1

𝑛

∑
𝑘=1

1
𝑛1𝐵𝑖 ∘ 𝜃

𝑘−1 (𝜔)

≥
∞

∑
𝑖=1

lim
𝑛

𝑛

∑
𝑘=1

1
𝑛1𝐵𝑖 ∘ 𝜃

𝑘−1 (𝜔)

=
∞

∑
𝑖=1

𝑃F|F𝜃 (𝜔, 𝐵𝑖) = 𝑃F|F𝜃 (𝜔, 𝑈) ,

(7)

where the second equality follows by absolute convergence
of ∑𝑛𝑘=1∑∞𝑖=1(1/𝑛)1𝐵𝑖 ∘ 𝜃𝑘−1(𝜔), and the third equality follows
Fatou’s Lemma. Finally the result follows by the Portmanteau
Theorem (see Billingsley [11]).

The latter proposition suggests that, for any reasonable
physical realization (𝜔 ∉ 𝑁), the ergodic average𝑃𝑛(𝜔, ⋅) con-
vergesweakly to an ergodic 𝜃 invariant probabilitymeasure. It
turns out that a weaker concept for invariability is sufficient
to describe the limiting ergodic behavior of any reasonable
“physical realization.”

Definition 2. Given a measurable space (Ω,F) and a sur-
jective transformation 𝜃 : (Ω,F) → (Ω,F), we say that
a probability measure 𝑃 defined on F is a 𝜃 null invariant
probability if 𝑃(𝐹) = 0 implies that 𝑃(𝜃−1(𝐹)) = 0.

Under conditions of Proposition 1 we obtain a necessary
requirement for the limit probabilities of 𝑃𝜃𝑛 to be null
invariant. In Theorem 3 we prove that the latter condition is
sufficient demand for the limiting probabilities to converge
weakly to an invariant probability measure.

In the next theorem, we prove that for any physical
“reasonable probability space” only the realizations (or sam-
ples) that describe a physical phenomenon (those whose
ergodic limit is a “reasonable.” probability) are sufficient
as realizations of the sample space to study the physical
phenomenon (the other samples are unnecessary) and that
those realizations (or samples) partition the whole space
according to the physical phenomenon that they describe.
Moreover, we show that when we restrict ourselves to
those samples that describe the same physical phenomenon
(those whose limiting ergodic behavior is the same), the
mathematical structure of the space defined is richer (in
the sense that the probability spaces are uniquely invariant).
The above conclusions make a strong point to consider the
unique invariant probability spaces as natural spaces for the
modeling of a physical time-invariant phenomenon.
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Theorem 3. Assume a measurable surjective function 𝜃 :
(Ω,F) → (Ω,F) defined on a measurable space (Ω,F),
where (Ω, 𝑑) is a Polish Space and F = B𝑑(Ω) is the Borel𝜎-field, where 𝑑 is a metric for whichΩ is a complete separable
space. Let 𝜔 ∈ Ω and assume that 𝑃𝜃𝑛 (𝜔, ⋅) → 𝑃 weakly, where
𝑃 is a 𝜃 null invariant probability. Then 𝑃 is a 𝜃 invariant
probability measure defined onF. Moreover if

Ω𝑃 = {𝜔󸀠 | 𝑃𝜃𝑛 (𝜔󸀠, ⋅) 󳨀→ 𝑃} (8)

thenΩ𝑃 is a measurable invariant set with 𝜃(Ω𝑃) = Ω𝑃 where
either 𝑃(Ω𝑃) = 0 or 𝑃(Ω𝑃) = 1 and 𝑃 is ergodic iff 𝑃(Ω𝑃) = 1.
Moreover, there exist a countable fieldF0 where any open can
be written as a countable union of elements of F0, such that,
for any 𝐴 ∈ F0, and 𝜔󸀠 ∈ Ω𝑃, 𝑃𝜃𝑛 (𝜔󸀠, 𝐴) → 𝑃(𝐴) (and in
particular 𝜎(F0) = F).

Moreover, if 𝑃 is an ergodic probability measure there is
only one ergodic 𝜃 invariant measure on (Ω𝑃,F ∩ Ω𝑃 = {𝐹 ∩Ω𝑃, 𝐹 ∈ F}) (namely, 𝑃).
Proof. Let 𝐷 be a countable dense subset of Ω. For each
𝑑 ∈ 𝐷, define A(𝑑) to be a countable set of balls with
center at 𝑑, with radius 𝑟(𝑑, 𝑛) ↓ 0 when 𝑛 → ∞ such
that 𝑃(𝜕𝐵𝑟(𝑑,𝑛)(𝑑)) = 0, for 𝑛 = 1, 2, . . ., where 𝑥 ∈ 𝐷,
𝐵𝑟(𝑥) = {𝑦 | 𝑑(𝑦, 𝑥) < 𝑟}, and 𝜕𝐹 denotes the boundary of
given set 𝐹. The set A(𝑑) with the desired properties exists
by a standard argument. Let F0 be the field generated by
⋃𝑑∈𝐷A(𝑑). Clearly any open set can bewritten as a countable
union of elements in F0. By the Portmanteau Theorem
𝑃𝜃𝑛 (𝜔, 𝐴) → 𝑃(𝐴) for any 𝐴 ∈ F0.

For any set 𝐴 ∈ F0, it is clear that lim𝑛𝑃𝜃𝑛 (𝜔, 𝐴) =
lim𝑛𝑃𝜃𝑛 (𝜔, 𝜃−1(𝐴)), and since the class of sets where 𝑃(𝐹) =
𝑃(𝜃−1(𝐹)) is a 𝜆-system that contains A since 𝑃 is a null
invariant probability, it follows by the Dynkin’s 𝜋-𝜆 theorem
that 𝑃(𝐹) = 𝑃(𝜃−1(𝐹)) for any 𝐹 ∈ F, proving that 𝑃 is 𝜃-
invariant.

Clearly lim𝑛𝑃𝜃𝑛 (𝜔, 𝐴) = lim𝑛𝑃𝜃𝑛 (𝜃(𝜔), 𝐴), for any 𝐴 ∈ F0,
and therefore using the Dinkyn 𝜋-𝜆 theorem the limiting
measure associated with 𝜔 and 𝜃(𝜔) is the same, proving that
𝜃(Ω𝑃) ⊂ Ω𝑃. We also notice that, for 𝜔 ∈ Ω𝑃, if 𝜔󸀠 ∈ Ω
is an element such that 𝜃(𝜔󸀠) = 𝜔, then lim𝑛𝑃𝜃𝑛 (𝜔󸀠, 𝐴) =
lim𝑛𝑃𝜃𝑛 (𝜔, 𝐴), for any 𝐴 ∈ F0, and then by the Dynkin’s 𝜋-𝜆
theorem𝜔󸀠 ≅ 𝜔 proving that 𝜃(Ω𝑃) = Ω𝑃. Next we prove thatΩ𝑃 is a measurable set. For the latter, let 𝜓 : N → F0 be an
enumeration ofF0. Define 𝜑, 𝜑 : (Ω,F) → (RN,B(RN)) by

𝜑 (𝜔) (𝑚) = lim sup
𝑛

𝑃𝜃𝑛 (𝜔, 𝜓 (𝑚)) ,

𝜑 (𝜔) (𝑚) = lim inf
𝑛

𝑃𝜃𝑛 (𝜔, 𝜓 (𝑚)) .
(9)

Then by the PortmanteauTheoremΩ𝑃 = {𝜔 | 𝜑(𝜔) = 𝜑(𝜔) =
𝜔𝑃}, where 𝜔𝑃 ∈ RN is defined by 𝜔𝑃(𝑚) = lim𝑛𝑃𝜃𝑛 (𝜔, 𝜓(𝑚)),
and thereforeΩ𝑃 is measurable.

By the Ergodic Decomposition Theorem, there exist a
kernel 𝑃F|F𝜃 : Ω×F→ [0, 1] and set𝑁, with 𝑃(𝑁) = 0with

the property that for all 𝜔 ∉ 𝑁 lim𝑛𝑃𝜃𝑛 (𝜔, 𝐴) → 𝑃F|F𝜃(𝜔, 𝐴)
for all 𝐴 ∈ F0, 𝑃F|F𝜃(𝜔, ⋅) is an ergodic measure, and

𝑃 (𝐺 ∩ 𝐹) = ∫
𝐺

𝑃F|F𝜃 (𝜔, 𝐹) 𝑑𝑃F𝜃 𝐹 ∈ F, 𝐺 ∈ F
𝜃, (10)

where 𝑃F𝜃 is the restriction toF𝜃 of 𝑃 andF𝜃 is the 𝜎-field
of invariant sets (under 𝜃). It follows that for 𝐴 ∈ F0

𝑃 (Ω𝑃 ∩ 𝐴) = ∫
Ω𝑃

𝑃F|F𝜃 (𝜔, 𝐴) 𝑑𝑃F𝜃

= ∫
Ω𝑃

𝑃 (𝐴) 𝑑𝑃F𝜃 = 𝑃 (𝐴) 𝑃 (Ω𝑃) .
(11)

Since the class of sets 𝐹 ∈ F where 𝑃(Ω𝑃 ∩ 𝐹) = 𝑃(𝐹)𝑃(Ω𝑃)
is a 𝜆 system, by the Dynkin’s 𝜋-𝜆 theorem it follows that for
all 𝐹 ∈ F, 𝑃(Ω𝑃 ∩ 𝐹) = 𝑃(𝐹)𝑃(Ω𝑃). In particular 𝑃(Ω𝑃) =𝑃2(Ω𝑃), proving that 𝑃(Ω𝑃) = 0 or 𝑃(Ω𝑃) = 1.

Assume that 𝑃(Ω𝑃) = 1, then by the Ergodic Decom-
position Theorem, there exist a set 𝑁 where 𝑃(𝑁) = 0 and
𝜔 ∉ 𝑁, 𝑃𝜃𝑛 (𝜔, 𝐹) → 𝑃F|F𝜃(𝜔, 𝐹) = 𝑃(𝐹), for 𝐹 ∈ F0 where𝑃F|F𝜃(𝜔, ⋅) is ergodic. It follows that 𝑃 is ergodic.

Finally assume that 𝑃(Ω𝑃) = 1, and assume an ergodic
probability measure 𝑄 on Ω𝑃. It is clear that 𝑄 can be
extended to (Ω,F), in a natural way as 𝑄(𝐹) = 𝑄(𝐹 ∩ Ω𝑃).
We also denote the extension as𝑄. Moreover the extension to
F is also ergodic. By the Ergodic DecompositionTheorem, it
follows that

𝑄 (𝐴) = 𝑄 (Ω𝑃 ∩ 𝐴) = ∫
Ω𝑃

𝑃 (𝐴) 𝑑𝑄F𝜃

= 𝑃 (𝐴)𝑄 (Ω𝑃) for 𝐴 ∈ A.
(12)

It follows that, on F0, 𝑄 = 𝑃 and by the Dinkyn’s 𝜋-𝜆
Theorem 𝑄 = 𝑃 onF, and therefore 𝑄 = 𝑃 onF ∩ Ω𝑃.

Probably the most interesting consequence of the previ-
ous theorem is the uniform convergence of ergodic averages
for all sample points. If Ω𝑃 is a compact set then, for any
continuous bounded function 𝑋 defined on Ω𝑃 (for the
induced topology), for all 𝜔 ∈ Ω𝑃

1
𝑛
𝑛

∑
𝑘=1

𝑋 ∘ 𝜃𝑘−1 (𝜔) 󳨀→ ∫
Ω𝑃

𝑋𝑑𝑃 (13)

uniformly on Ω𝑃. The latter is the content of the Oxtoby
Theorem [12] [Theorem 6.19].

The consequence of Theorem 3 that, for any 𝜔 ∈ Ω𝑃, 𝑃
is ergodic iff 𝑃(Ω𝑃) = 1 has been observed in the case of
finite alphabets by Shields [6] [Section I.9.b]. In fact Shields
[6] [Sections I.4.c and I.9.b] suggests a similar approach in
the case of finite alphabets, although uniquely ergodicity is
not obtained.

Finally we observe some elementary facts of our defini-
tion.

Proposition 4. Assume a measurable space (Ω,F) and a
surjective transformation 𝜃 : (Ω,F) → (Ω,F); then:
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(i) If 𝜃 is periodic on 𝜔 in the sense that there exist 𝑛 with
𝜃𝑛(𝜔) = 𝜔, with period 𝑘 (namely, 𝑘 = min{𝑛 |
𝜃𝑛(𝜔) = 𝜔}, then 𝑃𝜃𝑛 (𝜔, ⋅) → 𝑃), where 𝑃 is a proba-
bility measure supported on a finite set.

(ii) If there exist 𝑛,𝑚 such that 𝜃𝑛(𝜔) = 𝜃𝑚(𝜔󸀠), then 𝜔 ≅
𝜔󸀠. In particular it is impossible to tell from a finite set
of values of 𝜔 any information about the distribution of
𝜔.

(iii) For any 𝑛, 𝜔 ≅ 𝜃𝑛(𝜔).
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