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GRAPPA (Generalized Autocalibrating Partially Parallel Acquisition) is a widely used parallel MRI reconstruction technique.
The processing of data from multichannel receiver coils may increase the storage and computational requirements of GRAPPA
reconstruction. Random projection on GRAPPA (RP-GRAPPA) uses random projection (RP) method to overcome the
computational overheads of solving large linear equations in the calibration phase of GRAPPA, saving reconstruction time.
However, RP-GRAPPA compromises the reconstruction accuracy in case of large reductions in the dimensions of calibration
equations. In this paper, we present the implementation of GRAPPA reconstruction method using potential iterative solvers to
estimate the reconstruction coefficients from the randomly projected calibration equations. Experimental results show that the
proposed methods withstand the reconstruction accuracy (visually and quantitatively) against large reductions in the dimension
of linear equations, when compared with RP-GRAPPA reconstruction. Particularly, the proposed method using conjugate gradient
for least squares (CGLS) demonstrates more savings in the computational time of GRAPPA, without significant loss in the
reconstruction accuracy, when compared with RP-GRAPPA. It is also demonstrated that the proposed method using CGLS
complements the channel compressionmethod for reducing the computational complexities associated with higher channel count,
thereby resulting in additional memory savings and speedup.

1. Introduction

Parallel imaging is an emerging technique to accelerate the
MR data acquisition by undersampling the 𝑘-space data at
each channel in multichannel coil arrays [1, 2]. The array
coil with a large number of channels not only shortens
scan session durations, but also provides improvements in
signal-to-noise ratio (SNR) and better coverage of Field of
View (FOV) [3–5]. In parallel imaging, undersampled data is
acquired simultaneously by multiple channels and the image
is reconstructed using parallel MRI (pMRI) techniques, for
example, SENSE and GRAPPA [6, 7].

GRAPPA is a widely used 𝑘-space based pMRI technique
[7]. GRAPPA interpolates the undersampled 𝑘-space data
of multichannel receiver coils by estimating the unknown
reconstruction coefficients from the fully acquired autocal-
ibration signal (ACS). The reconstruction time of GRAPPA
increases quadratically with the number of channels [8].
Large computation and memory requirements due to higher
channel count also limit the efficiency and scalability of

GRAPPA and other pMRI techniques on the computational
platforms such as FPGAs and GPUs [9–12].

To mitigate the said problems, hardware and software
based channel compression techniques are used [13–19].
These techniques linearly combine the input data from
multichannel receiver coils to fewer channels, thereby signif-
icantly reducing the reconstruction time and the computer
memory requirement.The channel reduction is implemented
in hardware by constructing fewer Eigen coil arrays using
an inline hardware combiner [19]. However this approach is
often not optimal due to the additional hardware require-
ments. In contrast, software based channel reduction is more
flexible and generates data with high SNR. The software
channel compression techniques [13–18] reduce the number
of physical channels to fewer virtual channels, by finding
correlation between the physical channels with the help of
principal component analysis (PCA).

Recently a different perspective has been presented
in randomly projected GRAPPA (RP-GRAPPA) [20–22]
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to address the computational complexity of conventional
GRAPPA reconstruction method [7]. Instead of using chan-
nel compression only, RP-GRAPPA advocates the use of
randomprojection (RP)method to reduce the reconstruction
time of conventional GRAPPA. During the calibration phase,
RP-GRAPPA reduces the dimension of calibration equations
and estimates the reconstruction coefficients by solving ran-
domly projected calibration equations using pseudoinverse
method.However, pseudoinversemethod differs greatly from
exact solution in case of large reductions in the calibra-
tion equations. Consequently RP-GRAPPA compromises the
reconstruction accuracy [21, 22].

The purpose of this work is to enable the additional com-
putational savings in the traditional GRAPPA reconstruction
time by suppressing the reconstruction errors associated with
randomly projected calibration equations as compared to RP-
GRAPPA. Therefore, we introduced an alternative approach
to solve the randomly projected calibration equations in the
proposed methods, for rapid and robust GRAPPA recon-
struction using potential iterative solvers (i.e., conjugate
gradient for least squares (CGLS) and heuristic rule-based
gradient descent (HGD) algorithms), instead of pseudoin-
verse method used in RP-GRAPPA. To the best of our
knowledge, we present the first implementation of GRAPPA
reconstructionmethod using CGLS andHGD to estimate the
reconstruction coefficients from low-dimensional calibration
equations. The proposed methods are referred to as RP-
CGLS-GRAPPA and RP-HGD-GRAPPA using CGLS and
HGD, respectively.

Several experiments on two-dimensional (2D) MR
images using different number of physical channels (8, 12, and
30) are performed to evaluate the efficacy of the proposed
methods (RP-CGLS-GRAPPA and RP-HGD-GRAPPA) in
terms of reconstruction accuracy, computation time, and
storage savings. Experimental results validate that the RP-
CGLS-GRAPPA efficiently reconstructs the image, while
maintaining the reconstruction accuracy against large reduc-
tions in the linear equations, when compared with RP-
GRAPPA. The benefits of using the proposed methods are
further explored by integrating the PCA based channel com-
pression (CC)method [18] with RP-CGLS-GRAPPA and RP-
HGD-GRAPPA, referred to as CC-RP-CGLS-GRAPPA and
CC-RP-HGD-GRAPPA, respectively. The channel compres-
sion method is also integrated with RP-GRAPPA (referred to
as CC-RP-GRAPPA) to compare the reconstruction results
with CC-RP-CGLS-GRAPPA and CC-RP-HGD-GRAPPA.
The results show that CC-RP-CGLS-GRAPPA and CC-RP-
HGD-GRAPPA exhibit superior reconstruction quality even
after large reductions in the calibration equations, when
compared with CC-RP-GRAPPA. However, CC-RP-CGLS-
GRAPPA is more effective in terms of reconstruction time
and memory savings as compared to the reconstruction
methods using only channel compression (i.e., CC-RP-
GRAPPA, CC-CGLS-GRAPPA, and CC-HGD-GRAPPA).

2. Theory and Methods

2.1. Conventional GRAPPA. GRAPPA is a 𝑘-space based
pMRI technique [7]. This method reconstructs the missing

𝑘-space data in each receiver coil using convolutional kernel
estimated from the fully acquired autocalibration signal
(ACS). ACS lines are sampled at Nyquist rate and collected
from the center of the 𝑘-space in each receiver coil. GRAPPA
reconstruction process has two discrete phases, that is,
calibration and synthesis. During the calibration phase, all
the training datasets are collected in source (S𝑚×𝑛) and target(T𝑚×𝑙)matrices, during kernel repetitions overACS lines, and
form a GRAPPA calibration equation as

T𝑚×𝑙 = S𝑚×𝑛W𝑛×𝑙 where 𝑚 ≫ 𝑛, (1)

where W𝑛×𝑙 represent the unknown coefficients (also called
reconstruction coefficients orGRAPPAweight sets) for linear
combination between the source (S) and target (T) data
points. In calibration phase, conventional GRAPPA seeks
least square fits to estimate the reconstruction coefficients(W):

𝑤 = min
𝑤

‖S𝑤 − 𝑡‖2 . (2)

The problem in (1) is well overdetermined; therefore a direct
method known as pseudoinverse can be used to estimate the
best fit for (2):

W = (S𝐻S)−1 (S𝐻T) , (3)

where𝐻 denotes the conjugate transpose.
During the synthesis phase in GRAPPA, the estimated

weight sets (W) in (3) are used to calculate the missing data
points in the undersampled region of the 𝑘-space for each
channel in the array coil.

It is demonstrated in [21] that the computational expense
of complex-valued multiplication during the calibration
phase dominates the total GRAPPA reconstruction time.
Thus any computational savings during the calibration phase
may contribute to the reduction of the GRAPPA reconstruc-
tion time.

2.2. Dimension Reduction via PCA. Principal component
analysis (PCA) is a well-known and widely used linear
dimension reduction technique which finds the linear pro-
jections of high dimensional data onto lower dimensional
subspace, such that the variance of the data in the low-
dimensional representation is maximized [23–28]. However
it is important to note that the computation complexity of
estimating PCA is 𝑂(𝑑2𝑁) + 𝑂(𝑑3) [29], where 𝑁 is the
number of data points in 𝑑 dimensions. The time complexity
of PCA shows that this method may become infeasible for a
problem with the large 𝑑.

In pMRI, PCA is widely used to compress the channels
in a large array of receiver coils [15–18]. This technique
significantly reduces the computer memory requirements
and reconstruction time of pMRI techniques without con-
siderable degradation in the quality of the reconstructed
image.The computational overheads of PCA do not affect the
performance of pMRI because the number of channels is not
very large in general. Therefore, PCA is a suitable choice for
channel compression in pMRI.
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2.3. Dimension Reduction via Random Projection. Random
projection (RP) method is a popular, computationally effi-
cient, and sufficiently accurate dimensionality reduction
technique used in many signal processing and machine
learning applications [29–31]. RP is based on Johnson-
Lindenstrauss lemma [32]. The lemma says that there exists
a projection𝑓 that maps the set of 𝑛 points in𝑚-dimensional
Euclidean space onto 𝑘-dimensional (𝑘 ≪ 𝑚) Euclidean
subspace such that the distances between any two points are
approximately preserved up to the factor (1 ± 𝑒). The main
idea of RP is to map the original 𝑑-dimensional data A onto𝑘-dimensional subspace (𝑘 ≪ 𝑑), using randomly generated𝑘 × 𝑑matrix R. The projection process can be expressed as

P𝑘×𝑁 = R𝑘×𝑑 × A𝑑×𝑁. (4)

RP is computationally less expensive as compared to other
dimension reductionmethods such as PCA, as the projection
process in (4) involves only onematrix-matrix multiplication
of order 𝑂(𝑘𝑑𝑁) [29]. However, the choice of projection
matrix R in (4) is a key factor as it provides the mapping
that satisfies Johnson-Lindenstrauss lemma and determines
the complexity of the projection process. Achlioptas [32]
proposed a simple probabilistic method to generate sparse
projection matrix R that still satisfies Johnson lemma. A use-
ful property of theAchlioptas distribution is the generation of
a sparse projectionmatrixRwith only (1/3)rd of the data to be
processed, resulting in a threefold speedup in the projection
process [32]. Later, Li et al. [33, 34] generalized the Achlioptas
results and proposed a very-sparse projection matrix R with
entries 𝑟𝑗𝑖 belonging to the following distribution:

𝑟𝑗𝑖 = √𝑠
{{{{{{
{{{{{{{

+1 with prob. 1
2𝑠

0 with prob. 1 − 1
𝑠

−1 with prob. 1
2𝑠 .

(5)

Li et al. demonstrated√𝑑 fold speedup in the processing time
[34], by using 𝑠 = √𝑑 in (5), where 𝑠 = 3 and 𝑠 = 1 in (5) are
the cases for Achlioptas distribution.

2.4. RandomProjection onGRAPPA (RP-GRAPPA). Recently
random projection on GRAPPA (RP-GRAPPA) [20–22]
addressed the computational complexity of the calibration
phase in conventional GRAPPA and used random projection
(RP) method to reduce the dimensions of the problem in
(1). It is demonstrated in [20–22] that the solution to the
reduced set of equations during calibration phase ofGRAPPA
is approximately the same as the original one, provided that
the value of 𝜆 is set appropriately.

R𝜆𝑛×𝑚S𝑚×𝑛W𝑛×𝑙 − R𝜆𝑛×𝑚T𝑚×𝑙
𝐹

≈ S𝑚×𝑛W𝑛×𝑙 − T𝑚×𝑙
𝐹 ,

(6)

where 𝜆 defines a factor by which the order of source (S)
and target matrices (T) in (1) are reduced. A small value of 𝜆
implies large reductions in the linear equations. RP-GRAPPA

only focused on the pseudoinverse method to estimate the
reconstruction coefficient (W), by solving a reduced set of
linear equations as

W = ((Sred)𝐻 (Sred))−1 ((Sred)𝐻 (Tred)) , (7)

where Sred=R𝜆𝑛×𝑚S𝑚×𝑛 and Tred=R𝜆𝑛×𝑚T𝑚×𝑙.
This approach significantly reduced the total reconstruc-

tion time of GRAPPA. However, RP-GRAPPA introduced
large reconstruction errors if the value of 𝜆 is not set
appropriately. It is recommended in [22] that the value of 𝜆
must be greater than 2.2 in order to avoid large reconstruction
errors. In [22], the optimal value for 𝜆 to balance the tradeoff
between reconstruction errors and reconstruction time is
seen to be 3.

2.5. Heuristic Rule-Based Gradient Descent (HGD). Gradient
descent (GD) [35] is a classical optimization technique and
can be used to solve (1) in the sense of least square. GD
repeatedly invokes the update rule in (8) until the iterate
sequence converges to the optimal solution:

xi+1 = xi − 𝜇ei, (8)
where

ei= −S𝐻 (b − Sxi) ,
𝜇 = 2𝛾,

b ∈ C
𝑘×1 =

[[[[[[
[

T1

T2

...
Tm

]]]]]]
]

,

x ∈ C
𝑛×1 =

[[[[[[
[

W1

W2

...
Wn

]]]]]]
]

.

(9)

The step size (𝜇) may influence the speed of conver-
gence. Different choices of 𝜇 lead to various gradient based
algorithms [36, 37]. Heuristic rule-based Gradient Descent
(HGD) algorithm [38] shown in Algorithm 1(a) dynamically
updates 𝜇 and iteratively solves

x(i+1) = x(i) − 𝜂(𝑖)e(i), (10)
where 𝜂(𝑖) defines the learning rate [38]:

𝜂 = 𝜇
‖e‖ . (11)

Starting with some initial value of 𝜇0, HGD dynamically
updates the value 𝜇 in (11) using two heuristic rules [38]. (i)
HGD increases 𝜇 by a factor of 1.1 after experiencing four
consecutive reductions in residual: ‖b − Sx(i+1)‖. (ii) HGD
decreases 𝜇 by a factor of 0.9 after observing two consecutive
combinations of one increase and one reduction in residual.
In HGD, the initial value of 𝜇 is not critical as long as it is not
large enough.
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(a) HDG algorithm

Input: S ∈ C𝑚×𝑛, T ∈ C𝑚×𝑙, W ∈ C𝑛×𝑙, step-size 𝜇 and
maximum iterations 𝐼max.
(1) 𝜇(0) = 𝜇

For 𝑗 = 1 to 𝑙
(2) x(0) ∈ C𝑛×1 = 𝑗th column of matrix W
(3) b ∈ C𝑚×1 = 𝑗th column of matrix T
(4) q(0) = Sx(0)
(5) 𝑒𝑝1 = 0
(6) 𝑒𝑝2 = 0
(7) red = 0
(8) osc = 0

For 𝑖 = 1, 2, . . . , until 𝑖 ≤ 𝐼max
(9) ri = b − q(i)
(10) e(i) = −2(S𝐻r(i))
(11) 𝜂(𝑖) = 𝜇𝑖/‖e(i)‖
(12) x(i+1) = x(i) − 𝜂(𝑖)e(i)
(13) q(i+1) = Sx(i+1)
(14)𝐸 = ‖b − q(i+1)‖
(15) sign 1 = sign(𝑒𝑝1 − 𝑒𝑝2)
(16) sign 2 = sign(𝐸 − 𝑒𝑝1)
/∗ sign(𝑥) return 1, 0 and − 1 for 𝑥 > 0, 𝑥 = 0
and 𝑥 < 0 respectively
(17) if sign 2 < −1
(18) if (red == 3)
(19) 𝜇(𝑖+1) = 𝜇(𝑖) ∗ 1.1
(20) red = 0
(21) else
(22) red = red + 1
(23) end if
(24) osc = 0
(25) else
(26) red = 0
(27) end if
(28) if sign 1 ̸= sign 2
(29) if (osc == 3)
(30) 𝜇(𝑖+1) = 𝜇(𝑖) ∗ 0.9
(31) else
(32) osc = osc + 1
(33) end if
(34) else
(35) osc = 0
(36) end if
(37) 𝑒𝑝2 = 𝑒𝑝1
(38) 𝑒𝑝1 = 𝐸

End for
(39) update W

End for

(b) CGLS algorithm

Input: S ∈ C𝑚×𝑛, T ∈ C𝑚×𝑙, W ∈ C𝑛×𝑙 and maximum
iterations 𝐼max.

For 𝑗 = 1 to 𝑙
(1) x(0) ∈ C𝑛×1 = 𝑗th column of matrix W
(2) b ∈ C𝑚×1 = 𝑗th column of matrix T
(3) r(0) = b − Sx(0)
(4) p(0) = s0 = S𝐻r(0)
(5) 𝛾(0) = ‖s(0)‖22

Algorithm 1: Continued.

For 𝑖 = 1, 2, . . . , until 𝑖 ≤ 𝐼max
(6) q(i) = Sp(i)
(7) 𝛼(𝑖) = 𝛾(𝑖)/‖q(i)‖22
(8) x(i+1) = x(i) + 𝛼(𝑖)p(i)
(9) r(i+1) = ri − 𝛼(𝑖)q(i)
(10) s(i+1) = S𝑇r(i+1)
(11) 𝛾(𝑖+1) = ‖s(i+1)‖22
(12)𝛽𝑖 = 𝛾(𝑖+1)/𝛾(𝑖)
(13) p(i+1) = si+1 + 𝛽(𝑖)p(i)

End for
(14) update W

End for

Algorithm 1: (a) Heuristic rule-based gradient descent (HGD); (b)
conjugate gradient for least squares (CGLS).

2.6. Conjugate Gradient for Least Squares (CGLS). Conjugate
gradient (CG) algorithm belongs to the family of Krylov
subspace iterative methods, for solving a symmetric positive
definite (SPD) linear system and a linear least square problem
[39, 40]. CG methods are characterized by their need of
storing few vectors and better rate of convergence [40, 41].
Algorithm 1(b) shows that CGLS avoids explicit computation
of matrix-matrix product (S𝐻S) which causes bad perfor-
mances in the case of ill-conditioned system. This method
performs a sequential linear search along S𝐻S-conjugate
directions {p0, p1, . . . , pi−1} that spans the Krylov subspace:

𝜅𝑖 (S𝐻S, S𝐻b)
= span {S𝐻b, (S𝐻S) S𝐻b, . . . , (S𝐻S)𝑖−1 S𝐻b} .

(12)

The ith iterate of CGLS solves the least square problem:

xi = arg min
𝑥∈𝜅𝑖(S𝐻S,S𝐻b)

1
2 ‖Sx − b‖22 . (13)

The update in xi is given by xi = xi−1 + 𝛼𝑖−1pi−1, where 𝛼𝑖−1
solves one-dimensional minimization problem:

min
𝛼

S (xi−1 + 𝛼𝑖pi−1) − b22 . (14)

The search direction vector pi = si + 𝛽𝑖−1pi−1 is updated
using the residual error si = S𝐻(b − Sxi) and the previous
direction pi−1, where the parameter 𝛽𝑖−1 is chosen so that pi
is S𝐻S-conjugate to all the previous search directions; that is,
pi𝐻S𝐻Spj = 0, 1 ≤ j ≤ 𝑖 − 1.
2.7. Proposed Methods (RP-CGLS-GRAPPA and RP-HGD-
GRAPPA). RP-GRAPPAuses pseudoinversemethod to solve
reduced calibration equations in the calibration step as
discussed in Section 2.4. If (Sred) is ill-conditioned then the
solution obtained by pseudoinverse method (see (7)) may
differ greatly from the exact solution. It is due to the fact that
𝜅((Sred)𝐻(Sred)) = 𝜅(Sred)2 [42]. This implies that, in case
of an ill-conditioned system, any perturbations in (Sred) or
rounding-off errors in the computed matrix ((Sred)𝐻(Sred))
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Figure 1: RP-CGLS-GRAPPA and RP-HGD-GRAPPA.

can introduce inversion errors which may result in poor
estimation of the reconstruction coefficients (W) using (7).
Consequently the quality of reconstruction suffers. There-
fore we propose to use CGLS and HGD algorithms in
RP-CGLS-GRAPPA and RP-HGD-GRAPPA, respectively, to
iteratively solve the randomly projected calibration equa-
tions. The CGLS and HGD avoid the explicit computation
of ((Sred)𝐻(Sred)) matrix and works separately on (Sred)
and (Sred)𝐻 to generate a series of progressively improved
GRAPPA weight sets in an iterative fashion. This approach
has two important advantages: (i) it avoids the effect of large
((Sred)𝐻(Sred)), which leads to the inversion errors in (7) and
(ii) using (Sred) in the context of multiplying by a vector it
avoids muchmore expensive matrix-matrix multiplication in
(7).

In the proposed methods, GRAPPA calibration is per-
formed in two steps, shown in Figure 1.

Step 1. Dimension reduction via random projection method
is applied in (1), to obtain a reduced set of linear equations
(see (16)) (also referred to as randomly projected calibration
equations) as follows:

Sred𝑘×𝑛 = R𝑘×𝑚S𝑚×𝑛 = R𝜆𝑛×𝑚S𝑚×𝑛,
Tred𝑘×𝑙 = R𝑘×𝑚T𝑚×𝑙 = R𝜆𝑛×𝑚T𝑚×𝑙,

(15)

where 𝑘 ≪ 𝑚, 𝜆 = 𝑘/𝑛, and 𝑘 ≥ 𝑛.
Hence, (1) becomes

Tred𝑘×𝑙 = Sred𝑘×𝑛W𝑛×𝑙. (16)

The projection process in (15) uses very-sparse projection
matrix R with 𝑟𝑗𝑖 entries belonging to (5), that is, Li et al.’s
distribution where 𝑠 = √𝑚:

𝑟𝑗𝑖 = 4√𝑚
{{{{{{
{{{{{{{

+1 with prob. 1
2√𝑚

0 with prob. 1 − 1
√𝑚

−1 with prob. 1
2√𝑚.

(17)

Step 2. CGLS andHGDalgorithms are used in the RP-CGLS-
GRAPPA and RP-HGD-GRAPPA, respectively, to accurately
estimate the reconstruction coefficients (W) by solving the
randomly projected calibration equations shown in (16).

During the synthesis phase, missing data in the 𝑘-space
of each channel is calculated by linearly combining the
estimated reconstruction coefficients (W) and the acquired𝑘-space data in source matrix (S). Once the fully sampled 𝑘-
space has been estimated for all the receiver coils, a set of
uncombined images for each coil is constructed using Fourier
Transform.The composite image is then reconstructed using
the sum-of-square reconstruction of the individual coil
images.

The convergence rate of CGLS and HGD in the proposed
methods depends upon the size and the condition number(𝜅) of the coefficient matrix (S) [41, 43]. Algorithm 1(a and
b) shows that, during each iterate, complex-valued matrix-
vector multiplications of order 𝑂(𝑚𝑛) and the storage of
all previous searching directions and residual vectors may
increase the computational complexity of HGD and CGL
algorithms. It can be observed in Algorithm 1(a) that HGD
requires two complex-valued matrix-vector multiplications
(i.e., Sx and S𝐻r) and working storage of two 𝑛-vectors (e
and x) and two 𝑚-vectors (r and q), during each iterate.
For CGLS (see Algorithm 1(b)) two complex-valued matrix-
vector products (i.e., Sp and S𝐻r) and the working storage
of two 𝑛-vectors (x and p), and two 𝑚-vectors (r and q), are
needed during each iterate. To reduce the overall computa-
tion and storage complexity of HGD and CGLS, we apply
random projection in the proposed methods (RP-CGLS-
GRAPPA and RP-HGD-GRAPPA), to reduce the number of
calibration equations (see (1)) and obtain a reduced linear
system as shown in (16). With the reduced set of linear equa-
tions (𝑘 ≪ 𝑚), CGLS andHGD require𝑂(𝑘𝑛) operations per
iteration for complex-valued matrix-vector multiplications.
Moreover, the working storage of CGLS and HGD is also
reduced from two 𝑚-vectors to two 𝑘-vectors. The impact
of random projection on the efficiency and reconstruction
accuracy of the proposed methods is analyzed and discussed
in Results and Discussion.

2.8. Integrating PCA Channel Compression with RP-CGLS-
GRAPPA and RP-HGD-GRAPPA. Principal component
analysis (PCA) and random projection method (RP) are
two popular linear techniques for dimension reduction with
different properties and applications. PCA is suitable for
channel compression in pMRI, as it removes the redundant
information by decorrelating data from different channels,
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Figure 2: CC-RP-CGLS-GRAPPA and CC-RP-HGD-GRAPPA.

whereas RP involves the projection of high dimensional
data onto the randomly selected subspace of a lower
dimension, while preserving the pairwise distance in the
original space. RP is a computationally efficient method
as compared to PCA [29] and therefore a suitable choice
to reduce the complexity of calibration step in GRAPPA.
Therefore additional computational and memory savings
can be achieved by integrating PCA channel compression
(CC) [18] with RP-CGLS-GRAPPA and RP-HGD-GRAPPA
as illustrated in Figure 2. For this purpose, CC is performed
before GRAPPA reconstruction to reduce the number of
channels to be processed and RP is applied during the
calibration phase of the proposed methods to reduce the
computational complexity associated with CGLS and HGD.

2.9. Data Acquisitions. The proposed methods are evaluated
on three fully sampled in vivo datasets: (i) cardiac data
acquired using 3.0 T Siemens Skyra scanner at Case Western
Reserve University, Cleveland, OH, USA, with 30-channel
receiver coils using cine based SSFP sequence, FOV =
300mm2, TR/TE = 2/0.8ms, slice thickness = 8mm, flip
angle = 50∘, and matrix size = 512 × 252 with 11 frames.
(ii) Human head data acquired from 3.0 T Siemens Skyra
scanner with 12-channel head coil array, FOV = 230mm2,
TR/TE = 938.7/2ms, slice thickness = 5mm, flip angle =
58∘, and matrix size = 448 × 224. (iii) Human head data
acquired from 1.5 TGE scanner at St.Mary’s Hospital London
using 8-channel head coil with matrix size 256 × 256, FOV
= 200mm2, TR/TE = 500/10ms, slice thickness = 3mm,
and flip angle = 50∘. Healthy volunteers were examined

after gaining informed written consent with the approval of
Institutional Review Board for Human Studies at University
Hospitals of Cleveland, Case Western Reserve University
(CWRU), and St. Mary’s Research Ethics Committee (REC).

2.10. DataAnalysis. Retrospective undersampling for various
acceleration factors 𝐴𝐹 (3, 5, and 8) was performed on
the fully sampled datasets. For the comparison purpose,
reference images (gold standard)were obtained from the fully
sampled data of all the receiver coils, using sum-of-square
reconstruction. In this paper, projection process given in (15)
uses a very-sparse matrix R, randomly generated from the
distribution shown in (5) using 𝑠=√𝑚. The difference images
with reference and the 𝑔-factor maps for the combined
GRAPPA images, beside Root Mean Square Error (RMSE),
signal-to-noise ratio (SNR) and reconstruction time, are used
to evaluate and compare the performance of the proposed
methods with RP-GRAPPA, whereas the 𝑔-factor maps for
the combined GRAPPA images are calculated based on Eq.
[12] in [44]. The computational time and memory savings
were measured in terms of CPU time required for GRAPPA
reconstruction and the number of bytes required to store Sred
andTred matrices after dimension reduction. All themethods
in this work were implemented in MATLAB (Mathworks,
Natick, MA) and run on Intel(R) Core(TM) i5-3210M CPU
@2.50GHz, 2501MHz, 2 Cores, and 4 logical processors with
4GB Memory.

3. Results and Discussion

3.1. In Vivo Datasets Using 8- and 12-Channel Receiver
Coils. We performed several experiments on in vivo datasets
obtained using 8- and 12-channel receiver coils to validate the
performance of the proposed methods (RP-CGLS-GRAPPA
and RP-HGD-GRAPPA) in terms of reconstruction accuracy
and computation time. For this, fully sampled 𝑘-space data
was retrospectively undersampled in the phase encoding
direction by a factor (𝐴𝑓) of 3 with 48 ACS lines. For 8- and
12-channel dataset, kernel sizes of 4 × 11 (4 along 𝑑𝑦 and 11
along 𝑑𝑥) and 4 × 7 (4 along 𝑑𝑦 and 7 along 𝑑𝑥) were used,
respectively.

We evaluated the proposed methods and RP-GRAPPA
using 8-channel dataset to investigate the effect of reducing𝜆 in the range between 4 and 1, on the computational time,
reconstruction accuracy, and convergence behavior of CGLS
and HGD algorithms. For this purpose, the convergence of
CGLS and HGD algorithms is analyzed against the reduction
in the calibration equations by varying the reduction param-
eter 𝜆 (in the range between 4 and 1), where the small value
of 𝜆 implies large reductions in the calibration equations.
For a particular value of 𝜆 (in the range between 4 and 1)
the convergence behaviors of CGLS and HGD algorithms are
found experimentally by performing the image reconstruc-
tions using different number of iterations (𝐼max) as shown
in Figures 3(a) and 3(b) where the convergence of CGLS
and HGD algorithm is illustrated only for 𝜆 = 1, 2, 3, and
4. It can be observed in Figure 3(a) that for 𝜆 = 1 the
proposed method using CGLS algorithm reconstructs the
image with comparable image quality in terms of RMSE,
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Figure 3: Convergence of the iterative methods for different values of 𝜆 to reconstruct the images using 8-channel dataset with 48 ACS lines,
𝐴𝑓 = 3, and kernel size 4 × 11: (a) CGLS algorithm; (b) HGD algorithm.
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Figure 4: (Eight-channel dataset with 48 ACS lines, 𝐴𝑓 = 3, and kernel size 4 × 11) (a) RMSE and SNR of RP-GRAPPA and RP-CGLS-
GRAPPA, versus 𝜆; (b) reconstruction time of RP-GRAPPA and RP-CGLS-GRAPPA, and the convergence behavior of CGLS, in terms of
number of iterations, versus 𝜆.

using minimum of 30 iterations. In this case (𝜆 = 1) the
quality of image reconstruction remains the same even if
the number of iterations is further increased. Therefore, for
each value of 𝜆 between 4 and 1 the minimum number
of iterations required by the CGLS and HGD algorithms
to achieve a comparable reconstruction quality in terms of
RMSE is estimated experimentally and plotted in Figures 4(b)
and 5(b) along the reconstruction time of proposedmethods.
Due to the random nature of the RP-CGLS-GRAPPA, RP-
HGD-GRAPPA, and RP-GRAPPA, all the curves in Figures
4 and 5 are obtained by averaging the reconstruction results
(RMSE, SNR, and reconstruction time) from 50 experi-
ments. In Figures 4(a) and 5(a), RP-GRAPPA shows rapid

increase in RMSE and almost exponential decay in the
values of SNR of the reconstructed images, for 𝜆 < 2.2.
However, in the case of RP-CGLS-GRAPPA (Figure 4(a))
and RP-HGD-GRAPPA (Figure 5(a)), the RMSE and SNR
values of the reconstructed images remain almost steady
for 𝜆 ranging between 4 and 1. In Figures 4(b) and 5(b),
the reconstruction time of the proposed methods and the
number of iterations (CGLS and HGD) are plotted against𝜆. The results show that the reconstruction time of RP-
CGLS-GRAPPA and RP-HGD-GRAPPA decreases with the
number of iterations due to the reductions in the calibration
equation. Figure 4(b) exhibits that the reconstruction time
of RP-CGLS-GRAPPA is reduced from 3 to 0.76 sec as the
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Figure 5: (Eight-channel dataset with 48 ACS lines, 𝐴𝑓 = 3, and kernel size 4 × 11) (a) RMSE and SNR of RP-GRAPPA and RP-HGD-
GRAPPA, versus 𝜆; (b) reconstruction time of RP-GRAPPA and RP-HGD-GRAPPA and the convergence behavior of the HGD, in terms of
number of iterations, versus 𝜆.

number of iterations (𝐼max) for CGLS is decreased from 60
to 30. Moreover, in Figures 4(b) and 5(b), a linear trend
in the reconstruction time of RP-CGLS-GRAPPA and RP-
HGD-GRAPPA validates the large reductions in the com-
putational complexity of CGLS and HGD. It is due to the
fact that the random projection method (RP) significantly
reduces the computational overheads of iterative algorithms
(CGLS, HGD), by minimizing the computational complexity
of matrix-vector multiplication (𝑂(𝑘𝑛)) during each iterate.
However, RP-CGLS-GRAPPA performs better in terms of
reconstruction time as compared to RP-HGD-GRAPPA due
to a better convergence rate of CGLS. In Figures 6 and 7,
the reconstruction results using 8- and 12-channel datasets
are illustrated for visual and quantitative comparisons of
the proposed methods and RP-GRAPPA with and without
random projections. The results demonstrate that the when
the value of 𝜆 is set at 1.01, RP-GRAPPA tempered the
reconstruction accuracy by increasing the RMSE of conven-
tional GRAPPA to 3503% (Figure 6) and 1356% (Figure 7).
However, both RP-CGLS-GRAPPA and RP-HGD-GRAPPA
methods showed superior reconstruction quality (visually
and quantitatively), when compared with RP-GRAPPA for𝜆=1.1 and 1.01. The reconstruction results in Figures 4, 6,
and 7 clearly show that the RP-CGLS-GRAPPA achieved the
maximum reduction in the reconstruction time of GRAPPA
without compromising the quality of image reconstruction at
𝜆 = 1.01; that is, RP-CGLS-GRAPPA speeds up the GRAPPA
reconstruction time by factor of 2.52/0.76=3.3x at 𝜆 = 1.01
(see Figure 6). However, Figures 4 and 5 suggest that, in the
case of RP-GRAPPA, the optimal value of 𝜆 to balance the
tradeoff between the RMSE, SNR, and computational time
is 2.5. Therefore the maximum achievable speedup by RP-
GRAPPA with comparable image quality is reported (see

Figure 6) at 𝜆 = 2.5, that is, 2.52/0.99 = 2.5x. Similarly,
it can be observed in Figure 7 that for 𝜆 = 1.01 RP-CGLS-
GRAPPA demonstrates high quality image reconstruction
with speedup of 3.10/0.96 = 3.2x, whereas RP-GRAPPA
achieved the maximum speedup of 3.10/1.64 = 1.8x at𝜆 = 2.5 with comparable image quality. Furthermore, the
reconstruction results in Figures 4, 6, and 7 demonstrate
that RP-GRAPPA never approaches the same reconstruction
quality with the same maximum possible speedup of RP-
CGLS-GRAPPA (𝜆 = 1.01). For example, the results in
Figures 6 and 7 demonstrate that both RP-GRAPPA and RP-
CGLS-GRAPPA have almost the same computation time at𝜆 = 1.01, for example, 0.75 sec and 0.76 sec, respectively, in
Figure 6 and 0.95 sec and 0.96 sec, respectively, in Figure 7;
however, the RMSE value of RP-GRAPPA at 𝜆 = 1.01
increases to an unacceptable level as shown in Figures 6 and
7, resulting in poor reconstruction quality as compared to
RP-CGLS-GRAPPA. Therefore it is evident from the results
shown in Figures 4, 6, and 7 that the RP-CGLS-GRAPPA
is a suitable choice to improve the efficiency of GRAPPA
reconstruction with high quality image reconstruction.

In the proposed methods, the iterative techniques (i.e.,
CGLS and HGD) are preferred over direct method (i.e.,
pseudoinverse method) to avoid the inversion errors arising
(using (7)) in the case of an ill-conditioned system (i.e., if
the condition number of computed matrix ((Sred)𝐻(Sred)) in
(7) is large). For this, we investigated the effect of reducing
the calibration equation on the condition number of the
computed matrix ((Sred)𝐻(Sred)). Figure 8 shows that the
condition number of the computed matrix ((Sred)𝐻(Sred))
used in (7) shows quadratic growth as 𝜆 decreases from
2.5 to 1. Due to the quadratic rise in the condition number
of ((Sred)𝐻(Sred)), the inversion errors in (7) (pseudoinverse
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Figure 6: Axial brain images reconstructed from 8-channel dataset with acceleration factor (𝐴𝑓) = 3, kernel size 4 × 11, and 48 ACS lines,
using conventional GRAPPA, RP-GRAPPA, CGLS-GRAPPA, RP-CGLS-GRAPPA, HGD-GRAPPA, and RP-HGD-GRAPPA. The difference
images and 𝑔-maps are shown along the corresponding reconstructed images. In the first row, all the reconstructions are performed without
using random projection. Second, third, and fourth rows show the reconstruction results with 𝜆 = 2.5, 1.1, and 1.01, respectively.

method) become dominant which results in poor estimation
of the reconstruction coefficients. Consequently the quality
of RP-GRAPPA reconstruction suffers. This can be validated
by comparing the results of RP-GRAPPA in Figures 4 and
5 with the results plotted in Figure 8, which show that for𝜆 < 2.5 the reconstruction errors in RP-GRAPPA increased
exponentiallywith the quadratic rise in the condition number
of computedmatrix ((Sred)𝐻(Sred)). On the other hand, CGLS
andHGD algorithms do not require the explicit computation
of ((Sred)𝐻(Sred)) matrix thus avoiding the effect of large
condition number of ((Sred)𝐻(Sred)) on the reconstruction
quality of the proposed methods particularly for 𝜆 < 2.5.
Therefore, CC-RP-CGLS-GRAPPA demonstrates additional
speedup as compared to RP-GRAPPA, by enabling robust
reconstruction against the variation of 𝜆 between 2.5 and 1.

3.2. In Vivo Datasets Using 30-Channel Receiver Coils. PCA
based channel compression method is a well-known choice
to reduce the computational complexity of pMRI techniques
due to higher channel count. Additional computational and
memory savings can be achieved by integrating PCA based
channel compression (CC) with the proposed methods. For
this purpose one fully sampled frame (i.e., frame number
11) of cardiac dataset was retrospectively undersampled
with 𝐴𝑓 = 5 and 8 to perform the reconstructions and
compare the performance of the proposed methods (i.e.,

CC-RP-CGLS-GRAPPA and CC-RP-HGD-GRAPPA) and
RP-GRAPPA integrated with channel compression method
(CC-RP-GRAPPA), in terms of reconstruction time, accu-
racy, and memory savings. In Figure 9, the reconstruction
results with 𝐴𝑓 = 5 demonstrate that the CC-RP-CGLS-
GRAPPA achieved maximum speedup of 8.84/0.85 = 10.4x
in the reconstruction time at 𝜆 = 1.01, whereas, in the
case of CC-RP-GRAPPA, the maximum achievable speedup
without compromising the quality if image reconstruction
is seen at 𝜆 = 2.5, that is, 8.84/1.54 = 5.70x. It
can be observed from Figure 9 that CC-RP-GRAPPA never
approaches the same reconstruction quality with the same
maximum possible speedup of CC-RP-CGLS-GRAPPA. The
results in Figure 9 demonstrate that, at 𝜆 = 1.01, both
CC-RP-GRAPPA and CC-RP-CGLS-GRAPPA have almost
the same computation time, that is, 0.88 sec and 0.85 sec,
respectively, whereas, at 𝜆 = 1.01 the RMSE of CC-RP-
GRAPPA is increased to an unacceptable level, resulting
in poor reconstruction quality as compared to CC-RP-
CGLS-GRAPPA. Furthermore, all 11 frames of 32 channel
cardiac dataset are reconstructed for 𝐴𝑓 = 5 using CC-
RP-CGLS-GRAPPA (𝜆 = 1.01) and CC-RP-GRAPPA (𝜆 =2.5). To compare the performance of the proposed tech-
niques with CC-RP- GRAPPA, the reconstruction time and
RMSE of all frames are plotted in Figures 10(a) and 10(b).
The reconstruction results in Figure 10(a) shows that the
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Figure 7: Brain images reconstructed from 12-channel dataset with acceleration factor (𝐴𝑓) = 3, kernel size 4 × 7, and 48 ACS lines, using
conventional GRAPPA, RP-GRAPPA, CGLS-GRAPPA, RP-CGLS-GRAPPA,HGD-GRAPPA, andRP-HGD-GRAPPA.Thedifference images
and 𝑔-maps are shown along the corresponding reconstructed images.
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Figure 8: Condition number of (Sred) and ((Sred)𝐻(Sred)) versus 𝜆, for 8-channel dataset with ACS = 48, 𝐴𝐹 = 3, and kernel size 4 × 11.

CC-RP-CGLS-GRAPPA performs consistently better in
terms of reconstruction time than other techniques. More-
over, the total time to reconstruct all frames of the 32-channel
cardiac dataset is plotted in Figure 11. The results show that
the CC-RP-GRAPPA consumes 16.96 sec to reconstruct all

the frames with comparable quality, whereas CC-RP-CGLS-
GRAPPA requires 9.17 sec for the reconstruction of all the
frames of 32-channel cardiac dataset. The reconstruction
results of CC-RP-CGLS-GRAPPA (𝜆 = 1.01) are also shown
in Figure 12.
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Figure 9: Reconstruction results of 30-channel cardiac dataset usingGRAPPA,CC-GRAPPA,CC-RP-GRAPPA,CGLS-GRAPPA,CC-CGLS-
GRAPPA, CC-RP-CGLS-GRAPPA, HGD-GRAPPA, CC-HGD-GRAPPA, and CC-RP-HGD-GRAPPA with acceleration factor (𝐴𝐹) = 5,
kernel size 4×5, and 48 ACS lines.The 2nd row shows the reconstruction results of the methods using only coil compression. PCA based coil
compression was used to reduce 30 channels to 10 virtual channels. The difference images and 𝑔-maps are shown along the corresponding
reconstructed images. 3rd, 4th, and 5th row show the reconstruction results of the integrated methods using 𝜆 = 2.5, 1.1, and 1.01.

For a higher acceleration factor, that is, 𝐴𝑓 = 8, the
CC-RP-CGLS-GRAPPA (𝜆 = 1.01) (in Figure 13) demon-
strates 5.80/0.52 = 11.1x speedup with high quality image
reconstruction (Figure 14), whereas CC-RP-GRAPP (𝜆 =2.5) achieved a maximum of 5.80/0.92 = 6.3x speedup
with comparable image quality. Figure 15 shows that the CC-
RP-GRAPPA (𝜆 = 2.5) requires 10.13 sec to reconstruct
all the frames with comparable image quality (Figure 16),
whereas CC-RP-CGLS-GRAPPA (𝜆 = 1.01) reconstructs
all the frames of 32-channel cardiac dataset in only 5.72 sec.
Therefore, CC-RP-CGLS-GRAPPA is a suitable choice to
improve the efficiency of GRAPPA reconstruction with high
quality image reconstruction.

In addition to the traditional GRAPPAwhich is only used
for Cartesian trajectories, the CGLS and HGD algorithms
with random projections are also applicable to any parallel

MRI reconstruction technique that involves solving a large,
overdetermined linear equation. For example, it can be
applied to most of the GRAPPA extensions for Cartesian
and non-Cartesian trajectories [45–48]. However, if the
calibration phase in the pMRI techniques does not dominate
the total reconstruction time as in the case of SPIRiT [49],
then the computational savings are limited.

3.3. Memory Savings due to Reduction in Calibration Equa-
tions. Due to the amplification of reconstruction errors for𝜆 < 2.2, RP-GRAPPA puts a limit on the reduction in the
dimension of source (Sred) and target (Tred)matrices (in (7)).
However, the proposed methods (RP-CGLS-GRAPPA and
RP-HGD-GRAPPA) allow more reductions in the dimen-
sions of (Sred) and (Tred), without significant loss in the
reconstruction accuracy, when 𝜆 is used between 1 and 2.2.
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Figure 10: The reconstruction time and quality of reconstructed images (in terms of RMSE) are plotted for all the frames in 30-channel
cardiac dataset to compare the performances of the integrated methods using acceleration factor (𝐴𝐹) = 5, kernel size 4×5, and 48 ACS lines.
(a) Reconstruction time of each frame using GRAPPA, CC-RP-HGD-GRAPP, CC-RP-GRAPPA, and CC-RP-CGLS-GRAPPA: (b) RMSE of
each reconstructed frame using GRAPPA, CC-RP-HGD-GRAPP, CC-RP-GRAPPA, and CC-RP-CGLS-GRAPPA.
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Figure 11: Total time to reconstruct all the frames of 30-channel cardiac dataset by GRAPPA, CC-RP-HGD-GRAPP, CC-RP-GRAPPA, and
CC-RP-CGLS-GRAPPA using acceleration factor (𝐴𝐹) = 5, kernel size 4 × 5, and 48 ACS lines.
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Figure 12: Reconstructed images of all 11 frames in 30-channel cardiac dataset, by CC-RP-CGLS-GRAPPA (at 𝜆 = 1.01) using acceleration
factor (𝐴𝐹) = 5, kernel size 4 × 5, and 48 ACS lines. PCA based coil compression was used to reduce 30 channels to 10 virtual channels.
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Figure 13: Reconstruction results of 30-channel cardiac dataset using GRAPPA, CC-GRAPPA, CC-RP-GRAPPA, CGLS-GRAPPA, CC-
CGLS-GRAPPA, CC-RP-CGLS-GRAPPA, HGD-GRAPPA, CC-HGD-GRAPPA, and CC-RP-HGD-GRAPPA with acceleration factor (𝐴𝐹)
= 8, kernel size 4×5, and 48 ACS lines.The 2nd row shows the reconstruction results of the methods using only coil compression. PCA based
coil compression was used to reduce 30 channels to 10 virtual channels.The difference images and 𝑔-maps are shown along the corresponding
reconstructed images. 3rd, 4th, and 5th row show the reconstruction results of the integrated methods using 𝜆 = 2.5, 1.1, and 1.01.

Therefore, the memory cost is estimated with respect to the
dimension of matrices (Sred) and (Tred) to demonstrate the
benefits of integrating channel compression with random
projection for GRAPPA reconstruction. It is demonstrated
in Figure 17 that when only channel compression was used
in conventional GRAPPA (CC-GRAPPA), the order of the
source and target matrices is reduced from 8184 × 600
(74.9MB) to 8184 × 200 (25MB) and 8184 × 120 (15MB)
to 8184 × 40 (5MB), respectively. Hence, the total memory
requirement to store both the matrices is reduced from
89.9MB to 30MB. In the case of RP-GRAPPA the optimal
value to balance the tradeoff between the reconstruction error
and computation time is found at 𝜆 = 2.5; therefore the
total storage cost in the case of CC-RP-GRAPPA is estimated

at 𝜆 = 2.5, that is, 1.8MB. In the case of CC-RP-CGLS-
GRAPPA andCC-RP-HGD-GRAPPA, the totalmemory cost
is reduced from 89.9MB to 0.7MB only.

The low memory requirement during calibration and
inherent parallelism in CGLS are useful characteristics that
can be considered for future work to further improve the
efficiency and scalability of the proposed methods on devices
like FPGAs and GPUs.

4. Conclusions

In this work, we proposed two methods (i.e., RP-CGLS-
GRAPPA and RP-HGD-GRAPPA) using iterative solvers
(i.e., CGLS and HGD algorithms) for the robust reconstruc-
tion against the variation of 𝜆 (parameter used for dimension
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Figure 14: The reconstruction time and quality of reconstructed images (in terms of RMSE) are plotted for all the frames in 30-channel
cardiac dataset to compare the performances of the integrated methods using acceleration factor (𝐴𝐹) = 8, kernel size 4×5, and 48 ACS lines.
(a) Reconstruction time of each frame using GRAPPA, CC-RP-HGD-GRAPP, CC-RP-GRAPPA, and CC-RP-CGLS-GRAPPA: (b) RMSE of
each reconstructed frame using GRAPPA, CC-RP-HGD-GRAPP, CC-RP-GRAPPA, and CC-RP-CGLS-GRAPPA.
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Figure 15: Total time to reconstruct all the frames of 30-channel cardiac dataset by GRAPPA, CC-RP-HGD-GRAPP, CC-RP-GRAPPA, and
CC-RP-CGLS-GRAPPA using acceleration factor (𝐴𝐹) = 8, kernel size 4 × 5, and 48 ACS.
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Figure 16: Reconstructed images of the all the 11 frames in 30-channel cardiac dataset, by CC-RP-CGLS-GRAPPA (at 𝜆 = 1.01) using
acceleration factor (𝐴𝐹) = 8, kernel size 4×5, and 48 ACS. PCA based coil compression was used to reduce 30 channels to 10 virtual channels.
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Figure 17:Memory savingswith respect to the size of source and tar-
get matrices in the conventional GRAPPA, CC-GRAPPA, CC-RP-
GRAPPA, CC-RP-CGLS-GRAPPA, and CC-RP-HGD-GRAPPA
using 30-channel cardiac dataset with 48 ACS lines, 𝐴𝑓 = 5, and
kernel size 4 × 5.

reduction in random projection) between 2.5 and 1 and to
achieve an additional speedup in the GRAPPA reconstruc-
tion time as compared to RP-GRAPPA. Experimental results
demonstrated that the RP-CGLS-GRAPPA is a suitable
choice to improve the efficiency of GRAPPA reconstruction
with high quality image reconstruction. Furthermore, it was
shown that the RP-CGLS-GRAPPA complemented the chan-
nel compression for providing additional computational and
memory savings without compromising the reconstruction
accuracy.
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