View metadata, citation and similar papers at core.ac.uk

brought to you by

provided by Crossref

Hindawi

Scientific Programming

Volume 2017, Article ID 5725864, 11 pages
https://doi.org/10.1155/2017/5725864

Hindawi

Research Article
A Clustering Method for Isomorphic Evolution of Web Services

Qiang Hu, Zhen Zhao, and JunWei Du

School of Information Science and Technology, Qingdao University of Science and Technology, Qingdao 266061, China
Correspondence should be addressed to JunWei Du; djwqd@163.com

Received 6 April 2017; Accepted 5 July 2017; Published 7 September 2017

Academic Editor: Fabio La Foresta

Copyright © 2017 Qiang Hu et al. This is an open access article distributed under the Creative Commons Attribution License, which
permits unrestricted use, distribution, and reproduction in any medium, provided the original work is properly cited.

Since the basic binding unit of current service request and response schema is an atomic Web service, it needs to costly find
a substitute service or reconstruct the service process in the original service space once a fine granular evolution requirement
occurs. To reduce the complexity of fine granular service evolution, an isomorphic evolution mechanism based on service clusters
is proposed. Searching space can be reduced and responding flexibility will also be improved by adopting service cluster as the
unit of service response. Simple evolution and merging evolution were put forward to handle the evolution of atomic Web services.
Meanwhile, a formal model and the quality computing method for service processes built by service clusters were presented based
on the logic Petri nets. Two types of evolution patterns including dot isomorphic evolution and chain isomorphic evolution were
proposed to evolve service processes. The algorithms for different isomorphic evolution patterns of atomic service and service
processes were designed in the paper. Simulation experiments were conducted on 10000 Web services with different process
patterns. Compared with the traditional service request and response schema, the efficiencies of service discovery and isomorphic

evolution are improved greatly in our proposed method.

1. Introduction

With the maturity of the new information technologies, such
as cloud computing, mobile Internet, and the Internet of
Things, the developing method and deploying pattern in the
network software systems outline the remarkable service-
oriented features [1]. Service-oriented architecture (SOA)
is frequently adopted to design and develop the network
software while more business functions are encapsulated and
published as network information services in Internet by the
enterprises or organizations [2]. Among different technolo-
gies to build network information services, Web service is the
most popular way to develop the network software system
based SOA. Currently, all of the major software developing
tools can provide the support to design and deploy Web
services. As the remote-called procedure modules, Web
services were often designed with smaller granularity. Thus,
a group of Web services were often assembled as a service
process to cater for the complicated business requirement
which cannot respond by the single Web service [3].

Whether it is the atomic Web service or service pro-
cess, they are all working in the fast-changing distributed

environment. Some services may be invalid during their
lifecycle. Meanwhile, slight changes of users’ function or
quality requirement may also occur during the execution of
the composite service process. Thus, an evolution mechanism
needs establishing to make the service-oriented software
automatically adapt the variations of external application
environment and interior users’ requirement.

The main work of service evolution is to find a new service
(or service process) catering for the changed application
environment or service requirement and replace the invalid
one. A series of research achievements have been obtained
for different evolution requirements and scenarios. Zuo et
al. introduced the change-centric model which describes the
behaviors of the stakeholders in Web service evolution [4].
Mechanisms for recommending Web services evolving in
heterogeneous environments were widely concerned. A new
agent-based system was proposed to recommend multimedia
Web services based on the effect of the currently exploited
device in [5]. Underlying search and ranking algorithms
that enable service recommendations was studied in [6],
and service recommender system using enhanced syntactical
matching was proposed. A hybrid method which combines

https://core.ac.uk/display/208035463?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/5725864

collaborative filtering and content-based recommendation is
presented in [7]; it can dynamically recommend Web services
which fit users’ interests. A recommendation visualization
technique that employs the characteristic of QoS and achieves
considerable improvement on the recommendation accuracy
was proposed in [8]. Web service candidates computed the
score by measuring their relevance with historical and poten-
tial user interests and their QoS utility. A diversity-aware Web
service ranking algorithm was designed to recommend the
Web service candidates based on their scores [9].

A trust-based approach for large-scale federations utility
computing infrastructures was proposed in [10]; it can find
the most suitable collaborators avoiding exploration of the
whole service space. Furthermore, a multiagent protocol for
service level agreement negotiation was proposed in [11]; it
can give a helpful enlightenment for service locating and
substitution in the service evolution. An agent-based cloud
service composition approach was presented in [12] and the
self-organizing agents made use of acquaintance networks
and the contract net protocol to evolve and adapt cloud
service compositions. Similarly, an evolutionary adaptation
mechanism was designed using genetic algorithms for agents
to evolve their behaviors and improve their fitness values to
the environment [13]. Wang et al. proposed a service evolu-
tion model to analyze service dependencies, identify changes
on services, and estimate impact on the users [14]. A frame-
work of service evolution and reuse was designed by Schumm
et al. [15]. Service processes can be customized or reused
by the operations provided, such as publishing, retrieval,
extraction, and integration, in the proposed framework and
the sharing repository of service processes. Mohammad et
al. proposed an evolution method of SasS services based on
the biological heredity and illuminated an effective way to
customize service process from the perspective of heredity in
[16].

The existing research about service evolution can be
summarized as the following aspects: service version man-
agement [17], service migration [18, 19], service substitution
[20, 21], and structure evolution of service processes [22].
These works can also be divided into two categories: het-
erogeneous service evolution and isomorphic service evolu-
tion. Decomposition, truncation, link, and synthesis are the
basic transformation operations in the heterogeneous service
evolution. It means that the structure of a service process
was significantly changed; that is, the process logic and
component services were vastly varied. Thus, heterogeneous
service evolution is very time-consuming and often achieved
by static customization [23].

Conversely, few Web services or very short piece of
a service process was adjusted in the isomorphic service
evolution. Isomorphic service evolution is widely utilized to
address the slight variations of service requirement or work-
ing conditions. However, the current research of isomorphic
service evolution mainly focused on how to substitute the
invalid service with the service context. Few studies have been
investigated on isomorphic evolution of service processes
[24].

To simply address the isomorphic service evolution, we
propose a service cluster-based evolution mechanism. The

Scientific Programming

main contribution of this work is as follows: (1) A three-
tiered service request and response architecture oriented
service clusters are put forward. (2) An isomorphic evolution
mechanism for service processes is proposed in the above
architecture. (3) A method to compute service quality in
different process patterns is also given based on the logic Petri
net.

Locating the alternative service is the vital work in
process of service substitution or process reengineering.
Similar Web services were mapped as a service cluster in
our three-tiered service request and response architecture.
Once a Web service needs replacing, the alternative one
can be searched in its subordinate service cluster. Search
space for the alternative service is restricted within one
service cluster and it is greatly reduced. Meanwhile, two types
of evolution algorithms were provided in the isomorphic
evolution mechanism. They can replace invalid services at
the level of service clusters and rapidly reconstruct service
process. Compared with the original one, the newly generated
service process can support the same business function and
(even better) service quality. Thus, service substitution or
reconstitution for service processes can be easily achieved by
the proposed isomorphic evolution method.

The rest of the paper is organized as follows. Section 2
introduces the service cluster oriented isomorphic service
evolution mechanism. Isomorphic evolution algorithm for
atomic Web service is presented in Section 3. Two patterns
of isomorphic evolution for service processes and their
corresponding evolution algorithms are elaborated in Sec-
tion 4. Section 5 presents the simulation experiment. And
conclusions are given in Section 6.

2. Isomorphic Service Evolution Mechanism
Based on Service Cluster

Service request generally responds by an atomic Web ser-
vice in the traditional service-oriented architecture (SOA).
Service composition is proposed to combine different Web
services together to cater for complex service requirements
[25]. Since the component units are atomic Web services,
the substituted service needs searching in the existing service
register space once some service is invalid in the composed
service process. Seeking substituted service is a huge work-
load for the massive volume of similar Web services.

To reduce the difficulty of service substitution and con-
veniently achieve isomorphic service evolution for service
processes, we need to increase the granularity of service
responding units. Web services with similar function and
service quality are logically encapsulated as a service group
in this study, namely, service cluster. Service clusters are
employed to respond to service request. Then service substi-
tution and isomorphic evolution are performed based on the
service clusters. Thus, service searching space can be greatly
reduced by this group mechanism.

The traditional SOA is converted to a three-tiered service
request and response architecture based on the service
clusters by introducing the group mechanism. As shown in
Figure 1, service clusters are located at a virtual resource layer.

Scientific Programming

They are the mapping collections of Web services with similar
functions in the physical resource layer.

Service request is described in a business model layer and
it can be disintegrated and can respond by a single service or
service composition. The request of single service in business
model layer responds by a service cluster while the request of
services composition is undertaken by the combination of a
group of service clusters. For any responding service cluster
in the virtual resource layer, it will be ultimately bound by a
specific Web service in the physical resource layer.

Service clusters are the service responding units in our
proposed three-tiered service request and response archi-
tecture. Since service cluster is a group of Web services
with similar functions, the substituted service can be easily
obtained in the responding service cluster once the current
Web service cannot work properly. The searching space
of the substituted Web service is greatly reduced for the
lookup limited in a service cluster. Meanwhile, the service
process composed of the service clusters may evolve many
similar process instances so it can meet more different service
requirements. For the complex service request responding
by a service process, the structure of service process in
the virtual resource layer can maintain invariably when the
service request or external environment is slightly changed.
Thus, the isomorphic service evolution can be easily achieved
based on service clusters.

Usually, one or more Web services can satisty the service
request in a service cluster and all these services are built as
a set in our study, namely, the responding service collection.
The responding service collection is symbolically denoted as
S ;- The substituted one can be selected from S ,,, when
the atomic Web service is achieving the isomorphic service
evolution. Similarly, for service processes, the isomorphic
service evolution is divided into two categories: dot evolution
and chain evolution. The isomorphic evolution for service
processes can be conveniently implemented by the proposed
evolution algorithm in the following section; for example, ser-
vice process 1 can evolve into service process 2 in Figure 1 by
replacing some services in their component service clusters.

Some concepts, such as service pool [26], service cluster
[27], and service class [28], were proposed to model the
collection of Web services. Web services in these concepts
were required with the same function and interfaces. Thus,
they are with small granularity of function and poor ability
of isomorphic service evolution. Different from the above
concepts, we do not restrict Web services included in the
service cluster of our study with the identical function and
interfaces. The formal definitions of Web service and service
cluster are presented as follows.

Definition I (Web service). A Web service is a 6-tuple Ws =
(Wigs Wyes I, O, Q, L), where

(1) Wyq is an identification of a Web service;

(2) Wy, is a function description of the Web service;

(3) I and O are the sets of input and output parameters;

(4) Q is a set of quality parameters, where Q = {g;},
q; = {N,C,V,U}, N is the name of quality parameter, C is

6: Business model
Layer-process model

4 # Al ,
.l . \ ' Y3
% / , ’,‘\ * /,,\// ;/F//
Ry el) (R AR 4o /%7 Virtual resource layer-
! .
service clusters

Service cluster

Web service

Service process 1
Service process 2

Physical resource layer-
service/service flow

FIGURE 1: A three-tiered service request and response architecture
oriented service clusters.

a comparison operator, V is the value of the parameter, and
U is the unit of quality parameter;
(5) L is the URI of a Web service.

Definition 2 (service cluster). A service group is a 7-tuple
Scluster :(Cld’ Cdes’ Lo, Sw’ Qc’ f)’ where

(1) Cyq is an identification of a service cluster;

(2) Cye, is a function description of a service cluster;

(3) I = IcuIpand O = OcUOp, where Ic and Oc represent
the common input and output parameters of a service cluster
and Ip and Op represent the private input parameters and
output parameters of some component services in the service
cluster, respectively;

(4) S,, is the set of component services in a service cluster,
Sw = {ws, ws,, ..., ws,}, where ws; isa Web serviceand 1 <=
i<=m

(5) f: Op — 2'P, where Vo € Op, f(0) = {{ws.I N Ip) |
VYws € S, Ao € ws.O}, and f is a function to describe the
mapping relations between Op and Ip;

(6) Q. = {g;}, where Q_ is the set of quality parameters and
q; = N, C, [Viin> Vinax)» U}, where V.. and V. represent
the upper and lower bound value of g;, respectively.

The quality parameters of service cluster are assigned
with an interval value. For example, if a service cluster is
set with a quality parameter g = {RT, <,[0.001,0.1], ms}, it
means that the minimum response time of its component
service is lower than 0.001ms and the maximum response
time of its component service is not more than 0.01 ms. The
quality parameters of a service cluster can be classified as
two categories: positive parameters and negative parameters.
A higher value of positive parameter indicates a better
service quality, for example, the response ratio and reliability.
Conversely, the lower the value of negative parameter is, the
better the service it can provide. For example, service price
and failure rate are the negative parameters. The symbol Q"
represents the set of positive quality parameters while Q" is
used to denote the set of negative quality parameters in this
study.

Scientific Programming

Output: the substituted Web service s, for s;
Atom_evolve(S, s, Sr.Q)

(2) else{ Sy =2

(12) if (s,.Q > Sr.Q) return(s,);
(13) else return(False); }

Input: the responding service cluster S, the current binding Web service s and the quality of service request Sr.Q;

(@) {if (IS.S | > 1) Select a Web service randomly from {S.S ,,, — s} to assign as s,;

(3) for each ws € S.S,,

(4) if (ws.Q > Sr.Q) Sy = S U {ws};

(5) Og = 8r.0 - S.0¢;

(6) i=1

(7) for each 0 € Oy

(8) {WS_o; = {ws | ws € Sg A f(0;) € ws.I};i++;}
9) fori=1to |Ol

(10) ws; = {ws | max(rank(ws)) A ws € WS_0,};

11) S, = ws; ®Ws, ®- -+ dWs|op;

AvrGoriTHM I: Isomorphic evolution for atomic Web service.

3. Isomorphic Evolution for
Atomic Web Service

Isomorphic evolution for atomic Web service means to find
a substituted service for the evolving Web service. The
substituted one must be equivalent to the evolving one in
both interface parameters and service quality. We divide
the isomorphic evolution for atomic Web service into two
patterns, the simple evolution and the merging evolution.

The responding service collection S ,, contains more
than one Web service and we can directly select another
service to replace the evolving one in simple evolution. When
there is no Web service that can substitute the evolving one
in S, the merging evolution needs to be performed. Two
or more Web services in the responding service cluster are
employed to combine as a new service and the new service is
utilized to replace the evolving one in the merging evolution.

Compared with the merging evolution, simple evolution
is with a less time cost. So it is priorly executed in the service
request and response architecture based on service clusters.
Merging evolution is carried out only when the simple
evolution cannot satisfy the evolution request. The service
request is formally defined as a 4-tuple S, = {Ry., I, O, Q} in
this study. Ry, is the function description of service request
and the meaning of other items can refer to the definition of
Web service (see Definition 1). To match interface parameter
and evaluate the service quality are main operations in the
service substitution and isomorphic evolution. Now we give
some definitions about interface matching and service quality
evaluation. Meanwhile, the isomorphic evolution algorithm
is also provided in Algorithm 1.

Definition 3 (semantic equivalence). Let S; and S, be two
concept nodes of the same ontology tree; S, is the nearest
common ancestor node of §; and S,. p(S) is used to represent
the quantity ratio of child nodes of S and all the nodes of

the ontology tree. The semantic compatibility is denoted as
SeSim(S;, S,).

2 xlogp (Sp)
log p(S,) +1og p(S,)”

Two concepts S; and S, are called the semantic equiva-
lence, written as S; < S,, if SeSim(S,,S,) > &, where § is a
threshold value.

Let P = {p;, pp»---> Py} be a group of parameters and
p; be the atomic parameter which cannot be decomposed.
|P| is used to denote the quantity of atomic parameters in
P. The mapping functions T'ype(p;) and Val(p;) are utilized
to represent the parameter type and value range of p;,
respectively. Meanwhile, we use Type(p,) = Type(p,) to
express that the data type of p; can match the data type of
D,- Based on the above elaboration, we classify the matching
type of service parameters into three levels: subset parameter,
isomorphic parameter, and value-covering parameter.

SeSim (S,,S,) = ey

Definition 4 (parameter matching type). (1) P, is called the
subset parameter of P,, denoted as P; o< P,, if |P;| < |P,| and
Vp; € P, 3p; € Py: p; < p; AType(p;) = Type(p;).

(2) P, is called the isomorphic parameter of P,, denoted
as P, © P,,it P, oc P, AP, x P,.

(3) P, is called the value-covering parameter of P,,
denoted as P, > P, if P, o< P and Vp;, € P, 3p; €
Py: Val(p;) € Val(p;).

To provide a better user experience, we also need to
evaluate service quality and select the optimal one to respond
to the service request.

rank (s;) = Zqij * W),
j=1

2)

Scientific Programming

q7™ - q;;
rr;’ax n"ln{n > if q?ax - q;'nin #0;
9% =149; —4; ' (3)
1, if g7 — g™ = 0;
min
9ij — 4; . i
— f l"nax _]’.Illn 0;
e U A A T
1, if g7 — g = 0.
Definition 5 (service quality score). Let S = {s,1>Su2>--->

Swm) be a group of Web services. Assume that each service in
S has n quality parameters, and [g;;, i - - - » ;] 18 the quality
vector of the service s,;. The service quality score of s, is
defined as follows.

There are two steps in computing service quality score:
scaling phase and weighting phase. For a given service
parameter g € Q7, formula (3) is adopted to scale the service
quality vector. Formula (4) is utilized to scale the service
quality vector for the service parameter ¢ € Q. In the
weighting phase, formula (2) is used to compute the quality
score of a Web service, where w ;i €[0,1] and w; is the weight
of g; set by the users.

The first line in Algorithm 1 is used to handle the simple
evolution for atomic Web service. In this case, the number
of the responding service collections is greater than 1; that
is, 1S.S ,,| > 1, and we can randomly select a noncurrent
Web service from S.S,, to replace the current one. In the
merging evolution, an empty service collection Sy is firstly
initialized to store all the Web services that meet quality
restraint of service request in S.S,,, (lines (2) to (4)). The
difference set of the output parameters in service request and
the common output parameters in the responding service
cluster is formally denoted as Oy. Acquire Oy and then for
each parameter in O figure out the service collection which
can provide the parameter, that is, building the collection
WS_o; in line (8). Finally, choose the Web service with
the optimal service quality for each parameter in Op and
compose all selected web services as the service s, in parallel.
s, can be returned as the evolved service if s,.Q is the value-
covering parameter of the service request Sr.Q; otherwise the
isomorphic service evolution is failed.

4. Isomorphic Evolution for Service Process

Since a service process is composed of multiple service clus-
ters and the responding service collections of these service
clusters may contain more than one Web service, many
instances of the service process can be evolved by selecting
different services in the responding service collections. These
instances vary subtly from each other in the functions and
service quality. Thus, the service process constructed based
on service clusters is with a wide self-adapted ability in
isomorphic evolution.

4.1. Formal Definition and Service Quality of Cluster Service
Process. Cluster service process is used to briefly express the
service process constructed based on service clusters in the
following sections. Different from the isomorphic evolution

for atomic Web service, the isomorphic evolution for service
process needs to replace the evolved services from interface
and quality in view of the whole process. To calculate service
quality, cluster service net is introduced to formally describe
the cluster service process and then a method to compute the
service quality of service process is proposed based on the
cluster service net.

Definition 6 (cluster service net). A cluster service net is
defined as a 5-tuple CSN = (LPN, i, 0, ¢, T, Qp), where

(1) LPN is the process model of CSN while LPN is a logic
Petri net with a single initial place and terminal place [29];

(2) P = P, U P, U Py is a set of places, where P, is the set
of control places to represent the logic transformation, P; is
the set of interior places, and Pp, is the set of exterior places
to make data interact with other service processes;

(3) T = T; UT, UT,is a set of transitions, where T is
the set of service cluster transitions to represent the business
operations of the service process. T; and T, are the set of logic
input and output transitions, respectively, and they are used
to control the business flow in the service process;

(4) : T — T; ¢ is the mapping function between the set
of transitions T and the set of their names T}

(5) Qg is the set of service qualities of cluster service
process.

Let X be a logic Petri net and x is a node of Z; that is,
x € PUT;then "x = {y | (y,x) € F}is called the preset
of x and x” = {y | (x,y) € F} is called the postset of x.
The symbol 7 is introduced to get the preset and postset of
the nodes in logic Petri net. The rules are defined as follows:
7, (x) = "xand 7, (x) = x*. Now we give the definitions of the
normal form of logic expression.

Definition 7 (normal form of logic expressions). F =
{f1> fa>---> fu} is a group of cluster service nets and ¢, and ;
are the logic transitions to link F; that is, ij: 7 (f]-.i) = {t,}
and ij: nz(f]-.o) = {t;}, where 1 < j < n. The following
types of logic expressions are called the normal form of logic
expressions.

(1) Oy: Oty) = friA—fodn A A=f iVafliA foiaA
ceAAfde Vafli A i A A

(2) O,: O(t,) = f1i N fiN--- A f.i

(3) I,: I(t;) = fioV fLboV---V f, 0.

(4) I,: I(t;)) = f.oN fL,oN--- A f,.0.

From the transformation rules between WS-BPEL and
Petri net, we can know that any structure of a service process
can be composed of sequence, parallel, alternative, and loop
structures. The process structure constructed by only one
of the sequence, parallel, alternative, and loop structures,
that is, without nesting any other structure, is called onefold
process block. Given n service clusters, the onefold process
block of sequence, parallel, alternative, and loop structure is
illustrated in Figure 2.

The alternative and parallel structures are identical except
for their labeling logic expressions. Logic expressions of
parallel structure are labeled with O, and I,, respectively.

6 Scientific Programming
O I o e I n I e
b2l P2 I I
(Sequence) (Parallel)
(a) (b)
I3 . P
. 1 . test(p,)
@) P O !
O O
Po Pnfl Pr’kl P(’) t;
O
Pn ty P P2
(Alternative) (Loop)
() (d)
FIGURE 2: Onefold process block.
TaBLE 1: Computing method of service quality for different structures.
Item Sequence Alternative Parallel Loop
T(q) YT(t) max{T(t,) |i=1,... max{T(t,) |i=1,...,n} K # T(t;)
i=1
C(q) Yc() max{C(t,) |i=1,... Y) K * C(t,)
i=1 i=1
R(q) [TRr() min{R(t,) |i=1,... [TRrRe) K # R(t;)
i=1 i=1

Similarly, the first logic expression of alternative structure is
marked with O,, while the second one is marked with I,,.

Since the responding service collection may include
several constituent services, service quality of the whole
service process is determined by the extremum value of
service quality in the responding service collection. For the
positive parameters, we select the minimum service quality
value of the Web services in the responding service collection
to calculate the quality of service process. Meanwhile, the
maximum service quality value of the Web services included
in the responding service collection is adopted to compute
the quality of service process for the negative parameters.

Let t be a service cluster including n Web services, ¢ is
a service quality parameter, and then t.q = .V, for g €
Q" and t.q = q.V,,, for g € Q. We use T(g), C(q), and
R(q) to represent the responding time, cost, and reliability
of a Web service. Table 1 shows the method to compute the
service quality for the cluster service process with sequence,
parallel, alternative, and loop structure. By recursively using
the proposed formulas in Table 1, we can calculate the service
quality for the service process with any structure.

4.2. Isomorphic Evolution for Cluster Service Process. Iso-
morphic evolution for cluster service process is classified

into two categories: dot isomorphic evolution and chain
isomorphic evolution. The dot isomorphic evolution only
seeks the substituted service in its responding service cluster
for the evolving service and the other working services in
the service process are not changed. In the chain isomorphic
evolution, the evolving service and some of its associated
web services will be replaced at the same time. The chain
isomorphic evolution is restricted by the pattern of one-step
successor for the high complexity in this study; that is, only
the evolving service and one of its immediate successors can
be replaced, and the other services in the service process are
not changed.

4.2.1. Isomorphic Service Evolution for Dot Pattern. Com-
parison of interface parameters and reappraisal of service
quality are two operations of isomorphic evolution for service
process. Given a cluster service process, formally described
as the cluster service net CSN, let CSN.Qr be the quality
restriction from service request. The following operations are
used in the isomorphic evolution for cluster service process.

(1) InSCluster(ws): acquire the service cluster which
includes the Web service ws

(2) InFlowStructure(ws): acquire the onefold process
block which includes the service ws

Scientific Programming

Input: the cluster service net CSN and the evolving service node #;
Output: the isomorphic evolution service cluster net CSNe for CSN;

(2) { Flag = Flase;

(4) S = InSCluster(n);

(6) fe(n) =mn;

(7) if (n,! = Null) Flag = True;
(8) If (Flag == True)

(10) Return Flag; }

(1) FlowEvo_SingleDot(CSN, n, CSNe)
(3) Q' = CSN.Qr — Q_Structure(InFlowStructure(n) — n);

(5) n, = Atom_evolve(S,n,Q");

(9) CSNe = Replace(CSN, n, n,);

ALGORITHM 2: Isomorphic evolution algorithm for dot pattern.

The evolving service node n

n, = Atom_evolve(S, n, Q');

FIGURE 3: Dot isomorphic evolution for service process.

(3) Q-Structure(CSN): calculate the service quality of the
cluster service net CSN

(4) Replace(CSN, n, n'): replace the service node n by #'
in the cluster service net CSN

(5) fe(n) = n, : feis an evolution mapping function
which assigns the service node n, as the substituted service
node of n.

In the isomorphic evolution for single node of dot
mode (shown in Figure 3) (the procedure of dot isomorphic
evolution can be found in Algorithm 2), we first obtain the
onefold process block which includes the evolving service
node n, and compute the difference value between the service
quality restriction and the service quality of the onefold
process block which has deleted the service node # (line (3)).
Then, the difference value of service quality Q' is adopted as
the new service quality restriction to perform the isomorphic
evolution for atomic Web service of the service node 7 (lines
(4) to (5)). If we get a valid substituted service n, for the
evolving service node n, the isomorphic evolution for single
node of dot mode is successfully performed and the evolved
service cluster net can be generated by replacing the service
node n by n,; otherwise the isomorphic service evolution is
failed (lines (6) to (10)).

If there is more than one service node that needs evolving
in the isomorphic service evolution with dot pattern, we
need to execute the dot isomorphic evolution algorithm for
several rounds. For each round of dot isomorphic evolution,
we achieve the dot isomorphic evolution for one service node.
The algorithm is repeatedly executed until all the service

FIGURE 4: Chain isomorphic evolution for service process.

nodes have successfully performed the dot isomorphic evo-
lution.

4.2.2. Isomorphic Service Evolution for Chain Pattern. We
fist give an algorithm to handle the scenario of only one
node performing the chain isomorphic evolution. For the
isomorphic evolution method for single node of chain mode,
one can refer to Algorithm 3. The proposed algorithm is
used to achieve the isomorphic evolution of the service nodes
which are not the starting and terminal ones in a service
process.

Similar to the isomorphic evolution for single node of dot
mode, we first calculate the new service quality restriction
Q' of the cluster service net which had removed the evolving
service node p. As shown in Figure 4, let p’ be the successor
node of p. The symbols S and ' are employed to represent
the service clusters which include the service nodes p and p’,
respectively (lines (3) to (6)). We compute the potential input
parameters by the mapping function f of S’ and the output
parameters of p'. If a new group of input parameters Iq which
are different from the current input parameters of p' can be
obtained, we build a virtual service node, written as q', where
q.I = 1q,4q.0 = pO,and ¢.Q = p.Q. The isomorphic
evolution for atomic Web service of the service node g’ is
performed in S’ and the substituted node is denoted as p',.
Sometimes we need to perform the isomorphic evolution
repeatedly for the acquirement of node p' . (lines (7) to (11)).

A virtual service node g will be customized once node
p', was successfully obtained. The input parameters of p are
set exactly the same as the output parameters of its precursor
node. Meanwhile, the output parameters of p are set the same

Scientific Programming

@f{p=mn

(4) S = InSCluster(p);
(5) p' = nextnode(CSN, p);
(6) S = InSCluster(p');

(1) if(p’, == NULL) Go (7)
(12) p" = pirior(n);
(13) ql=p"0;90=7p',.I;

(15) if (fe(n)! = Null)
16) {fe(n) = p,; fe(p') =p's

(20) else return(False); }

Input: the cluster service net CSN, the evolving service node #;
Output: the isomorphic evolution service cluster net CSNe for CSN;
(1) FlowEvo_SingleChain(CSN, n)

(3) Q' =CSN.Qr- Q_Structure(InFlowStructure(p) — p);

(7) Select a parameter Iq € f(p'.0) — {p’.I};
(8) If(Iq# @) Iq=1IquSs .Ic

9 q.I=1g4.0=p0;q'.Q=pQ

10) p', = Atom_evolve(S',q',q'.Q);

(14) p, = Atom_evolve(S,q,Q’);

(17) N ={n, p'}; Ne = {fe(n), fe(p")};
(18) CSNe = Replace(CSN, N, Ne);
(19) Output(CSNe); return(True);}

ALGORITHM 3: Isomorphic evolution algorithm for chain pattern.

as the input parameters of p’,. Then the isomorphic evolution
for atomic Web service of node g is executed with the service
quality restriction Q' in the service cluster S. The substituted
service node for g is represented by p, (lines (12) to (14)).
We will evolve the cluster service net by replacing the service
node # and its successor node p’ once the service node p,
is successfully acquired; otherwise, the isomorphic service
evolution is failed (lines (15) to (20)).

Isomorphic service evolution for multiple nodes of chain
pattern means that there is more than one service node
occurring in the isomorphic service evolution of chain mode.
In the isomorphic service evolution for multiple nodes of
chain pattern, we only need to perform the isomorphic
service evolution for single node of chain pattern for all the
evolving nodes one by one.

5. Simulation Experiment

Since no service clusters built based on application domain
ontology can be found over the Internet, we can only verify
the effectiveness of our proposed method by performing
the simulation experiment. The aim of the experiment is to
investigate whether the service discovery and evolution in
the service clusters based SOA are more efficient than in the
traditional SOA.

To obtain the service clusters, we first customize a large
number of ontology concepts. The ontology concepts are
selected from an ontology tree with the width of ten and
the depth of eight. The numbers of the branches and leaf
nodes are randomly generated. The total number of all the
leaf nodes is more than 50000. By using the method to
calculate the semantic similarity presented in Definition 3,

the semantic similarity of any two Web services or service
clusters can be easily acquired. The hardware environment
in the simulation experiment is set as follows: CPU is the
Intel core i5-4570 with 3.2 GHz, the memory is 8 G, and
the OS is Windows 8. There are twenty-five computers that
constitute alocal area network. The data about service clusters
is located equally among these computers. Each round of the
simulation experiment was performed for twenty tests and
the average value of these results was adopted as the final
simulation results. The total number of the Web services in
the experiment is 10000.

5.1. Service Discovery and Evolution of Atomic Web Service.
Six rounds of experiments were performed while we com-
pared the efficiencies of service discovery and evolutions
between the traditional SOA and our three-tiered service
request and response architecture oriented service clusters.
The number N of service clusters in each round is 50, 100,
200, 500, 1000, and 2000, respectively. For each round, the
number M of Web services in the service clusters is also
randomly generated by 1 < M < 10 % (10000/N). As
illustrated in Figure 5, the service discovery times of each
round in service clusters based SOA are all lower than in
the traditional SOA. However, the discovery time increases
sharply with the granularity of service cluster turning small.
Thus, we can get the conclusion that service discovery time is
significantly affected by the granularity of service clusters.
The comparison of evolution times for atomic Web ser-
vice between the traditional SOA and service clusters based
SOA was shown in Figure 6. The substituted service needs
searching in the whole service space in traditional SOA while
the substituted one is sought only in the responding service

Scientific Programming

1400
1200 +
1000 |
£ 800t
L
E 600 |
H
400 +
200 -
O 1 1 1 1 1
50 100 200 500 1000 2000
The number of service clusters
Service discovery time under
the traditional SOA
Service discovery time under
service clusters oriented SOA
FIGURE 5: Comparison of service discovery times.
1400
1200 +
1000 +
2 800
5
E 600 -
|l
400 +
200 b
o Hf"—f_.ﬂ
40 80 100 200 400
The number of service clusters
Service evolution time under
-

the traditional SOA

Service evolution time under
service clusters oriented SOA

FIGURE 6: Comparison of service evolution times.

cluster. The searching space of the former is far greater than
the latter. Thus, the evolution time is significantly reduced in
the service clusters based SOA.

5.2. Isomorphic Evolution for Service Processes. Five rounds
of experiments were performed while we compared the
efficiencies of isomorphic evolution for service processes
between the traditional SOA and service clusters based SOA.
The number N of service clusters in each round is 40, 80,
100, 200, and 400, respectively. For every round, the number
M of Web services in the service clusters is also randomly
generated by 0.75 * 10000/N < M < 1.25 * 10000/N.

Three cluster service processes with different flow pat-
terns were constructed in the experiments. These service pro-
cesses were composed of nine service nodes. We performed
isomorphic evolution for service processes by one node and
three nodes, respectively. For the results, one can refer to

9
1400
1200 -
1000 +
jg 800
L
E 600 |-
=
400 +
el ey
0 I I I I
40 80 100 200 400
The number of service clusters
Service evolution time of service process
composed of atomic Web services
Service evolution time of single node of dot
i

isomorphic evolution for service processes

Service evolution time of single node of chain
isomorphic evolution for service processes

FIGURE 7: Comparison of evolution times for single node of
isomorphic service evolution.

Figures 7 and 8. We can see that the efficiency of isomorphic
evolution in the service clusters based SOA is higher than in
the traditional SOA. Meanwhile, whether it is the dot pattern
or the chain pattern, the isomorphic evolution for multiple
nodes is less efficient than single node. For the isomorphic
evolution of cluster service processes, the dot pattern is of
a higher efficiency than the chain pattern. Thus, the dot
isomorphic evolution for cluster service processes is taking
precedence on execution.

6. Conclusions

In the traditional service request and response schema, fine
granularity evolution of Web service is of a high cost because
service substitution faces a large amount of similar services
in functions and service quality. Particularly it will become
more complicated when the isomorphic evolution for service
process is executed for the adding of business logic. To reduce
the difficulty in isomorphic service evolution, a three-tiered
service request and response architecture oriented service
clusters are proposed in this study. Service substitution is
performed based on the service clusters and search space for
alternative service is narrowed down to the average number
of component services in the service clusters.

Meanwhile, isomorphic service evolution is carried out
at the level of service clusters. Structures of original service
processes need not be changed in most cases of isomorphic
evolution since the response granularity is enlarged as a
service cluster. Thus, the proposed method can easily achieve
the isomorphic service evolution for the small search space
in service substitution and very few structural changes in
process evolution. We present the isomorphic evolution

10
4500
4000 +
3500
3000 |
g 2500 |
o
£ 2000 F
=
1500
1000 +
500 %
0 1 1 1 1
40 80 100 200 400
The number of service clusters
Service evolution time of service process
composed of atomic Web services
- Service evolution time of multiple nodes of dot

isomorphic evolution for service processes

Service evolution time of multiple nodes of chain
isomorphic evolution for service processes

FiGure 8: Comparison of evolution times for multiple nodes of
isomorphic service evolution.

algorithms for the atomic Web service and service processes
with different patterns. Simulation experiment was also
provided to show the effectiveness and feasibility of the
isomorphic service evolution mechanism based on service
clusters. Relation between the granularity of service clusters
and the time of isomorphic service evolution will be studied
in the future work.

Conflicts of Interest

The authors declare that they have no conflicts of interest.

Acknowledgments

This study is supported by the Key Research Program of
Shandong Province under Grant 2016GGX101031, the Pro-
motive Research Fund for Young and Middle-Aged Scien-
tists of Shandong Province under Grants BS2015DX010 and
BS2015ZZ006, and the Natural Science Foundation of China
under Grants 61273180 and 61472228.

References

[1] A.Botta, W. de Donato, V. Persico, and A. Pescapé, “Integration
of cloud computing and internet of things: a survey;,” Future
Generation Computer Systems, vol. 56, pp. 684-700, 2016.

[2] W. Tan, Y. Fan, A. Ghoneim, M. A. Hossain, and S. Dustdar,
“From the Service-Oriented Architecture to the Web API
Economy,” IEEE Internet Computing, vol. 20, no. 4, pp. 64-68,
2016.

Scientific Programming

[3] A. L. Lemos, E Daniel, and B. Benatallah, “Web service com-
position: A survey of techniques and tools,” ACM Computing
Surveys, vol. 48, no. 3, article no. 33, 2015.

[4] W. Zuo, A. N. Benharkat, and Y. Amghar, “Change-centric
model for Web service evolution,” in Proceedings of the 2014 21st
IEEE International Conference on Web Services, ICWS 2014, pp.
712-713, Anchorage, AK, USA, July 2014.

[5] D.Rosaciand G. M. L. Sarné, “Recommending multimedia web
services in a multi-device environment,” Information Systems,
vol. 38, no. 2, pp. 198-212, 2013.

[6] M. B. Blake and M. E Nowlan, “A web service recommender
system using enhanced syntactical matching,” in Proceedings of
the 2007 IEEE International Conference on Web Services, ICWS
2007, pp. 575-582, Salt Lake City, UT, USA, July 2007.

[7] L. Yao, Q. Z. Sheng, A. Segev, and J. Yu, “Recommending
web services via combining collaborative filtering with content-
based features,” in Proceedings of the IEEE 20th International
Conference on Web Services (ICWS ’13), pp. 42-49, IEEE, Santa
Clara Marriott, Calif, USA, July 2013.

[8] X.Chen, Z. Zheng, X. Liu, Z. Huang, and H. Sun, “Personalized
QoS-aware web service recommendation and visualization,”
IEEE Transactions on Services Computing, vol. 6, no. 1, pp. 35-47,
2013.

[9] G. Kang, M. Tang, J. Liu, X. E Liu, and B. Cao, “Diversifying
web service recommendation results via exploring service usage
history,” IEEE Transactions on Services Computing, vol. 9, no. 4,
pp. 566-579, 2016.

[10] E Messina, G. Pappalardo, D. Rosaci, C. Santoro, and G. M. L.
Sarné, “A trust-aware, self-organizing system for large-scale fed-

erations of utility computing infrastructures,” Future Generation
Computer Systems, vol. 56, pp. 77-94, 2016.

[11] E Messina, G. Pappalardo, C. Santoro, D. Rosaci, and G. M.
L. Sarné, “A multi-agent protocol for service level agreement
negotiation in cloud federations,” International Journal of Grid
and Utility Computing, vol. 7, no. 2, pp. 101-112, 2016.

[12] J. O. Gutierrez-Garcia and K.-M. Sim, “Self-organizing agents
for service composition in cloud computing,” in Proceedings
of the 2nd IEEE International Conference on Cloud Computing
Technology and Science (CloudCom ’10), pp. 59-66, Indianapo-
lis, Ind, USA, November-December 2010.

[13] T. Nakano and T. Suda, “Self-organizing network services
with evolutionary adaptation,” IEEE Transactions on Neural
Networks, vol. 16, no. 5, pp. 1269-1278, 2005.

[14] S. Wang, W. A. Higashino, M. Hayes, and M. A. M. Capretz,
“Service evolution patterns,” in Proceedings of the 2014 21st IEEE
International Conference on Web Services, ICWS 2014, pp. 201-
208, Anchorage, AK, USA, July 2014.

(15] D. Schumm, D. Dentsas, M. Hahn, D. Karastoyanova, E
Leymann, and M. Sonntag, “Web service composition reuse
through shared process fragment libraries,” Lecture Notes in
Computer Science (including subseries Lecture Notes in Artificial
Intelligence and Lecture Notes in Bioinformatics), vol. 7387, pp.
498-501, 2012.

[16] A. F. Mohammad, J. Dargham, H. Mcheick, and A. T. Noor,
“Software Evolution as SaaS: Evolution of Intelligent Design
in Cloud,” in Proceedings of the 4th International Conference
on Ambient Systems, Networks and Technologies, ANT 2013
and the 3rd International Conference on Sustainable Energy
Information Technology, SEIT 2013, pp. 486-493, Halifax, Nova
Scotia, Canada, June 2013.

Scientific Programming

(17]

(18]

(20]

(22]

(23]

(26]

(27]

(28]

[29]

V. Andrikopoulos, S. Benbernou, and M. P. Papazoglou, “On the
evolution of services,” IEEE Transactions on Software Engineer-
ing, vol. 38, no. 3, pp. 609-628, 2012.

A. Goswami and R. P. Patel, “Service migration in cluster based
cloud computing environment,” in Proceedings of the 2015 IEEE
International Conference on Information Processing, ICIP 2015,
pp. 468-471, Pune, India, December 2015.

M. Shiraz and A. Gani, “A lightweight active service migration
framework for computational offloading in mobile cloud com-
puting,” Journal of Supercomputing, vol. 68, no. 2, pp. 978-995,
2014.

G. Friedrich, M. Fugini, E. Mussi, B. Pernici, and G. Tagni,
“Exception handling for repair in service-based processes,”
IEEE Transactions on Software Engineering, vol. 36, no. 2, pp.
198-215, 2010.

Y. Liu, Y. H. Zhang, B. Zhang, M. W. Zhang, and Z. L. Zhuy,
“Analysis of service replaceability on behavior effect,” Journal of
Computer Research and Development, vol. 47, no. 8, pp. 1442
1449, 2015.

W. Liu, Y. Du, M. Zhou C, and C. Yan, “Transformation of
logical workflow nets,” IEEE Transactions on Systems, Man, and
Cybernetics: Systems, vol. 44, no. 10, pp. 1401-1412, 2014.

Z. Wang and G. Cheng, “An approach to synergistic and
dynamic service evolution in clouds,” International Journal of
Cloud Computing, vol. 4, no. 2, pp. 177-198, 2015.

M. Fokaefs, R. Mikhaiel, N. Tsantalis, E. Stroulia, and A. Lau,
“An empirical study on web service evolution,” in Proceedings
of the 2011 IEEE 9th International Conference on Web Services,
ICWS 2011, pp. 49-56, Washington, DC, USA, July 2011.

A. Jula, E. Sundararajan, and Z. Othman, “Cloud computing
service composition: a systematic literature review, Expert
Systems with Applications, vol. 41, no. 8, pp. 3809-3824, 2014.
Q. Z. Sheng, Z. Maamar, L. Yao, C. Szabo, and S. Bourne,
“Behavior modeling and automated verification of Web ser-
vices,” Information Sciences, vol. 258, pp. 416-433, 2014.

C. Papagianni, A. Leivadeas, and S. Papavassiliou, “A cloud-
oriented content delivery network paradigm: modeling and
assessment,” IEEE Transactions on Dependable and Secure
Computing, vol. 10, no. 5, pp. 287-300, 2013.

W. Liu, Y. Du, and C. Yan, “A web service discovery and com-
position method based on service classes,” Journal of Software
Engineering, vol. 7, no. 2, pp. 68-76, 2013.

Q. Hu, Y. Du, and S. Yu, “Service net algebra based on logic Petri
nets,” Information Sciences. An International Journal, vol. 268,
pp- 271-289, 2014.

1

b
B

e

e

H H International J I'of
The Scientific ~ JEEEEETEE

Applied
Computational
Intelligence and Soft

Computing—

| INultimedia N‘! 2 e ndustrial Engineering
: Va
® o

World Journal Sensor Networks L W

Modelling &
Simulation
in Engineering

Pt Rsmarycomrain
=g

Hindawi

Submit your manuscripts at
https://www.hindawi.com

Journal of:

Computer Networhks
and Communications

Advances in
Artificial
Neural Systems

A

Advances in

Software Engineering

Reconfigurable
Computing

Computational

Journal of I Human-Computer \nte\ﬁgence and
Robotics Interaction Neuroscience

Journal of
Electrical and Computer
Engineering

S in

