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For the nondeterministic factors of an aeroengine blisk, including both factors with sufficient and insufficient statistical data,
based on the dynamic substructural method of determinate analysis, the extremum response surface method of probabilistic
analysis, and the interval method of nonprobabilistic analysis, a methodology called the probabilistic and nonprobabilistic hybrid
reliability analysis based on dynamic substructural extremum response surface decoupling method (P-NP-HRA-DS-ERSDM) is
proposed.Themodel includes random variables and interval variables to determine the interval failure probability and the interval
reliability index. The extremum response surface function and its flow chart of mixed reliability analysis are given. The interval
analysis is embedded in the most likely failure point in the iterative process.The probabilistic analysis and nonprobabilistic analysis
are investigated alternately. Tuned and mistuned blisks are studied in a complicated environment, and the results are compared
with the Monte Carlo method (MCM) and the multilevel nested algorithm (MLNA) to verify that the hybrid model can better
handle reliability problems concurrently containing random variables and interval variables; meanwhile, it manifests that the
computational efficiency of this method is superior and more reasonable for analysing and designing a mistuned blisk. Therefore,
this methodology has very important practical significance.

1. Introduction

In practical engineering, many uncertainties need to be
considered when analysing the reliability of a complex
structure. Typically, probability theory and fuzzy set are
used to address uncertainty in the traditional method, and
the probabilistic model has become the most common and
effective method for handling uncertainty. However, the
probabilistic model and fuzzy model require more data to
define the parameters of the probability distribution function.
Furthermore, probabilistic reliability is very sensitive to the
tail of the probability density function, which plays a key role

in the calculation; therefore, a small error in the data may
lead to a large error in the structural reliability calculation
[1, 2]. The probabilistic model has certain limitations for the
complexity structures, which has continued to increase with
the progress of science and technology. In addition, only
a certain range of uncertainties can be obtained instead of
their probabilistic distribution. Some scholars believe that
the probabilistic model cannot be accurately defined with
too little data. Currently, the interval model can be used to
describe uncertainties; the nonprobabilistic method is used
to analyse the structure. In 1994, Ben-Haim [1] proposed the
concept of nonprobabilistic reliability based on the convex set
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model andmeasured reliability through themaximum extent
of the uncertainty for a system. Ben-Haim and Elishakoff
[3] proposed a measurable method for the nonprobabilistic
concept; he thought that nonprobabilistic reliability belonged
to a certain range of nondeterministic parameters; that is, the
reliability index is an interval rather than a specific variable.

The models mentioned in this paper can be used to
describe uncertainties. Some uncertain parameters have
sufficient statistical data that can be used to establish the
probabilistic distribution function, while other uncertainties
can be described only by a range of their variables due to a
lack of statistical information; only convex sets or interval
variables can be used to describe the latter uncertainties.
In this case, the probabilistic method is not suitable for the
structure, and the existing statistical information cannot be
used by the nonprobabilisticmethod.Therefore, a satisfactory
result cannot be obtained with only one type of model.
Nevertheless, for a problem that contains both probabilistic
and nonprobabilistic variables, the probabilistic and non-
probabilistic hybrid reliabilitymethod can take full advantage
of the known information to achieve an effective analysis.
Many scholars have studied probabilistic and nonprobabilis-
tic hybrid reliability analysis (HRA) [4–16].

For instance, Qiu et al. developed a hybrid of probabilistic
and nonprobabilistic reliability theory, with the structural
uncertain parameters as interval variables when statistical
data are found insufficient. Then they proposed a new
reliability model to improve the evaluation of probabilistic
and nonprobabilistic hybrid structural systems. In addition,
he presented a recognitionmethod for themain failuremodes
using a five-bar statically indeterminate truss structure and
an intermediate complexity wing structure to demonstrate
that the new model was more suitable for analysis and
design than the probabilistic model. A new hybrid reli-
ability model that contained randomness, fuzziness, and
nonprobabilistic uncertainty based on the structural fuzzy
random reliability and nonprobabilistic set-based models
was presented in [6]. Furthermore, based on a residual
strength model, the fatigue reliability was evaluated using
hybrid uncertain parameters in [7]. Furthermore, Fang et
al. converted the interval variables and fuzzy variables into
random variables based on the maximum entropy principle
and effectively analysed the reliability in the situation that
random variables, fuzzy variables, and interval variables
coexist in a problem. The branch-and-bound method for
the probabilistic reliability analysis of structural systems was
combined by Wang et al. with the nonprobabilistic branch-
and-bound method for determining the dominant failure
modes of an uncertain structural system; meanwhile, the
compatibility of the classical probabilistic model and the
interval-set model was discussed by them, verifying the
physical meaning of safety measures. In [11], a modified fuzzy
interval perturbation method was proposed for predicting a
hybrid uncertain temperature field involving both interval
and fuzzy parameters in material properties and boundary
conditions. In addition to this, An et al. introduced the
truncated probability reliability model, the fuzzy random
reliability model, and the nonprobabilistic interval reliability
model to present a new hybrid reliability index to evaluate

structural hybrid reliability based on the random-fuzzy-
interval theory. Jiang et al. employed the probabilistic and
nonprobabilistic convex model methods to address two cases
for the uncertainty domain and the failure surface; they
analysed cracked structures, addressed the difficulties in epis-
temic uncertainty modelling, adopted the scaled boundary
finite element method to calculate the stress intensity, and
developed the response surface to solve the hybrid reliability
model. Furthermore, Han et al. adopted the response surface
technique to compute the interval of the failure probability
of the structure based on the probability-interval hybrid
uncertainty.

There are other methods for HRA [17–24]; for exam-
ple, [17] developed a new HRA technique for structures
with multisource uncertainties that contained randomness,
fuzziness, and nonprobabilistic boundedness. Hurtado and
Alvarez proposed a Monte Carlo method for probability and
interval approaches for reliability analysis; meanwhile, they
discussed the use of Monte Carlo methods for both reliability
and interval analysis from the point proposed representation.
In addition to this, a mixed perturbation Monte Carlo
method with a mixture of random and interval parameters
was presented by Gao et al., and, meanwhile, three theories
or methodologies, namely, the Taylor expansion, matrix
perturbation theory, and random interval moment method,
were combined to develop expressions for themean value and
standard deviation of random interval structural responses.
Besides, a hybrid probabilistic model was presented in [19]
to solve the fatigue reliability problems of steel bridges.
Considering the parameter characteristics of the plot of stress
against the number of cycles to failure (𝑆-𝑁 curve), Wu et al.
proposed a hybrid probabilistic and interval computational
scheme to robustly assess the stability of engineering struc-
tures. Also, based on 𝑆-𝑁 approach and fracture mechanics
approach, Xue et al. assessed a tension leg platform using
hybrid probabilistic and nonprobabilisticmodels. In addition
to this, the HRA was also used in the nuclear industry;
for example, Ibáñez-Llano et al. presented a new approach
for estimating the exact probabilistic quantification results
by combining Monte Carlo simulation with the truncation
limits of the binary decision diagram approach in the nuclear
industry.

Other researchers optimized structures and studied their
sensitivity through probabilistic and nonprobabilistic hybrid
reliabilitymethodology as well [25–31]. For example, Luo and
Zhang investigated an adhesive bonded steel-concrete com-
posite beam with probabilistic and nonprobabilistic uncer-
tainties and mathematically formulated the reliability-based
optimization, incorporating mixed reliability constraints as
a nested problem. Pedroni and Zio considered the model of
an aircraft with a twin-jet engine, including 21 inputs and
8 outputs; meanwhile, they propagated the aleatory uncer-
tainty described by probability distributions using MCS and
solved the numerous optimization problems related to the
propagation of epistemic uncertainty using interval analysis.
Besides, Liu et al. developed a hybrid uncertainty model and
used an efficient decoupling strategy to solve the nesting
optimization problem to obtain an equivalent single-layer
optimization model. Furthermore, based on active learning
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kriging, Yang et al. investigated HRA. The nonprobabilistic
set-theory convex model was combined with the classical
probabilistic approach to optimize structures exhibiting ran-
dom and uncertain-but-boundedmixed uncertainties in [31].

In other applications as well, for example, [32–39], Xia
and Yu proposed the change-of-variable interval stochastic
perturbation method to predict the interval of the response
probability density function and the response confidence
interval of a hybrid uncertain structural-acoustic systemwith
random and interval variables. Meanwhile, Chen et al. pre-
sented a hybrid stochastic interval perturbation method for
the unified energy flow analysis of coupled vibrating systems.
In addition to this, combining with a backpropagation neural
network, Peng et al. investigated reliability analysis based on
the hybrid uncertainty reliability mode, in the process of
their research, the random variables and interval variables
were used as the input layer of the neural network, and
the response variables were obtained through the output
layer. Furthermore, Fan and Zhang used a convex model to
simulate the uncertainties of isolated structural parameters
and used a random model to simulate the uncertainties of
the seismic input. An interval analysis for parameter identi-
fications was presented by Zhang et al. to address both mea-
surement noise and model uncertainty. Xu et al. developed
a model called inexact two-stage fuzzy chance-constrained
programming for handling multiple uncertainties associated
with solid waste management systems. Meanwhile, they
structured the safety margin equation to analyse the fatigue
reliability of the system by adopting the “stress-strength”
theory. Also, Drugowitsch and Pouget used probabilistic
and nonprobabilistic approaches for the neurobiology of
perceptual decision-making.

For an aeroengine working in a complicated high tem-
perature, high pressure, and high rotational speed envi-
ronment, significant information is available as uncertain
parameters, such as rotational speed and temperature. How-
ever, other uncertain parameters, such as the coefficient of
thermal conductivity and the coefficient of expansion, lack
sufficient data. Therefore, a new type of probabilistic and
nonprobabilistic HRA is proposed based on the traditional
probabilistic model and nonprobabilistic model. Unlike the
probabilistic andnonprobabilistic hybridmodels investigated
by the abovementioned scholars, the methodology presented
in this paper is connected with the improved hybrid interface
substructural component modal synthesis method in [40].
This new method is called the probabilistic and nonprob-
abilistic hybrid reliability analysis based on dynamic sub-
structural extremum response surface decoupling method
(P-NP-HRA-DS-ERSDM) and is used to analyse the blisk
of aeroengine. The reliability problems are better resolved
by the hybrid model containing both random and interval
variables.

2. Basic Theory of P-NP-HRA-DS-ERSDM

For designing and analysing engineering structures, random
variables and interval variables need to be included simul-
taneously. Therefore, a probabilistic and nonprobabilistic
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Figure 1: The region of extreme postural belt.

hybrid reliability model needs to be established to fully
describe the actual situation of the structures.

Assume that the random variable of the system is 𝑋 =
(𝑥1, 𝑥2, . . . , 𝑥𝑚) and the interval variable is 𝑌 = (𝑦1, 𝑦2, . . . ,𝑦𝑛). Then, the expression of the performance function is
written as 𝑍 = 𝑔(𝑋, 𝑌), and the failure probability is defined
as 𝑃𝑓 = Pr{𝑔(𝑋, 𝑌) ≤ 0}.

After introducing the interval variable 𝑌, the limit state
surface function 𝑔(𝑋, 𝑌) = 0 is no longer the unique surface
in the space𝑋, but it is a belt body that consists of two bound-
ary surfaces, that is, max𝑌𝑔(𝑋, 𝑌 = 0) and min𝑌𝑔(𝑋, 𝑌 = 0),
as shown in Figure 1.

Therefore, the failure probability 𝑃𝑓 has upper and lower
boundaries:

𝑃min
𝑓 = Pr {max

𝑌
𝑔 (𝑋, 𝑌) ≤ 0} ,

𝑃max
𝑓 = Pr {min

𝑌
𝑔 (𝑋, 𝑌) ≤ 0} .

(1)

The reliability index 𝛽 is not a specific value but an inter-
val (i.e., 𝛽 ∈ [𝛽𝐿, 𝛽𝑅]), where 𝛽𝐿 and 𝛽𝑅 are the maximum
and the minimum reliability indexes, respectively.

Then the following two optimization problems can be
solved: the maximum and the minimum reliability indexes
of the limit state belt can be obtained.

𝛽𝑅 = min ‖𝑈‖
s.t. max

𝑌
𝐺 (𝑈, 𝑌) = 0, (2)

𝛽𝐿 = min ‖𝑈‖
s.t. max

𝑌
𝐺 (𝑈, 𝑌) = 0, (3)

where𝐺(⋅) is the performance function of𝑋 transformed into
standard normal space and 𝑈(⋅) is standard normal space.
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The failure probabilities of the maximum and the mini-
mum values are expressed as

𝑃min
𝑓 = Φ (−𝛽𝑅) ,

𝑃max
𝑓 = Φ (−𝛽𝐿)

(4)

In engineering applications, the maximum failure proba-
bility of the structure is often the one of most concern, and it
has significant reference value for engineering and technical
staff. Therefore, the maximum failure probability is taken as
the measurement for the structural reliability in this paper.

When using the traditional multilevel nested algorithm
(MLNA), the computation efficiency is very low for some
mechanical parts such as a complex aeroengine working in a
poor environment.Thus, the decouplingmethod proposed in
[41] is utilized in this paper, and the proposed methodology
is called P-NP-HRA-DS-ERSDM. The modal and vibration
response of a blisk are analysed using this method. Accord-
ing to the actual conditions, the cross terms are ignored,
and the response surface function can be represented as
follows:

𝑔 (𝑋, 𝑌) = 𝑎0 +
𝑚

∑
𝑖=1

𝑏𝑖𝑋𝑖 +
𝑛

∑
𝑗=1

𝑐𝑗𝑌𝑗 +
𝑚

∑
𝑖=1

𝑑𝑖𝑋2𝑖 +
𝑛

∑
𝑗=1

𝑒𝑗𝑌2𝑗 , (5)

where 𝑎0, 𝑏, 𝑐, 𝑑, and 𝑒 are (2𝑚 + 2𝑛 + 1) undetermined
coefficients in the quadratic polynomial.

The sample centre point (𝑋, 𝑌) is continually updated in
the solution process. For the first time, the iteration of (𝑋, 𝑌)
is located in (𝜇𝑋, 𝑌𝑐), where 𝜇𝑋 is the mean of the random
variable 𝑋, 𝑌𝑐 is the median of the interval variable 𝑌, and
the coordinates are given in (6). The other (2𝑚 + 2𝑛) sample
points are selected around the centre point, as shown in
Figure 2.

𝑋𝑖 ± 𝑘𝑥 ⋅ 𝜎𝑋𝑖 , 𝑖 = 1, 2, . . . , 𝑚,
𝑌𝑗 ± 𝑘𝑦 ⋅ 𝑌𝑟𝑗 , 𝑗 = 1, 2, . . . , 𝑛,

(6)

where 𝜎𝑋𝑖 is the standard deviation of the random variable
𝑋𝑖, 𝑌𝑟𝑗 is the radius of the interval variable 𝑌𝑖, and 𝑘𝑥, 𝑘𝑦 are
the coefficients of the sample points for the random variable
and the interval variable, respectively.

The value of the original performance function is calcu-
lated at each sample point; then, undetermined coefficients of
the response surface function are solved.

Combining the probabilistic and nonprobabilistic hybrid
reliability model with (3), the approximate mixed reliability
model is constructed as follows:

𝛽𝐿 = min
𝑈

‖𝑈‖

s.t. max
𝑌

𝐺 (𝑈, 𝑌) = 0,
(7)

where 𝐺 is the approximate limit state function in the space
𝑈.

P-NP-HRA-DS-ERSDM is used to solve the probabilistic
and nonprobabilistic HRA of the blisk, and the specific
iterative process is as follows.

X2(Y2)
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(Yr

2 )
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X(Y)
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The initial sample points
New sample points
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Figure 2: Processing of the sample points selected.

Assume that 𝑈(𝑘) and 𝑌(𝑘) are obtained in the iteration
process of the 𝑘th step, interval variable 𝑌(𝑘) is fixed in the
next step, and 𝑈(𝑘+1) is calculated; namely,

𝑈(𝑘+1) = 𝑈(𝑘) + 𝜆𝑑(𝑘), (8)

where the searching direction is expressed by

𝑑(𝑘) = ∇𝐺 (𝑈(𝑘), 𝑌(𝑘)) (𝑈(𝑘))𝑇 − 𝐺 (𝑈(𝑘), 𝑌(𝑘))
󵄩󵄩󵄩󵄩󵄩∇𝐺 (𝑈(𝑘), 𝑌(𝑘))󵄩󵄩󵄩󵄩󵄩

2

⋅ ∇𝐺 (𝑈(𝑘), 𝑌(𝑘)) − 𝑈(𝑘),
(9)

where ∇𝐺 is the gradient of 𝐺, which is determined by the
following function:

m (𝑈, 𝑌) = 1
2 ‖𝑈‖ + 𝑐

󵄩󵄩󵄩󵄩󵄩𝐺 (𝑈, 𝑌)󵄩󵄩󵄩󵄩󵄩 , (10)

where 𝑐 is a constant that satisfies 𝑐 > ‖𝑈‖/‖∇𝐺(𝑈(𝑘), 𝑌(𝑘))‖
and 𝑐 = 2‖𝑈(𝑘)‖/‖∇𝐺(𝑈(𝑘), 𝑌(𝑘))‖ + 10. 𝜆 is the iteration step
length, which is determined by

𝜆 = 𝑠ℎ (𝑠 = 0.5) ,
ℎ = max {𝑠ℎ | 𝑚 (𝑈(𝑘) + 𝑠ℎ𝑑(𝑘), 𝑌(𝑘)) − 𝑚 (𝑈(𝑘), 𝑌(𝑘))

< 0} .
(11)

Then, 𝑌(𝑘+1) is calculated using interval analysis after
obtaining 𝑈(𝑘+1):

𝑌(𝑘+1) = min
𝑌

𝐺(𝑈(𝑘+1), 𝑌(𝑘))

s.t. 𝑌𝐿 ≤ 𝑌(𝑘) ≤ 𝑌𝑅
(12)
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Figure 3: Flow chart of decoupling method.

until it meets

󵄩󵄩󵄩󵄩󵄩𝑈(𝑘+1) − 𝑈(𝑘)
󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩󵄩𝑈(𝑘)󵄩󵄩󵄩󵄩
≤ 𝜀1,

𝐺 (𝑈(𝑘+1), 𝑌(𝑘+1)) ≤ 𝜀2,
(13)

where 𝜀1 and 𝜀2 are arbitrary small numbers.
The design test point (𝑋∗, 𝑌̃∗) is obtained from the flow

chart shown in Figure 3.
The design test point (𝑋∗, 𝑌̃∗) is obtained by HRA and

(7) in each iteration step. Then, the sample centre point
(𝑋, 𝑌) that is closer to the failure surface is obtained through
interpolation, as shown in Figure 4.

The expressions of the connective points (𝜇𝑋, 𝑌𝑐,
𝑔(𝜇𝑋, 𝑌𝑐)) and (𝑋∗, 𝑌̃∗, 𝑔(𝑋∗, 𝑌̃∗)) are obtained by

𝑔 (𝑋, 𝑌) − 𝑔 (𝜇𝑋, 𝑌𝑐)
𝑋 − 𝜇𝑋 = 𝑔 (𝑋∗, 𝑌̃∗) − 𝑔 (𝑋, 𝑌)

𝑋∗ − 𝑋 ,

𝑔 (𝑋, 𝑌) − 𝑔 (𝜇𝑋, 𝑌𝑐)
𝑌 − 𝑌𝑐 = 𝑔 (𝑋∗, 𝑌̃∗) − 𝑔 (𝑋, 𝑌)

𝑌̃∗ − 𝑌 .
(14)

When𝑔(𝑋, 𝑌) = 0, the design points close to the real limit
state surface are acquired as follows:

𝑋 = 𝜇𝑋 + (𝑋∗ − 𝜇𝑋) 𝑔 (𝜇𝑋, 𝑌𝑐)
𝑔 (𝜇𝑋, 𝑌𝑐) − 𝑔 (𝑋∗, 𝑌̃∗)

,

𝑌󸀠 = 𝑌𝑐 + (𝑌̃∗ − 𝑌𝑐) 𝑔 (𝜇𝑋, 𝑌𝑐)
𝑔 (𝜇𝑋, 𝑌𝑐) − 𝑔 (𝑋∗, 𝑌̃∗)

.
(15)

The interval variable of themost recently obtained𝑌󸀠may
overflow the boundary of the interval in the process of each
iteration, and, in this case, 𝑌 can be expressed as

𝑌 = min (𝑌󸀠, 𝑌𝑅) , if 𝑌󸀠 > 𝑌𝑅,

𝑌 = max (𝑌󸀠, 𝑌𝐿) , if 𝑌󸀠 < 𝑌𝑅.
(16)

Based on the above analysis, the probabilistic and non-
probabilistic HRA process are as follows:

(1) Set the initial iteration point 𝑋(𝑡) = (𝜇𝑋1 , 𝜇𝑋2 , . . . ,𝜇𝑋𝑚), 𝑌(𝑡) = (𝑌𝑐1 , 𝑌𝑐2 , . . . , 𝑌𝑐𝑛).
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Figure 4: Obtaining a new sample centre point.
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Figure 5: Flow chart of hybrid reliability analysis based on the extreme response surface.

(2) Establish a quadratic polynomial extremum response
surface function. The sample centre point is set to
(𝜇𝑋, 𝑌𝑐) in the initial iteration; then, calculate the
function values of (2𝑚 + 2𝑛 + 1) points, and obtain
the undetermined response surface coefficients.

(3) Solve the approximate mixed reliability problems
using (7), and obtain the test point (𝑋∗, 𝑌̃∗).

(4) Solve the new sample centre point (𝑋(𝑡+1), 𝑌(𝑡+1)).
(5) Judge convergence. If ‖𝑋(𝑡+1) − 𝑋(𝑡)‖/‖𝑋(𝑡)‖ ≤ 𝜀1, go

to step (6); otherwise, set 𝑡 = 𝑡 + 1, and go to step (2).

(6) Simulate the constructed response surface function,
and calculate the maximum failure probability.

The maximum failure probability of the probabilistic and
nonprobabilistic HRA can be obtained, as shown in Figure 5.
To contain both random variable and interval variable anal-
ysis, MLNA is usually adopted in the conventional research,
which is time-consuming and has a low computational effi-
ciency. Nevertheless, the P-NP-HRA-DS-ERSDM is utilized
and the interval analysis is embedded in the most likely
failure point in the iterative process. Probabilistic analysis
and nonprobabilistic analysis are investigated alternately, so
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Table 1: Distribution of nondeterministic variables of tuned blisk.

Nondeterministic variables Parameter 1 Parameter 2 Distribution pattern
𝑤/rad⋅s−1 1046 31.38 Normal distribution
𝑡/∘C 1050 31.50 Normal distribution
𝑎/×10−5/∘C−1 1.216 0.03648 Normal distribution
𝑘/W⋅(m⋅∘C)−1 27.21 0.8163 Normal distribution
ℎ/mm 3.0 0.09 Normal distribution
𝑒/×1011/Pa 1.75 1.94 Interval variable
pr 0.2915 0.3325 Interval variable
den/kg⋅m−3 8090 9005 Interval variable
Note. In the normal distribution, parameter 1 and parameter 2 represent the mean and the standard deviation of a random variable. In the interval variable,
parameter 1 and parameter 2 represent the lower bound and upper bound. (The meaning in Table 3 is the same as in Table 1.)

Table 2: Analysis results of modal and vibration response of P-NP-HRA-DS-ERSDM for the tuned blisk.

(a)

Random variable Interval variable
𝑤 1129.3 𝑒 × 1011 1.931
𝑡 943.2 den 8072.9
𝑘 29.14 pr 0.297
ℎ 2.827 — —
𝑎 × 10−5 1.339 — —
— —

(b)

Response The maximum failure probability
— MCM MLNA P-NP-HRA-DS-ERSDM
— 𝑃max

𝑓MCS/% 𝑡/(h) 𝑃max
𝑓 /% 𝑡/(h) Er/% 𝜂MC/% 𝑃max

𝑓 /% 𝑡/(h) Er/% 𝜂MC/% 𝜂ML/%
𝑓 98.32

289.41

99.07

65.56

0.76

77.34

99.15

51.98

0.84

82.03 20.71

2611.8HZ
𝑑sum 97.68 99.17 1.52 99.26 1.61
7.2114
strs (×1013) 98.17 99.32 1.17 99.33 1.18
1.4218
str_e (×107) 98.54 98.94 0.41 99.12 0.59
7.3512
𝑑𝑦 98.16 297.86 99.12 77.23 0.97 74.07 99.76 62.54 1.62 79.01 19.02
4.12
Note.𝑃max

𝑓MCS: the maximum failure probability using MCS, 𝑡: computing time, Er: relative error to the MCM, 𝜂MC: relative computational efficiency to MCM,
and 𝜂ML: relative computational efficiency to MLNA. (The meaning in Table 4 is the same as in Table 2.)

the intermediate values can call each other in turn, and the
computational efficiency is improved, observably.

3. P-NP-HRA of Blisk

P-NP-HRA-DS-ERSDM is used to analyse a blisk and is com-
pared with MLNA andMCS to verify its scientific rationality.

3.1. P-NP-HRA of a Tuned Blisk. First, the reliability of the
tuned blisk is investigated, and the natural frequency, modal
shape, and vibration response are studied using P-NP-HRA-
DS-ERSDM.

In the research, the rotational speed 𝑤, gas temperature
𝑡, blade thickness ℎ, expansion coefficient 𝑎, and thermal
conductivity coefficient 𝑘 are regarded as random variables,
and all of them are assumed to obey the normal distribution
and to be independent of each other. The elastic modulus 𝑒,
density den, and Poisson’s ratio (pr) are regarded as interval
variables. Their distribution types and parameters are shown
in Table 1, and the results of the calculation are shown in
Table 2.

The maximum failure probabilities of the natural fre-
quency, modal shape, and vibration response for the tuned
blisk are investigated using MCM, MLNA, and P-NP-
HRA-DS-ERSDM, respectively. The relative errors and the
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Table 3: Distribution of nondeterministic variables of mistuned blisk.

Nondeterministic variables Parameter 1 Parameter 2 Distribution pattern
𝑤/rad⋅s−1 1046 31.38 Normal distribution
𝑡/∘C 1050 31.50 Normal distribution
ℎ/mm 3.0 0.09 Normal distribution
pr𝑏 0.3181 0.009542 Normal distribution
𝑎𝑏/×10−5/∘C−1 1.268 0.03806 Normal distribution
𝑘𝑏/W⋅(m⋅∘C)−1 29.72 0.8915 Normal distribution
den𝑏 8010 8943 Interval variable
𝑒𝑏× 1011/Pa 1.689 1.932 Interval variable
pr𝑑 0.3143 0.009429 Normal distribution
𝑎𝑑/×10−5/∘C−1 1.216 0.03648 Normal distribution
𝑘𝑑/W⋅(m⋅∘C)−1 27.21 0.8163 Normal distribution
den𝑑 8170 9280 Interval variable
𝑒𝑑 × 1011/Pa × 1011/Pa 1.714 1.996 Interval variable

computational efficiency of all three methods are analysed,
as shown in Table 2. For the natural frequency, modal
displacement, modal stress, modal strain energy, and vibra-
tion response, the relative errors of MLNA to MCM are
0.76%, 1.52%, 1.17%, 0.41%, and 0.97%, respectively, and the
relative errors of P-NP-HRA-DS-ERSDM toMCMare 0.84%,
1.61%, 1.18%, 0.59%, and 1.62%, respectively; these values
meet the engineering requirements. For the calculation of
modal and vibration response, the computational efficiency
of MLNA relative to MCM increases by 77.34% and 74.07%,
respectively, and the computational efficiency of P-NP-HRA-
DS-ERSDMrelative toMCMincreases by 82.03% and 79.01%,
respectively. Thus, the computational efficiency of P-NP-
HRA-DS-ERSDM relative toMLNA increased by 20.71% and
19.02%, respectively. Therefore, the computational accuracy
of using P-NP-HRA-DS-ERSDM and MLNA approximately
equals that of using MCM. However, the computational
efficiency of P-NP-HRA-DS-ERSDM is higher than that of
MLNA.

3.2. P-NP-HRA of a Mistuned Blisk. For a mistuned blisk,
the rotational speed 𝑤, gas temperature 𝑡, blade thickness
ℎ, Poisson’s ratio of the blade pr𝑏, expansion coefficient of
the blade 𝑎𝑏, thermal conductivity coefficient of the blade
𝑘𝑏, Poisson’s ratio of the disk pr𝑑, expansion coefficient of
the disk 𝑎𝑑, and thermal conductivity coefficient of the disk
𝑘𝑑 are regarded as random variables, and all of them are
hypothesized to obey the normal distribution and to be
independent of each other. The elastic modulus of the blade
𝑒𝑏, density of the blade den𝑏, elastic modulus of the disk 𝑒𝑑,
and density of the disk den𝑑 are regarded as interval variables.
Their distribution types and parameters are shown in Table 3,
and the calculation results are shown in Table 4.

The maximum failure probability of the natural fre-
quency, modal shape, and vibration response for the mis-
tuned blisk are calculated using MCM, MLNA, and P-NP-
HRA-DS-ERSDM.The relative errors and the computational
efficiency of the three methods are analysed, as shown in
Table 4. When the blisk is mistuned, the computational
time is very long using MCM, and convergence may not

be achieved. The computational accuracy of P-NP-HRA-DS-
ERSDM approximately equals that of MLNA, while the com-
putational efficiency of P-NP-HRA-DS-ERSDM is 22.86%
and 25.18% higher than that of MLNA. The increase in com-
putational efficiency for P-NP-HRA-DS-ERSDM compared
to MLNA is higher for the mistuned blisk than for the tuned
blisk. Furthermore, the superiority of this methodology is
more obvious for the mistuned blisk than for the tuned blisk,
verifying that this method is feasible.

4. Conclusions

A nondeterministic analysis method with high efficiency and
high accuracy, P-NP-HRA-DS-ERSDM, is investigated for a
blisk. In the analysis process, for the hybrid nondeterministic
problem containing both random variables and interval vari-
ables, the interval failure probability and interval reliability
index are obtained. A flow chart is presented for solving the
reliability analysis and the extremum response surface HRA
using P-NP-HRA-DS-ERSDM.

Probabilistic and nonprobabilistic HRA is used to analyse
the blisk. The variables mainly affecting the output response
are regarded as interval variables, and the other variables
are regarded as random variables. In the tuned blisk, 𝑒, den,
and pr are regarded as interval variables, while 𝑤, 𝑡, ℎ, 𝑎,
and 𝑘 are regarded as random variables. However, in the
mistuned blisk, den𝑏, 𝑒𝑏, den𝑑, and 𝑒𝑑 are regarded as interval
variables, while𝑤, 𝑡, ℎ, pr𝑏, 𝑎𝑏, 𝑘𝑏, pr𝑑, 𝑎𝑑, and 𝑘𝑑 are regarded
as random variables.

The maximum failure probabilities of the natural fre-
quency, modal displacement, modal stress, modal strain
energy, and vibration response are calculated for blisk,
comparing the computational time and the relative error
of P-NP-HRA-DS-ERSDM, MCM, and MLNA. For the
tuned blisk, the relative errors of the natural frequency,
modal displacement, modal stress, modal strain energy,
and vibration response using MLNA to MCM are 0.76%,
1.52%, 1.17%, 0.41%, and 0.97%, respectively, and those of
using P-NP-HRA-DS-ERSDMare 0.84%, 1.61%, 1.18%, 0.59%,
and 1.62%; these values meet the engineering requirements.
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Table 4: Analysis results of modal and vibration response of P-NP-HRA-DS-ERSDM for the mistuned blisk.

(a)

Random variable Interval variable
𝑤 1129.3 den𝑑 8072.9
𝑡 943.2 den𝑏 7977.8
𝑘𝑑 29.14 𝑒𝑑 × 1011 1.931
𝑘𝑏 27.63 𝑒𝑏 × 1011 1.889
pr𝑑 0.297

— —
pr𝑏 0.294
ℎ 2.827
𝑎𝑏 × 10−5 1.251
𝑎𝑑 × 10−5 1.339

(b)

Response The maximum failure probability
— MCM MLNA P-NP-HRA-DS-ERSDM
— 𝑃max

𝑓MCS/% 𝑡/(ℎ) 𝑃max
𝑓 /% 𝑡/(ℎ) Er/% 𝜂MC/% 𝑃max

𝑓 /% 𝑡/(ℎ) Er/% 𝜂MC/% 𝜂ML/%
𝑓

— —

99.17

289.21 — —

99.87

223.09 — — 22.86

2611.8HZ
dsum 99.37 99.31
20.943
strs(×1013) 99.46 99.32
3.6745
str_e (×107) 98.89 99.24
372.84
𝑑𝑦 — — 99.21 312.56 — — 99.86 231.59 — — 25.18
6.56

The computational efficiency of MLNA relative to MCM
increases by 77.34% and 74.07%, respectively, but that of
P-NP-HRA-DS-ERSDM increases by 82.03% and 79.01%,
respectively. Thus, the computational efficiency of P-NP-
HRA-DS-ERSDM relative toMLNA increased by 20.71% and
19.02%. However, for the mistuned blisk, the computational
efficiency of P-NP-HRA-DS-ERSDM increases by 22.86%
and 25.18%higher than that ofMLNA, and the computational
time is very long using MCM, and the convergence may
not be achieved, which manifests that the superiority of this
methodology is more obvious for the mistuned blisk than
for the tuned blisk. The scientific rationality and validity for
researching a blisk using P-NP-HRA-DS-ERSDM is verified,
and this method is shown to be particularly superior to
MLNA for a mistuned blisk.

Conflicts of Interest

The author declares that there are no conflicts of interest
regarding the publication of this paper.

Acknowledgments

This work has been supported by the National Natural
Science Foundation of China (Grant no. 51375032) and

Project supported by Beijing Postdoctoral Research Founda-
tion (Grant no. 2016ZZ-12).

References

[1] Y. Ben-Haim, “A non-probabilistic concept of reliability,” Struc-
tural Safety, vol. 14, no. 4, pp. 227–245, 1994.

[2] I. Elishakoff, “Essay on uncertainties in elastic and viscoelastic
structures: from A. M. Freudenthal’s criticisms to modern
convex modeling,” Computers and Structures, vol. 56, no. 6, pp.
871–895, 1995.

[3] Y. Ben-Haim and I. Elishakoff, “Discussion on: a non-probabi-
listic concept of reliability,” Structural Safety, vol. 17, no. 3, pp.
195–199, 1995.

[4] Z. P. Qiu, D. Yang, and I. Elishakoff, “Combination of structural
reliability and interval analysis,” Acta Mechanica Sinica, vol. 24,
no. 1, pp. 61–67, 2008.

[5] Z. P. Qiu and J. Wang, “The interval estimation of reliability for
probabilistic and non-probabilistic hybrid structural system,”
Engineering Failure Analysis, vol. 17, no. 5, pp. 1142–1154, 2010.

[6] Z. Ni and Z. P. Qiu, “Hybrid probabilistic fuzzy and non-
probabilistic model of structural reliability,” Computers and
Industrial Engineering, vol. 58, no. 3, pp. 463–467, 2010.

[7] J. Wang and Z. P. Qiu, “Fatigue reliability based on resid-
ual strength model with hybrid uncertain parameters,” Acta
Mechanica Sinica, vol. 28, no. 1, pp. 112–117, 2012.



10 International Journal of Aerospace Engineering

[8] P. Fang, X. L. Chang, K. Hu, Z. X. Wang, and B. Long, “The
hybrid probabilistic and non-probabilistic model of structural
reliability analysis,” in Proceedings of the 1st Symposium on
AviationMaintenance andManagement. Vol II, vol. 297, pp. 237–
244, Xian, China, 2014.

[9] J. Wang and Z. P. Qiu, “The reliability analysis of probabilistic
and interval hybrid structural system,” Applied Mathematical
Modelling, vol. 34, no. 11, pp. 3648–3658, 2010.

[10] X. J. Wang, L. Wang, and Z. P. Qiu, “Safety estimation of
structural systems via interval analysis,” Chinese Journal of
Aeronautics, vol. 26, no. 3, pp. 614–623, 2013.

[11] C. Wang, Z. P. Qiu, and Y. Y. He, “Fuzzy interval perturbation
method for uncertain heat conduction problem with interval
and fuzzy parameters,” International Journal for Numerical
Methods in Engineering, vol. 104, no. 5, pp. 330–346, 2015.

[12] H. An, L. Zhou, and H. Sun, “Structural hybrid reliability index
and its convergent solving method based on random-fuzzy-
interval reliability model,” Advances in Mechanical Engineering,
vol. 8, no. 8, pp. 1–13, 2016.

[13] C. Jiang, X. Han, and G. Y. Lu, “A hybrid reliability model
for structures with truncated probability distributions,” Acta
Mechanica, vol. 223, no. 9, pp. 2021–2038, 2012.

[14] C. Jiang, X. Y. Long, X. Han, Y. R. Tao, and J. Liu, “Probability-
interval hybrid reliability analysis for cracked structures exist-
ing epistemic uncertainty,” Engineering Fracture Mechanics, vol.
112-113, pp. 148–164, 2013.

[15] C. Jiang, J. Zheng, B. Y. Ni, and X. Han, “A probabilistic
and interval hybrid reliability analysis method for structures
with correlated uncertain parameters,” International Journal of
Computational Methods, vol. 12, no. 4, Article ID 1540006, 2015.

[16] X. Han, C. Jiang, L. X. Liu, J. Liu, and X. Y. Long, “Response-
surface-based structural reliability analysis with random and
interval mixed uncertainties,” Science China Technological Sci-
ences, vol. 57, no. 7, pp. 1322–1334, 2014.

[17] L. Wang, X. J. Wang, and Y. Xia, “Hybrid reliability analysis
of structures with multi-source uncertainties,” Acta Mechanica,
vol. 225, no. 2, pp. 413–430, 2014.

[18] J. E. Hurtado and D. A. Alvarez, “The encounter of interval
and probabilistic approaches to structural reliability at the
design point,” Computer Methods in Applied Mechanics and
Engineering, vol. 225–228, pp. 74–94, 2012.

[19] W. Gao, D. Wu, C. M. Song, F. Tin-Loi, and X. J. Li, “Hybrid
probabilistic interval analysis of bar structures with uncertainty
using a mixed perturbation Monte-Carlo method,” Finite Ele-
ments in Analysis and Design, vol. 47, no. 7, pp. 643–652, 2011.

[20] S. S. Cao and J. Q. Lei, “Hybrid reliability model for fatigue
reliability analysis of steel bridges,” Journal of Central South
University, vol. 23, no. 2, pp. 449–460, 2016.

[21] D. Wu, W. Gao, C. M. Song, and S. Tangaramvong, “Proba-
bilistic interval stability assessment for structures with mixed
uncertainty,” Structural Safety, vol. 58, pp. 105–118, 2016.

[22] H. X. Xue, W. Y. Tang, S. K. Zhang, and M. Yuan, “Interval
analysis method of fatigue and fracture reliability for offshore
structures based on probabilistic and non-probabilistic hybrid
model,” in Proceedings of the 16th International Offshore and
Polar Engineering Conference (ISOPE ’06), pp. 370–375, San
Francisco, Calif, USA, June 2006.

[23] Z. T. Zhao, J. B. Guo, and S. K. Zeng, “The method of dynamic
systems reliability modeling based on hybrid theory and inter-
val analysis,” in Proceedings of the 1st International Conference
on Reliability Systems Engineering (ICRSE ’15), Beijing, China,
October 2015.
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