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This paper investigates the generalized pattern of Poisson summation formulae from the special affine Fourier transform (SAFT)
and offset Hilbert transform (OHT) points of view. Several novel summation formulae are derived accordingly. Firstly, the
relationship between SAFT (or OHT) and Fourier transform (FT) is obtained. Then, the generalized Poisson sum formulae are
obtained based on above relationships. The novel results can be regarded as the generalizations of the classical results in several
transform domains such as FT, fractional Fourier transform, and the linear canonical transform.

1. Introduction

The classical Poisson summation formula, which demon-
strates that the sum of infinite samples in the time domain
of a signal 𝑓(𝑡) is equivalent to the sum of infinite samples of𝐹(⋅) in the Fourier domain, is of importance in theories and
applications of signal processing [1]. The traditional Poisson
sum formula can be represented as follows [2]:

+∞∑
𝑘=−∞

𝑓 (𝑡 + 𝑘𝜏) = 1𝜏
+∞∑
𝑛=−∞

𝐹(𝑛𝜏) 𝑒𝑗(𝑛𝑡/𝜏) (1)

or
+∞∑
𝑘=−∞

𝑓 (𝑘𝜏) = 1𝜏
+∞∑
𝑛=−∞

𝐹(𝑛𝜏) , 𝑡 = 0, (2)

where𝐹(⋅) denotes the Fourier transform (FT) of a signal𝑓(𝑡)
and 𝜏 stands for the sampling interval. Not only does Poisson
summation formula play a key role in various branches of the
mathematics, but also it finds numerous applications in lots of
fields, for example, mechanics, signal processing community,
and many other scientific fields. The Poisson summation
formula is related to the Fourier transform, and, with the
development ofmodern signal processing technologies, there
are many other kinds of transforms that have been proposed,
it is therefore worthwhile and interesting to investigate the

Poisson sum formula in deep associated with these kinds of
new integral transforms.

The special affine Fourier transform (SAFT) [3, 4], also
known as the offset linear canonical transform [5, 6] or the
inhomogeneous canonical transform [5], is a six-parameter(𝑎, 𝑏, 𝑐, 𝑑, 𝑢0, 𝑤0) class of linear integral transform. Many
well-known transforms in signal processing and optic sys-
tems are its special cases such as Fourier transform (FT),
fractional Fourier transform (FRFT), the linear canonical
transform (LCT), time shifting and scaling, frequency mod-
ulation, pulse chirping, and others [7, 8]. SAFT can be inter-
preted as a time shifting and frequency modulated version of
LCT [9–11], that is much more flexible because of its extra
parameters (𝑢0, 𝑤0). Recently, it has been widely noticed in
many practical applications alongwith the rapid development
of LCT [12–14].Thus, developing relevant theorems for SAFT
is of importance and necessary in optical systems and many
signal processing applications as well.

In addition, the generalized Hilbert transform closely
related to SAFT, called offset Hilbert transform (OHT), is
another powerful tool in the fields of optics and signal pro-
cessing community [15]. It has been presented recently and
widely used for image processing, especially for edge detec-
tion and enhancement, because it can emphasize the deriva-
tives of the image [16, 17]. In recent decades, many essential
theories and useful applications of SAFT and OHT have
been derived from in-depth researching on it [8, 15, 18, 19].
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To the best of our knowledge, Poisson sum formula has
been generalized with many transforms such as FRFT, LCT,
fractional Laplace transform and fractionalHilbert transform
[1, 2, 20, 21]. However, none of the research papers throw
light on the study of the traditional Poisson sum formula
associated with the SAFT andOHT yet. Based on the existing
results, the motivation of this paper is to generalize the
above-mentioned Poisson sum formula into SAFT and OHT
domains.

The rest of this paper is organized as follows. Section 2
gives some fundamental knowledge of SAFT and OHT. In
Section 3, we give the relationships between SAFT/OHT
and FT in detail. Some novel Poisson summation formulae
associated with SAFT are presented in Section 4. Section 5
concludes the paper.

2. Preliminaries

2.1. The Special Affine Fourier Transform. The special affine
Fourier transform (SAFT) with real parameters A = (𝑎, 𝑏, 𝑐,𝑑, 𝑢0, 𝑤0) of a signal 𝑓(𝑡) is defined by the following [5, 22]:

𝐹A (𝑢) = 𝑂A
𝐿 [𝑓 (𝑡)] (𝑢)

= {{{{{
∫+∞
−∞

𝑓 (𝑡) ℎA (𝑡, 𝑢) 𝑑𝑡 𝑏 ̸= 0
√𝑑𝑒𝑗(𝑐𝑑/2)(𝑢−𝑢0)2+𝑗𝑤0𝑢𝑓 [𝑑 (𝑢 − 𝑢0)] 𝑏 = 0,

(3)

where

ℎA (𝑡, 𝑢) = 𝐾A𝑒(𝑗/2𝑏)[𝑎𝑡2+2𝑡(𝑢0−𝑢)−2𝑢(𝑑𝑢0−𝑏𝑤0)+𝑑𝑢2],
𝐾A = √ 1𝑗2𝜋𝑏𝑒𝑗(𝑑/2𝑏)𝑢

2

0

(4)

and 𝑎𝑑 − 𝑏𝑐 = 1. Note that, for 𝑏 = 0, the SAFT of a signal
is essentially a chirp multiplication and it is of no particular
interest for our objective in this work. Hence, without loss
of generality, we set 𝑏 ̸= 0 in the following section unless
stated otherwise. The inverse of an SAFT with parameter
A = (𝑎, 𝑏, 𝑐, 𝑑, 𝑢0, 𝑤0) is given by an SAFT with parameter
A−1 = (𝑑, −𝑏, −𝑐, 𝑎, 𝑏𝑤0 − 𝑑𝑢0, 𝑐𝑢0 − 𝑎𝑤0), which is

𝑓 (𝑡) = 𝑂A−1

𝐿 [𝐹A (𝑢)] (𝑡) = 𝐶∫+∞
−∞

𝐹A (𝑢) ℎA−1 (𝑢, 𝑡) 𝑑𝑢, (5)

where 𝐶 = 𝑒𝑗(1/2)(𝑐𝑑𝑢20−2𝑎𝑑𝑢0𝑤0+𝑎𝑏𝑤20). This can be verified by
the definition of SAFT. Most of important transforms can be
its special cases when parameter A is replaced with specific
parameters. For example, when A = (0, 1, −1, 0, 0, 0), SAFT
coincides with FT; whenA = (cos𝛼, sin𝛼, − cos𝛼, sin𝛼, 0, 0),
SAFT is FRFT; when A = (𝑎, 𝑏, 𝑐, 𝑑, 0, 0), SAFT equals LCT.
Furthermore, many important theories on SAFT have been
investigated [8, 15, 23, 24].
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Figure 1: Offset Hilbert filter.

2.2. Offset Hilbert Transform. The offset Hilbert transform
(OHT) of a signal 𝑓(𝑡) is defined as follows [15]:

𝑓A
𝑂 (𝑡) = 𝐻A

𝑂 [𝑓] (𝑡)
= p.v. 𝑒−𝑗((𝑎𝑡2+2𝑢0𝑡)/2𝑏)𝜋 ∫+∞

−∞

𝑓 (𝑥)𝑡 − 𝑥 𝑒𝑗((𝑎𝑥
2+2𝑢0𝑥)/2𝑏)𝑑𝑥. (6)

It should be noted that the above definition uses the Cauchy
principal value of the integral (denoted here by p.v.). To
obtain the relationship between the stand and HT and OHT,
we can rewrite (6) as

𝑓A
𝑂 (𝑡) = 𝐻A

𝑂 [𝑓] (𝑡)
= 𝑒−𝑗((𝑎𝑡2+2𝑢0𝑡)/2𝑏) (𝑓 (𝑡) 𝑒𝑗((𝑎𝑡2+2𝑢0𝑡)/2𝑏)) ∗ ℎ (𝑡) . (7)

Notice that computing the OHT of a signal 𝑓 is equivalent
to multiplying it by a chirp, 𝑒𝑗((𝑎𝑡2+2𝑢0𝑡)/2𝑏), then passing the
product through a standardHilbert filter and finallymultiply-
ing the output by the chirp, 𝑒−𝑗((𝑎𝑡2+2𝑢0𝑡)/2𝑏). This relationship
between OHT and the classical HT can be shown in Figure 1.

3. The Relationships between SAFT/OHT and
Fourier Transform

In order to derive novel Poisson summation formulae based
on SAFT and OHT, some relationships between SAFT/OHT
and FT are obtained in this section firstly.

Lemma 1. Suppose the SAFT of a signal 𝑓(𝑡) with parameters
A = (𝑎, 𝑏, 𝑐, 𝑑, 𝑢0, 𝑤0) is 𝐹A(⋅), and set 𝑔(𝑡) = 𝑓(𝑡)𝑒𝑗(𝑎/2𝑏)𝑡2 ,
and then the following relations hold:

𝐹A (𝑢)
= 1
√𝑗2𝜋𝑏𝑒𝑗(1/2𝑏)[𝑑(𝑢

2

0
+𝑢2)−2𝑢(𝑑𝑢0−𝑏𝑤0)]𝐺(𝑢 − 𝑢0𝑏 ) ,

𝐺 (V) = √𝑗2𝜋𝑏𝑒−𝑗(1/2)[𝑑𝑏V2+2𝑏V𝑤0+2𝑢0𝑤0]𝐹A (𝑏V + 𝑢0) ,
(8)

where 𝐺(⋅) is the FT of signal 𝑔(𝑡).
Proof. It is easy to verify Lemma 1 by the definitions of SAFT
and FT.
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Lemma 2. Suppose the SAFT of a signal 𝑓(𝑡) with parameters
A = (𝑎, 𝑏, 𝑐, 𝑑, 𝑢0, 𝑤0) is 𝐹A(⋅), and set 𝑞(𝑥) = (𝑓(𝑡 −
𝑥)/𝑥)𝑒𝑗(𝑎/2𝑏)𝑥2 , and then the following relations hold:

𝑓A
𝑂 (𝑡) = 1𝜋𝑄(𝑎𝑡 + 𝑢0𝑏 ) ,
𝑄 (V) = 𝜋𝑓A

𝑂 (𝑏V − 𝑢0𝑎 ) ,
(9)

where 𝑄(⋅) is the FT of signal 𝑞(𝑥).
Proof. According to the definition of OHT,

𝑓A
𝑂 (𝑡) = 𝑒−𝑗((𝑎𝑡

2+2𝑢0𝑡)/2𝑏)

𝜋 ∫+∞
−∞

𝑓 (𝑥) 𝑒𝑗((𝑎𝑥2+2𝑢0𝑥)/2𝑏)𝑡 − 𝑥 𝑑𝑥
= 𝑒−𝑗((𝑎𝑡2+2𝑢0𝑡)/2𝑏)𝜋
⋅ ∫+∞
−∞

𝑓 (𝑡 − 𝑥) 𝑒𝑗((𝑎(𝑡−𝑥)2+2𝑢0(𝑡−𝑥))/2𝑏)𝑥 𝑑𝑥 = 1𝜋
⋅ ∫+∞
−∞

𝑓 (𝑡 − 𝑥)𝑥 𝑒𝑗(𝑎/2𝑏)𝑥2𝑒−𝑗((𝑎𝑡+𝑢0)/𝑏)𝑥𝑑𝑥 = 1𝜋
⋅ ∫+∞
−∞

𝑞 (𝑥) 𝑒−𝑗((𝑎𝑡+𝑢0)/𝑏)𝑥𝑑𝑥 = 1𝜋𝑄(𝑎𝑡 + 𝑢0𝑏 ) .

(10)

By replacing V = (𝑎𝑡 + 𝑢0)/𝑏, (10) can be rewritten as

𝑓A
𝑂 (𝑏V − 𝑢0𝑎 ) = 1𝜋𝑄 (V) . (11)

This completes the proof of Lemma 2.

4. Main Results

Based on the relationships in Lemmas 1 and 2, the generalized
Poisson summation formulae associated with SAFT and
OHT are derived in following subsections, respectively.

4.1. The Poisson Sum Formula Based on SAFT

Theorem 3. The Poisson summation formulae of a signal 𝑓(𝑡)
in the SAFT domain with parameter A are

+∞∑
𝑘=−∞

𝑓 (𝑡 + 𝑘𝜏) 𝑒𝑗(𝑎/2𝑏)(2𝑘𝑡𝜏+𝑘2𝜏2) = √𝑗2𝜋𝑏𝜏
⋅ 𝑒−𝑗(𝑢0𝑤0+(𝑎/2𝑏)𝑡2) +∞∑

𝑛=−∞

𝑒−𝑗(𝑑𝑏𝑛2/2𝜏2+𝑏𝑛𝑤0/𝜏)𝐹A (𝑏𝑛𝜏
+ 𝑢0) 𝑒𝑗(𝑛𝑡/𝜏),

(12)

+∞∑
𝑘=−∞

𝑓 (𝑘𝜏) 𝑒𝑗(𝑎/2𝑏)𝑘2𝜏2 = √𝑗2𝜋𝑏𝜏
⋅ 𝑒−𝑗𝑢0𝑤0 +∞∑

𝑛=−∞

𝑒−𝑗(𝑑𝑏𝑛2/2𝜏2+𝑏𝑛𝑤0/𝜏)𝐹A (𝑏𝑛𝜏 + 𝑢0) ,
𝑡 = 0.

(13)

Proof. If we set 𝑔(𝑡) = 𝑓(𝑡)𝑒𝑗(𝑎/2𝑏)𝑡2 , from the traditional
Poisson sum formula for 𝑔(𝑡) in the Fourier domain, that is,
(1), we obtain

+∞∑
𝑘=−∞

𝑔 (𝑡 + 𝑘𝜏) = 1𝜏
+∞∑
𝑛=−∞

𝐺(𝑛𝜏) 𝑒𝑗(𝑛𝑡/𝜏). (14)

By directly using Lemma 1, we derive that

+∞∑
𝑘=−∞

𝑓 (𝑡 + 𝑘𝜏) 𝑒𝑗(𝑎/2𝑏)(𝑡+𝑘𝜏)2 = 1𝜏
⋅ +∞∑
𝑛=−∞

√𝑗2𝜋𝑏𝑒−𝑗(1/2𝑏)[𝑑𝑏2(𝑛/𝜏)2+2𝑏2(𝑛/𝜏)𝑤0+2𝑏𝑢0𝑤0]𝐹A (𝑏
⋅ 𝑛𝜏 + 𝑢0) 𝑒𝑗(𝑛𝑡/𝜏).

(15)

Theorem 3 is proved by simple calculation on (15).

Equations (13) and (15) can be regarded as the general-
ization of classical Poisson sum formula based on SAFT. It
should be noticed that when the parameters of the SAFT are
chosen to be the special cases of the SAFT, the derived results
reduce to the classical results of Fourier transform domain,
fractional Fourier transform domain, and linear canonical
transform domains. It clearly demonstrates that the infinite
sum of periodic phase-shifted replica of a signal 𝑓(𝑡) in the
time domain is equivalent to the infinite sum of periodic
phase-shifted replica 𝐹A(⋅) in the SAFT domain.

In addition, it is of importance to investigate the Poisson
sum formula of signals with compact support in SAFT
domain. A signal 𝑓(𝑡) is said to have compact support in
SAFT domain if its SAFT 𝐹A(𝑢) > ΩA, whereΩA > 0 is some
real number. Without loss of generality, let 𝑎 > 0, 𝑏 > 0, 𝑢0 >0 in the following analysis.

Corollary 4. Suppose a signal 𝑓(𝑡) is band-limited in SAFT
domain with a compact support ΩA; then the Poisson sum
formula derived inTheorem 3 can be rewritten as the following
forms according to the replica period 𝜏:

(a) When 𝑏/𝜏 > ΩA + 𝑢0 and ΩA > 𝑢0,
+∞∑
𝑘=−∞

𝑓 (𝑡 + 𝑘𝜏) 𝑒𝑗(𝑎/2𝑏)(2𝑘𝑡𝜏+𝑘2𝜏2)

= √𝑗2𝜋𝑏𝜏 𝑒−𝑗(𝑎/2𝑏)𝑡2𝑒−𝑗𝑢0𝑤0𝐹A (𝑢0) .
(16)
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(b) When (ΩA + 𝑢0)/2 < 𝑏/𝜏 < ΩA − 𝑢0 and ΩA > 3𝑢0,
+∞∑
𝑘=−∞

𝑓 (𝑡 + 𝑘𝜏) 𝑒𝑗(𝑎/2𝑏)(2𝑘𝑡𝜏+𝑘2𝜏2) = √𝑗2𝜋𝑏𝜏
⋅ 𝑒−𝑗(𝑎/2𝑏)𝑡2𝑒−𝑗𝑢0𝑤0 × {𝐹A (𝑢0)
+ 𝑒−𝑗(1/2)[𝑑𝑏/𝜏2+2𝑏𝑤0/𝜏]𝐹A (𝑏𝜏 + 𝑢0) 𝑒𝑗(𝑡/𝜏)

+ 𝑒−𝑗(1/2)[𝑑𝑏/𝜏2−2𝑏𝑤0/𝜏]𝐹A (−𝑏𝜏 + 𝑢0) 𝑒−𝑗(𝑡/𝜏)} .

(17)

(c) When (ΩA + 𝑢0)/(𝑚 + 1) < 𝑏/𝜏 < (ΩA − 𝑢0)/𝑚 andΩA > (2𝑚 + 1)𝑢0,
+∞∑
𝑘=−∞

𝑓 (𝑡 + 𝑘𝜏) 𝑒𝑗(𝑎/2𝑏)(2𝑘𝑡𝜏+𝑘2𝜏2) = √𝑗2𝜋𝑏𝜏
⋅ 𝑒−𝑗(𝑎/2𝑏)𝑡2𝑒−𝑗𝑢0𝑤0 𝑚∑

𝑛=−𝑚

𝑒−𝑗(𝑑𝑏𝑛2/2𝜏2+𝑏𝑛𝑤0/𝜏)𝐹A (𝑏𝑛𝜏
+ 𝑢0) 𝑒𝑗(𝑛𝑡/𝜏).

(18)

Proof. (a) Since𝑓(𝑡) is a band-limited signal in SAFT domain
with a compact supportΩA, it is easy to derive the right hand𝐹A(𝑏𝑛/𝜏+𝑢0) of (12) that is equal to zeros when 𝑛 ̸= 0.That is,
from 𝑏/𝜏 > ΩA + 𝑢0, we derive that 𝑏/𝜏 + 𝑢0 > 𝑏/𝜏 − 𝑢0 > ΩA
and −2𝑏/𝜏 + 𝑢0 < −𝑏/𝜏 + 𝑢0 < −ΩA. Thus, it is easy to derive
that

√𝑗2𝜋𝑏𝜏 𝑒−𝑗(𝑢0𝑤0+(𝑎/2𝑏)𝑡2) +∞∑
𝑛=−∞

𝑒−𝑗(𝑑𝑏𝑛2/2𝜏2+𝑏𝑛𝑤0/𝜏)𝐹A (𝑏𝑛𝜏
+ 𝑢0) 𝑒𝑗(𝑛𝑡/𝜏) = √𝑗2𝜋𝑏𝜏 𝑒−𝑗(𝑎/2𝑏)𝑡2𝑒−𝑗𝑢0𝑤0𝐹A (𝑢0) .

(19)

Substituting (19) into (12) yields the final results.
(b) It is easy to prove that only when 𝑛 = −1, 0, +1,𝐹A(𝑏𝑛/𝜏 + 𝑢0) is nonzero. The right hand of (12) is

√𝑗2𝜋𝑏𝜏
⋅ 𝑒−𝑗(𝑢0𝑤0+(𝑎/2𝑏)𝑡2) +∞∑

𝑛=−∞

𝑒−𝑗(𝑑𝑏𝑛2/2𝜏2+𝑏𝑛𝑤0/𝜏)𝐹A (𝑏𝑛𝜏
+ 𝑢0) 𝑒𝑗(𝑛𝑡/𝜏) = √𝑗2𝜋𝑏𝜏 𝑒−𝑗(𝑎/2𝑏)𝑡2𝑒−𝑗𝑢0𝑤0 {𝐹A (𝑢0)
+ 𝑒−𝑗(1/2)[𝑑𝑏/𝜏2+2𝑏𝑤0/𝜏]𝐹A (𝑏𝜏 + 𝑢0) 𝑒𝑗(𝑡/𝜏)

+ 𝑒−𝑗(1/2)[𝑑𝑏/𝜏2−2𝑏𝑤0/𝜏]𝐹A (−𝑏𝜏 + 𝑢0) 𝑒−𝑗(𝑡/𝜏)} .

(20)

Substituting (20) into (12) yields the final results.
(c)The proof of this situation is similar to the proof of (a)

and (b), and we omit it here.

4.2. The Poisson Sum Formula Based on OHT

Theorem 5. The Poisson sum formula of a signal 𝑓(𝑡) in the
OHT domain with parameter A is as follows:

+∞∑
𝑘=−∞

𝑓 (𝑡 − 𝑦 − 𝑘𝜏)
𝑦 + 𝑘𝜏 𝑒𝑗(𝑎/2𝑏)(2𝑘𝑦𝜏+𝑘2𝜏2)

= 𝜋𝜏 𝑒−𝑗(𝑎/2𝑏)𝑦
2
+∞∑
𝑛=−∞

𝑓A
𝑂 (𝑏𝑛 − 𝑢0𝜏𝑎𝜏 ) 𝑒𝑗(𝑛𝑦/𝜏).

(21)

Proof. If we set 𝑞(𝑥) = (𝑓(𝑡−𝑥)/𝑥)𝑒𝑗(𝑎/2𝑏)𝑥2 , it is easy to verify
Theorem 5 via (1) and Lemma 2:

+∞∑
𝑘=−∞

𝑞 (𝑦 + 𝑘𝜏) = 1𝜏
+∞∑
𝑛=−∞

𝑄(𝑛𝜏) 𝑒𝑗(𝑛𝑦/𝜏). (22)

That is

+∞∑
𝑘=−∞

𝑓 (𝑡 − 𝑦 − 𝑘𝜏)
𝑦 + 𝑘𝜏 𝑒𝑗(𝑎/2𝑏)(𝑦+𝑘𝜏)2

= 𝜋𝜏
+∞∑
𝑛=−∞

𝑓A
𝑂 (𝑏𝑛 − 𝑢0𝜏𝑎𝜏 ) 𝑒𝑗(𝑛𝑦/𝜏)

(23)

By simple calculation, Theorem 5 is completed.

Equation (21) can be seen as the Poisson sum formula
associated with offset Hilbert transform. Furthermore, it is
worthwhile and interesting to study the signals with compact
support in offset Hilbert transform domain. Let 𝑓A

𝑂 (𝑦) be
the OHT of a signal 𝑓(𝑡). Then 𝑓(𝑡) is said to have compact
support in OHT domain, if 𝑓A

𝑂 (𝑦) = 0 for |𝑦| > ΩA, whereΩA > 0 is some real number.

Corollary 6. Suppose signal 𝑓(𝑡) is band-limited in OHT
domain with a compact support ΩA; then the Poisson sum
formula derived inTheorem 5 can be rewritten as the following
forms according to the replica period 𝜏:

(a) When 𝑏/𝑎𝜏 > ΩA + 𝑢0/𝑎 and ΩA > 𝑢0/𝑎,
+∞∑
𝑘=−∞

𝑓 (𝑡 − 𝑦 − 𝑘𝜏)
𝑦 + 𝑘𝜏 𝑒𝑗(𝑎/2𝑏)(𝑦+𝑘𝜏)2 = 𝜋𝜏𝑓A

𝑂 (−𝑢0𝑎 ) . (24)

(b) When (ΩA + 𝑢0/𝑎)/2 < 𝑏/𝜏 < ΩA − 𝑢0/𝑎 and ΩA >3(𝑢0/𝑎),
+∞∑
𝑘=−∞

𝑓 (𝑡 − 𝑦 − 𝑘𝜏)
𝑦 + 𝑘𝜏 𝑒𝑗(𝑎/2𝑏)(𝑦+𝑘𝜏)2

= 𝜋𝜏 [𝑓A
𝑂 (−𝑏 − 𝑢0𝜏𝑎𝜏 ) 𝑒−𝑗(𝑦/𝜏) + 𝑓A

𝑂 (−𝑢0𝑎 )
+ 𝑓A
𝑂 (𝑏 − 𝑢0𝜏𝑎𝜏 ) 𝑒𝑗(𝑦/𝜏)] .

(25)
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(c) When (ΩA + 𝑢0/𝑎)/(𝑚 + 1) < 𝑏/𝜏 < (ΩA − 𝑢0/𝑎)/𝑚
and ΩA > (2𝑚 + 1)(𝑢0/𝑎),

+∞∑
𝑘=−∞

𝑓 (𝑡 − 𝑦 − 𝑘𝜏)
𝑦 + 𝑘𝜏 𝑒𝑗(𝑎/2𝑏)(𝑦+𝑘𝜏)2

= 𝜋𝜏
𝑚∑
𝑛=−𝑚

𝑓A
𝑂 (𝑏𝑛 − 𝑢0𝜏𝑎𝜏 ) 𝑒𝑗(𝑛𝑦/𝜏).

(26)

Proof. It is easy to verify this corollary using Theorem 5 and
the similar method in Corollary 4.

5. Conclusion

In this paper, the traditional Poisson summation formula has
been generalized into SAFT and OHT domain. Theorems 3
and 5 are the generalizations of Poisson summation formulae
based on SAFT and OHT, respectively. In addition, signals
with compact support are mostly used in signal processing
and considered in this paper as well. Some novel results asso-
ciated with Poisson summation formula have been derived in
the form of Corollaries 4 and 6.
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