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Digital forensics is a branch of Computer Science aiming at investigating and analyzing electronic devices in the search for crime
evidence. There are several ways to perform this search. Known File Filter (KFF) is one of them, where a list of interest objects
is used to reduce/separate data for analysis. Holding a database of hashes of such objects, the examiner performs lookups for
matches against the target device. However, due to limitations over hash functions (inability to detect similar objects), newmethods
have been designed, called approximate matching. This sort of function has interesting characteristics for KFF investigations but
suffers mainly from high costs when dealing with huge data sets, as the search is usually done by brute force. To mitigate this
problem, strategies have been developed to better perform lookups. In this paper, we present the state of the art of similarity digest
search strategies, along with a detailed comparison involving several aspects, as time complexity, memory requirement, and search
precision. Our results show that none of the approaches address at least these main aspects. Finally, we discuss future directions
and present requirements for a new strategy aiming to fulfill current limitations.

1. Introduction

The development and popularity of technology and Internet
have been beneficial as well as problematic to modern
society. The good side is that we have at our disposal
cutting-edge technology for a decreasing price and high-
speed Internet connection atwill. Besides, people usually own
multiple devices (desktop computers, smartphones, tablets,
etc.) sharing all their information among them.Thedownside
of this trend is the huge amount of data generated even
by average users. Forensics examiners, whose duty is to
investigate and analyze electronic devices in the search for
crime evidence, are some facing this problematic side of
technology development.

To deal with the overwhelming amount of data available
nowadays [1], forensics examiners use methods to reduce the
volume of data effectively processed. One way is by focusing

on separating relevant from irrelevant information, using the
Known File Filter (KFF) method. In such case, they eliminate
good files from analysis (the ones belonging to operating
system, known software, among other inoffensive ones: white
list) and/or separate bad ones (illegal or suspicious objects:
black list), using in both cases databases of known interest
objects [2].

Suitable candidates to perform the aforementioned pre-
processing are cryptographic hashes (MD5, SHA-1, SHA-2,
etc.). NIST (National Institute of Standards and Technology)
[3] provides a hash database of good files that can be used by
examiners to do this filtering process. However, such method
is vulnerable to even small changes in the input, since the hash
of the original object will be completely different from the
one of an object sharing the same content but differing in a
single bit. Fixing this issue demands storing hashes for every
new version of an object. As software, libraries and operating

Hindawi
Security and Communication Networks
Volume 2017, Article ID 1306802, 17 pages
https://doi.org/10.1155/2017/1306802

brought to you by COREView metadata, citation and similar papers at core.ac.uk

provided by Crossref

https://core.ac.uk/display/208035281?utm_source=pdf&utm_medium=banner&utm_campaign=pdf-decoration-v1
https://doi.org/10.1155/2017/1306802


2 Security and Communication Networks

systems files get updated constantly, keeping a hash database
for every single change is infeasible and also very difficult to
keep up to date.

Approximate matching functions appear as candidates to
mitigate these and other issues. These new techniques aim at
detecting similarity between objects by creating a digest in
a way that similar objects will produce similar digests. This
way, any change in the input will reflect in a minor change
to its representation. When comparing two digests, a score
related to the amount of content shared between them is
given. Usually, if a minimal and predefined value is achieved,
they can be considered similar.

The use of approximatematching tools in digital forensics
is very beneficial, especially when used as a data reduction
technique. Breitinger et al. [4] show that this sort of functions
can increase the file identification rate significantly (from
1,82% using the traditional cryptographic hash to 23,76%
with approximatematching). However, this benefit comes at a
price: The high costs compared to traditional hash functions.
Most techniques available nowadays are far more expensive
than SHA-1, for example. Besides, they require a particular
function to determine the similarity of two digests, which
increases, even more, the whole process.

Although approximatematching functions are very costly
compared to traditional hashes, the major bottleneck during
forensic investigations based on KFF is not the hashing step
(producing digests) but the search for similar pairs. Usually,
the way an examiner performs the investigation is by brute
force (all-against-all): Every digest in the database of known
interest objects is compared to every digest created for the
target device under analysis. This way, the complexity of
this search is quadratic, and the whole process becomes
very time-consuming. To cope with this excessive amount
of time required, new strategies have been proposed in
the literature using approximate matching efficiently and
avoiding the brute force approach.These methods referred to
as similarity digest search strategies aim at performing quick
lookup procedures when dealing with large data sets by use
of approximate matching digests. Here, the concept of the
nearest neighbor problem [5] is extended to find similarity
digests.

In this work, we present the state of the art of the strategies
related to the similarity digest search process involving
approximate matching functions. We classify them accord-
ing to their main technology and perform a comparison,
analyzing their characteristics to point out their strengths
and weakness. Among all aspects discussed, the main ones
are related to the time complexity of a lookup procedure,
memory requirement, and search precision. In the end, future
directions are provided along with a set of requirements for a
new strategy aiming to fulfill current limitations. To the best
of our knowledge, this is the most complete work aiming at
presenting and comparing similarity digest search strategies.

We emphasize that this paper is an extension of the one to
be published in SBrT 2017 [6], encompassing amore complete
and detailed analysis of a larger set of strategies.

The rest of the paper is organized as follows: Section 2
introduces the main concepts of approximate matching and
the tools used by the similarity digest search strategies

evaluated in this work. Section 3 details how the strategies
operate, followed by Section 4with the corresponding evalua-
tion.Adiscussion about the findings of this paper is presented
in Section 5. Section 6 concludes the paper and Section 7 gives
future directions.

2. Approximate Matching

Approximatematching functions are defined byNIST [7] as a
“promising technology designed to identify similarities between
two digital artifacts. It is used to find objects that resemble
each other or find objects that are contained in another object.”
Broder [8] defines resemblance when two objects resemble
each other, while containment is when one object is contained
inside another.

NIST classifies such functions according to their opera-
tional level, as follows:

(i) Bytewise: matching relies on the byte sequence of
the object. Since it does not try to interpret data or
consider any structure within it, this level is more
efficient than others and format independent. Byte-
wise functions are also known as similarity hashing
or fuzzy hashing.

(ii) Syntactic: this relies on the internal structure of the
object. For this reason, it is format dependent but
does not interpret the content of the object to produce
results. For example, the structure of a TCP network
packet could be used to match packets from the same
source and or destination.

(iii) Semantic: this relies on the contextual attributes of
the object. It is also known as perceptual hashing or
robust hashing, and it is closer to human perception.
In this operational level, the object is interpreted
and hence format dependent. Therefore, it is more
expensive. The similarity of the content of a JPG
and PNG images is an example, in which their byte
structures are different due to encoding, but the
pictures are the same.

In this work, we focus on the bytewise level because
of its interesting characteristics: format independency and
efficiency. In a triage process, forensics examiners must
produce results as quickly as possible dealing with a huge
amount of data. This way, approximate matching appears as
a suitable candidate for a first step into separating devices
that potentially have evidence from those that do not. More
details about the syntactic and semantic levels can be found
in Dorneles et al.’s [9] work.

2.1. Cryptographic Hashes × Approximate Matching. In com-
parison to traditional hash functions (e.g., MD5, SHA-1, and
SHA-2) where every bit changed in the input is expected to
cause a dramatic change in the digest and only binary answers
are provided (two objects are equal or not), approximate
matching functions provide a confidence measure about
the similarity shared between two objects. Some methods
provide an answer in a fixed interval: 0-100, 0-128, and so on;
others provide a value indicating dissimilarity as it increases
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from the perfect similarity value (where two objects are
identical or very similar).

We can also compare traditional hashes to approximate
matching functions regarding the digest length. The output
size of traditional hashes is fixed independently of the input,
while approximate matching produces either a fixed or
variable size output (proportional to the input), depending
on themethod.They also aremore expensive than traditional
hashes in both processes: digest generation and comparison.
Approximate matching methods need a special function
designed to compare digests, requiring a more complex
computation and processing due to their singularities and
largest digests.

2.2. Applications. The range of applications for this kind
of functions is vast. One can use them in identifying new
versions of documents and software, embedded objects (e.g.,
jpg file inside a word document), objects in network packets
(without reconstructing the packet flow), locating variants of
malware families, clustering, code reuse (intellectual property
protection and/or bug detection), detection of deleted objects
(fragments remaining on disk), deduplication on storage
systems (e.g., cloud computing: save storage and bandwidth),
and cross-device deduplication, among others [10–12]. Also,
Bjelland et al. [13] present other common scenarios in
which approximate matching can be used, showing prac-
tical experiments in which forensics can benefit from this
technology. In one experiment, they look for emails using a
small set given as leads to figure out other similar ones. The
search uses an email database, and by the results unexpected
information of alternative conversations was revealed. The
other scenario presented by Bjelland determined successfully
that cryptographic software was downloaded in amachine by
just analyzing recorded network traffic.

2.3. Approximate Matching and Locality-Sensitive Hashing.
It is important to pay attention to an usual misleading
of concepts between two different functions: approximate
matching functions and locality-sensitive hashing (LSH).The
idea behind the LSH is to map similar objects into the same
bucket with high probabilities. This method is a general
mechanism that can be used for the nearest neighbor search
(NNS) and data clustering. A broader view on LSH tech-
niques can be found in [5]. Approximate matching functions,
on the other hand, are designed to produce a digest from the
object and by the comparison of two object digests establish
a confidence measure about their similarity. In this work,
we focus on strategies to perform KFF using approximate
matching functions, where two data sets of digests must be
compared efficiently.

2.4. Techniques. Next, wewill present briefly the approximate
matching functions used by the strategies discussed in this
work.

2.4.1. Block-Based Hashing. Most basic approximate match-
ing function, where data is broken into fixed-size blocks and
hashes, is computed for each one of them.The final signature

is the concatenation of all hashes. The similarity between
two objects is measured by counting the number of common
blocks. The dcfldd tool [14], an extension of the disk dump
tool dd, implements this scheme.

Although the block-based hashing scheme is computa-
tionally efficient and straightforward to implement, it suffers
from alignment issues. The insertion/deletion of a single
bit at the beginning of the input will affect the content of
all remaining blocks, and their hashes will be completely
different. Besides, it cannot detect containment.

2.4.2. ssdeep. Content Triggered Piecewise Hashing (CTPH)
is another method aiming to detect content similarity in
the bytewise level, proposed by Tridgell. Adapted from
Tridgell’s spam email detector (spamsum) algorithm, Korn-
blum developed ssdeep [15]. The main idea of this tool is to
create variable size blocks using a rolling hash algorithm to
determine when blocks start and stop (set boundaries). The
rolling hashing produces a random value based on a window
that moves through the input byte-by-byte. After the first
value is generated, the next ones are created very quickly
given the old hash, the removed part of the window, and
the new added one. The algorithm adopted by ssdeep was
inspired by the Adler-32 checksum [15].

When generating a ssdeep digest, a sliding window of
fixed size (7 bytes) moves through the input, byte-by-byte,
and whenever the rolling hash produces a specific output,
based on the current bytes in the window, ssdeep identifies a
trigger point, denoting the ending and beginning of a block.
Then, all generated blocks are hashed using a cryptographic
hash function (FNV) and the 6 least significant bits of each
hash is encoded using a Base64 character. The final digest
is the concatenation of all characters generated through the
blocks.The detailed explanation of the whole process, trigger
values, and required parameters can be found in [15].

To compare two digests, ssdeep uses the edit distance
algorithm. This function counts the minimum number of
operations required to transform one string (digest) into
another, using weighted operations, like insertion, deletion,
substitution (single character), and transpositions (two adja-
cent characters). The result is produced in a range of 0–100,
where 0 means that the two objects are dissimilar and 100
means a perfect match.

This scheme is not as sensitive to alignment issues as the
block-based hashing, and insertions/deletions are expected to
modify only the corresponding part in the digest. Thus, the
major part will still be the same allowing similarity detection.
Although this is one of the most known schemes for approx-
imate matching, it works only for relatively small objects of
similar sizes. One way to increase its detection capabilities
and allow comparisons of different objects size was using two
digests per item instead of one. When creating the digest,
ssdeep uses two different values as trigger point (derived from
the object size, called block size 𝑏). The result is the creation
of two digests, where the first corresponds to a trigger value
𝑏 and the second 2𝑏. This way, it is only possible to compare
objects if their block sizes are within a power of a two at most.
Also, the first digest is always two times larger than the sec-
ond, resulting in lengths up to 64 and 32 bytes, respectively.
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ssdeep has been object of research in order to address
its limitations, especially regarding performance [2, 16]. A
security analysis was also done and concluded that ssdeep is
vulnerable to an active attack [17].

2.4.3. sdhash. One of the most known methods of approxi-
mate matching is sdhash, proposed by Roussev [18] in 2010.
This tool is based on the idea of identifying and picking from
an object features that are least likely to occur in other ones
by chance and use them to create the digest. Roussev [18]
defines feature as a byte sequence (64 bytes) extracted from
the input by a fixed-size sliding window that moves byte-by-
byte. Shannon entropy is calculated for all extracted features
and a set of the lowest ones in predefined intervals are selected
[19]. These features are hashed using SHA-1 and the result
split into five subhashes, used to insert the feature into a
Bloom filter. Each filter has a limit on the number of elements
(features) that can be inserted on it, and when it reaches its
capacity, a new one is created. The final digest is a sequence
of all Bloom filters, and its size corresponds to about 2.6% of
the input.

In order to compare two digests (Bloom filter sequences),
sdhash compares each filter from the first digest to every
filter from the second digest, selecting the maximum score
at each step. The final result is an average of all comparisons,
ranging from 0 (nonmatch) to 100 (very similar objects, not
necessarily identical).

Extensive research has been conducted over sdhash,
exposing some vulnerabilities and presenting improvements
[20–22]. Furthermore, Roussev [10] showed that sdhash
outperforms ssdeep both in accuracy and in scalability.
Besides detecting similarity, sdhash also detects containment.

2.4.4. MRSH and MRSH-V2. Multiresolution Similarity
Hashing-v2 (MRSH-v2) [23] is an extension of MRSH [24]
regarding efficiency and performance. It combines ssdeep
and sdhash, by using a rolling hash over a 7-byte sliding
window to identify triggers and define blocks of variable size.
Then, a cryptographic hash function (FNV-1a) is used to hash
each block and the result is split into five subhashes, where
the 𝑘 ⋅ log2(𝑚) bits of each part are used to address a Bloom
filter (𝑘 is the number of subhashes and 𝑚 the Bloom filter
size). The final digest is a sequence of Bloom filters, just like
sdhash, as well as the comparison function.The digest length
is about 0.5%of the input. Although thismethod is faster than
sdhash, its precision and recall rates are worse.

2.4.5. TLSH. Proposed by Oliver et al. [25], TLSH is a
locality-sensitive hashing (LSH) scheme used to find simi-
larities among objects by the use of digests, like approximate
matching functions. TLSH processes an input object by using
a sliding window (5 bytes) moving byte-by-byte, where,
in each step, six trigrams (combinations of the window
characters) are selected to populate a 128-bit array of bucket
counts using a mapping function (Pearson hash). Then, the
quartile points of the array are calculated. A fixed length
digest of 35 bytes is the output generated by TLSH, where
the first 3 bytes composed the header and the remaining

32 bytes the body. The header is constructed based on the
quartile points, the object size, and a checksum, where one
byte is reserved for each of these parameters. The body is
constructed in a way that each array position is compared
to the quartile points, and the result is a bit pair defined
according to the quartile value it ranges on.

Two functions are required to compare digests. The first
one, distance header, takes as input the objects size and
quartile ratios to produce an output. The other one, Distance
Body, calculates the hamming distance between the digest
bodies. The final result is a sum of both functions, scoring 0
(zero) for identical (or nearly identical) objects or higher, as
dissimilarity increases.

Further research showed that TLSH ismore robust to ran-
dom changes and adversarial manipulations than ssdeep and
sdhash [21]. However, this scheme focuses on resemblance
detection and does not seem to work well for containment
detection.

2.4.6. Nilsimsa. Damiani et al. [26] propose Nilsimsa as a
method to detect spam messages. The technique consists
in using a fixed-size sliding window (5 bytes) that goes
byte-by-byte through the input and produces trigrams of
possible combinations of the input characters. The trigrams
are mapped to a 256-bit array, called accumulator, using a
particular hash function. Every time a position in the accu-
mulator is selected, its value, initially set to 0, is incremented.
After processing the entire input, all accumulator positions
whose value is above a threshold are set to 1 in a new array;
the remaining ones are set to 0. This new array is the final
digest (32 bytes).

To compare two digests, Nilsimsa checks the number of
identical bits in the same position. The result is adjusted, and
the range varies from 0 (dissimilar objects) to 128 (identical
or very similar objects).

3. Strategies for Similarity Digest Search

Themajor bottleneck in digital forensics investigations based
on approximate matching and KFF is the similarity digest
search. An examiner, who usually has a reference list contain-
ing objects of interest, needs to compare each object from this
set to each one got from the target system under analysis.The
goal is to find similar objects by their digests, using one of
the approximate matching tools described in Section 2.4. As
stated by Harichandran et al. [11], this challenge is related to
the nearest neighbor problem, but here we need to identify
similar objects by their digests only.

It is important to mention that this problem is different
from finding exact matches, which can be solved efficiently
with ordinary databases [27]. The similarity search involves
finding similar objects sharing a certain degree of common-
ality (higher than a threshold) only by the comparison of
their digests. The objects found this way are separated for a
further and deeper analysis (black list) or eliminated from the
investigation (white list).

Most approximate matching tools perform the similarity
search by the naive brute force method, which means that
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each object from the target system is compared to all objects
from the reference list (all-against-all comparison). However,
this process is too time-consuming for large data sets. Also,
the comparison process of such tools requires a particular
function, which is usually very expensive. The complexity of
this search is 𝑂(𝑟 ⋅ 𝑛), where 𝑟 is the number of digests in the
reference list and 𝑛 the number in the target system.

Traditional approaches aiming at finding exact matches
usually create indexes for the digests (using traditional hash
functions like SHA-1, SHA-2, SHA-3, etc.) of the reference list
and store them in sorted lists, balanced trees, or hash tables.
The complexity of a single query in such cases is𝑂(log(𝑟)) for
sorted lists and trees and𝑂(1) for hash tables, which are lower
than 𝑂(𝑟) from the brute force similarity search.

To cope with this problem, researchers have proposed
some techniques aiming to reduce the time involved in the
similarity digest search. In the following subsections, we will
present and compare these approaches, which seek to deal
with the growing amount of data in forensic investigations by
reducing somehow the required time for the search process.
We present the strategies proposed so far (from the best of our
knowledge) and classify them regarding the main technology
used. We discuss their characteristics and limitations, as well
as theirworking process, which encompasses two phases [28]:

(i) Preparation phase: the reference list objects (black
list, e.g.) have their digest created using the chosen
approximate matching tool, and then these digests
are organized somehow to improve the lookup pro-
cedure.

(ii) Operational phase: the target system has digests
created for its objects and, for each one, a comparison
is done using thematerial compiled in the preparation
phase.

Finally, we end this section presenting a comparison of
the approaches and discussing our findings. For the rest of
this section, we will refer to 𝑟 and 𝑛 as the number of digests
in the reference list and the target system, respectively.

3.1. The Naive Brute Force Approach. The naive method
for pursuing a similarity digest search process is by brute
force (all-against-all comparison). Every object in the target
system is compared to all objects in the reference list. This
approach can be performed by all approximate matching
tools presented in Section 2.4. In the preparation phase, the
forensics examiner needs to create digests for the reference
list objects using the chosen approximate matching tool and
store them in a file, database, or any other structure. In
the operational phase, the examiner needs to create a digest
for each object of the target system and compare it to all
reference list digests, using the comparison function of the
approximatematching tool.The best match is the one sharing
the higher similarity with the queried object, and if it is above
a threshold, the corresponding object is separated.

The major drawback of this approach is the time com-
plexity, which is 𝑂(𝑟 ⋅ 𝑛) or 𝑂(𝑟) for a single query. For larger
data sets, the search can take days or weeks using common
hardware [27].

3.2. Distributed P2P Search. This strategy aims at performing
the search in a distributed way through a peer-to-peer
fashion. Each node in the network has to manage part of
the data of the reference list. Basically, under a request for
a search of a given digest, it is calculated in which nodes
similar items should be stored based on the distance to the
nodes reference digests. The queried digest is then sent to the
nodes sharing the higher similarity in order to be compared
with the reference data stored on them. The nodes return
whether there is a similar digest or not.This method assumes
that similar digests will always be distributed to the same
nodes.

Although this approach seems interesting due to the
distributed processing, which could decrease the time taken
in investigations, it presents some drawbacks, as extra storage
requirement, a high number of machines to work with, and
network delays. The first problem comes when one node
leaves the network. Since each node manages one reference
point, another onemust comeup and take this reference point
to maintain data availability. However, this is not the ideal
solution if it takes longer for a new node to enter the network.
A solution would involve storing extra data (redundancy) on
each node, in a way that even though some nodes are gone,
data can still be recovered, which would increase even more
the storage requirement of the system.

Another problem inherited from this approach is the high
number of machines needed to maintain both availability
and scalability. Communication delays could also degrade
the quality of an investigation process. For this strategy,
we will present two approaches: DHTnil and iCTPH. Both
approaches do not address the problems aforementioned.

3.2.1. DHTnil: DistributedHash Tables withNilsimsa. DHTnil
is an efficient lookup strategy for finding similar digests,
based on the Nilsimsa approximate matching tool and DHT
(Distributed Hash Tables). Its main goal is to identify spam
emails. According to Zhang et al. [29], DHTnil stores digests
in different nodes in a way that digests of similar emails
are stored on one of a few nodes. It divides the Nilsimsa
digest space into some subspaces (with no overlap) managed
by the DHT nodes. Space is divided based on a point set,
where every point is a core of a subspace (reference point)
attributed to a node. Chord was chosen as DHT as well
as the Voronoi diagram to divide the multidimensioned
space, using Euclidean distance to verify similarity. As each
subspace is managed by a DHT node, the similarity digest
search involves only comparing the digest to the ones stored
in a few chosen DHT nodes.

In the preparation phase, DHTnil requires that forensics
examiners create digests for the reference list objects and
generate the reference points. These points are a few digests
selected from the reference list to represent the subspaces.
The selection could be randomly or carefully chosen. Next,
the remaining digests are stored on the corresponding DHT
nodes where the distance from the queried digest and the
reference point is smaller.

In the operation phase, a digest is created for the queried
object, and the subspace it belongs to is evaluated. The DHT
node selected and its neighbors are searched for similarity,
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where the digest is compared to all other ones stored in the
nodes. The number of matches is returned [29].

The main drawbacks of this approach are the already
mentioned ones inherited by distributed P2P systems and
also due to the approximatematching tool chosen (Nilsimsa),
which suffers from significantly high false positive rates [25].
This approach also performs unnecessary lookups per digest
and hence demands a high time complexity (𝑂(𝑟)), equal
to the brute force method, although in practice the time is
expected to be smaller. This high complexity is due to the
number of items in each node being proportional to the
number in the set (considering a uniform distribution of the
items).

3.2.2. iCTPH: Distributed Hash Tables with ssdeep. A similar
approach toDHTnil is iCTPH, which also uses Chord to store
and lookup digests, but instead ofNilsimsa it uses ssdeep tool.
The iDistance technique is used to map similar digests into
near clusters, stored in different nodes. It divides the vector
space into clusters, identified by reference points, and the
digests are mapped into a cluster according to their distance
from the reference point, using the edit distance algorithm
(minimum number of operations required to transform one
string into the other) [30].

Jianzhong et al. [30] explain that, in the preparation
phase, one must compute the digest of all objects in the
reference list, choose a set of points as reference ones,
and then decide which cluster each digest belongs to. In
the operational phase, each queried object has its digest
calculated. iCTPH generates a query interval for each cluster
related to the queried item and performs a comparison with
all digests of the clusters corresponding to that interval. The
number of similar digests found is returned.

iCTPH has the same drawbacks of DHTnil: poor approx-
imate matching tool (ssdeep) [10] and some unnecessary
lookups per digest, resulting in a time complexity equal
to brute force: 𝑂(𝑟) (single query). Just like DHTnil, this
approach also inherits the limitations of a P2P system.

3.3. Indexing Strategy. Winter et al. [27] present a different
approach for similarity digest search, called Fast Forensic
Similarity Search (F2S2).The authors use an indexing strategy
based on ssdeep digests (but not restricted to it) to avoid the
overwhelming amount of time required by the naive brute
force method. It builds an index structure over the 𝑛-grams
(𝑛 consecutive bytes) contained in a digest. All digests with
the same 𝑛-gram queried are returned in a lookup procedure.
They are suitable candidates for being similar to the queried
item, and the comparison is restricted to these candidates
only. Here we are interested in finding exact matches on the
level of 𝑛-grams. The results presented in the paper point out
an impressive speedup compared to brute force method.

The index structure chosen was a particular kind of
hash table, containing two parts: a central array (referred to
as index table) and variable size buckets, which can store
multiple entries per bucket (𝑛-grams).

The 𝑛-grams of a digest 𝑏 with 𝑙 bytes are 𝑏1 ⋅ ⋅ ⋅ 𝑏𝑛,𝑏2 ⋅ ⋅ ⋅ 𝑏𝑛+1, . . . , 𝑏𝑙−𝑛+1 ⋅ ⋅ ⋅ 𝑏𝑙. They serve as lookup key and pro-
vide a link to all digests containing the same values. Two

parts compose 𝑛-grams. The first one is used as the entry in
an address function, responsible for mapping keys (𝑛-grams)
to positions in the index table, using the 𝑘 leading bits of
the 𝑛-gram (since a digest of CTPH is Base64 encoded, it is
necessary to decode it before selecting the bits). The other
part, called e-key, is used to identify the 𝑛-gram and it is
part of the bucket entry, as well as the ID, a link to the
corresponding digest [27].

In the preparation phase of F2S2, digests are created for
all reference list objects using ssdeep and an ID is assigned to
each one. Then, an index table is created, and the digests are
inserted on it. However, they are not added directly. A sliding
window goes byte-by-byte mapping each 𝑛-gram and digest
ID to a position in the index table, inserting it in a new bucket
or adding it to an existing one (as long as they share the same
𝑛-gram but have different ID), according to Figure 1.

In the operational phase, the first step is loading the
index structure into main memory. Then, digests are created
for each item in the target system, and their 𝑛-grams are
extracted. A lookup procedure using these 𝑛-grams selects all
digests (candidates) in the index containing the same 𝑛-gram
queried. Finally, the ssdeep comparison function is executed
for the queried digest and each candidate to confirm the
similarity. We highlight that since ssdeep digests have two
signatures for each object (one using block size 𝑏 and another
2𝑏), the lookup procedure is done for both.

The main drawback of this approach is the chosen
approximate matching tool since ssdeep is less accurate than
others especially when comparing objects of different sizes
[10]. The proposed strategy does not work with more precise
tools, such as sdhash, since it does not support digests rep-
resented by Bloom filters, which cannot be ordered/indexed.
Also, since the number of candidates sharing the same 𝑛-
grams as query digest is proportional to the number of entries
in the index, the time complexity of F2S2 is the same as brute
force, 𝑂(𝑟), even though experiments have shown a speedup
factor above 2000 compared to brute force approach [27].

3.4. Bloom Filter-Based Search

3.4.1.TheMRSH-NET Strategy. Breitinger et al. [31] present a
new similarity digest search strategy designed to work with
Bloom filters, reducing the lookup complexity of a single
query from 𝑂(𝑟) to 𝑂(1). This approach, called MRSH-NET,
is intended to work with sdhash and mrsh-v2 approximate
matching tools and uses a single, huge Bloom filter to
represent all the objects of a reference list. However, due to
the characteristics of Bloomfilters, themethod is restricted to
membership queries only: Does this set contain any similar
object to the queried one? If so, an affirmative answer is
returned, but it does not point out similar object(s).

MRSH-NET uses sdhash/mrsh-v2 to first extract features
from the reference list objects and later insert them into a
single Bloomfilter instead of having one ormultiple filters per
object.This procedure aims to avoid the expensive brute force
approach and hence speed up the similarity digest search
process. To decide whether or not an object is inserted in
the filter, the match decision is based on a sufficiently large
number of succeeding features found in the filter. If this
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Figure 1: Inserting 𝑛-gram in the index table.

number is achieved, the object is considered part of the set,
which could be a black list, for example.

In the preparation phase, one has to extract the features
from all objects in the reference list, create a single, huge
Bloom filter, and then insert them into the filter.

The operational phase involves loading the structure into
main memory, extracting the features of the queried object,
and checking in the Bloom filter for its presence or not. If
the object has more than a threshold of succeeding features
found in the filter, the object is said to be part of the filter and
can be separated; otherwise, it is discarded, and the lookup
procedure moves to another object.

One of the main drawbacks of this approach is the fact
that it only decides about membership but does not identify
an object. Also, the filter has to fit into the main memory
due to efficiency reasons, another possible problem when the
reference list set increases, as shown in the next section.

3.4.2. Bloom Filter-Based Tree Structure. As a form to miti-
gate the limitation of MRSH-NET [31], which only answers
whether an object is present in the filter or not but does
not identify the object, Breitinger et al. [32] propose a
new similarity digest search strategy based on the well-
known divide and conquer paradigm. In this approach,
the authors build a Bloom filter-based tree data structure
to store digests and efficiently locate similar objects. The
time complexity of a single lookup is 𝑂(log𝑥(𝑟)), where 𝑥
is the degree of the tree. Even though the complexity is
higher than the previous method (MRSH-NET, (𝑂(1))), this
approach can return the actual matching object(s). However,
this strategy lacks a working prototype and only exists in
theory.

The basic idea of the Bloom filter-based tree approach
is to recursively divide a given set 𝑆 of similarity digests
into 𝑋 subsets. First, each object has its features extracted
(e.g., by the sdhash method) and inserted into the root node

of the tree, a huge Bloom filter. Then, 𝑆 is divided into 𝑋
subsets containing 𝑛/𝑋 elements; a child node of the root
node is created for each subset and the objects inserted
in each corresponding new filter. This procedure is applied
recursively. Finally, an FI (File Identifier) is created in the leaf
(a link to a database containing the digest of the relatedBloom
filter) as well as an FIC (File Identifier Counter), initially set
to zero and incremented in a lookup procedure when FI is
reached. An example of the construction of a Bloom filter-
based tree is illustrated in Figure 2.

One of the main advantages of the scheme is the lookup
operation. It is not necessary to compare a digest of a target
system against all reference list digests but only to a subset of
nodes in the tree structure. Also, as most comparisons will
yield a nonmatch for blacklisting cases, the search ends in
the root node. The tree is only traced down to a leaf if a
match is found in the root, which means that the queried
object (feature) is present in the reference list, and now we
only have to determine which object it belongs to, by tracing
down the tree and locating the corresponding FI. The match
decision on whether an object is inserted in the tree data
structure or not is based on a threshold, representing the
number of following features required to be found in the tree.
Every time we identify a leaf containing the features queried,
we increase FIC. In the end, the highest FIC is compared
to the threshold, and if its value is equal or higher, we can
say that the object is present in the set and take the corre-
sponding FI to reach it. Once we have found the candidate
similar to the queried object, we might perform the con-
ventional comparison using the approximate matching tool
chosen.

The preparation phase of this approach consists in
extracting the features of all objects in the reference list,
creating the Bloom filter-based tree structure, and then
inserting all features on it, including the corresponding met-
adata (FI and FIC).
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Figure 2: Bloom filter-based tree construction (binary tree). Adapted from [32].

The first step of the operational phase is to load the
Bloom filter tree into main memory. Then, for each queried
object, we need to extract its features and check the filter
for their presence. In the end, the object with the highest
FIC is returned, and the similarity can be confirmed by
using the conventional comparison function of the chosen
approximate matching tool (sdhash/mrsh-v2).

One problem with this approach is the fact that there
is no prototype to validate the model and compare it to
other similarity digest search strategies. Moreover, the tree
structure is very memory-consuming, since several large
Bloom filters will be required to store all data from the
reference list.

3.5. Cuckoo Filter: A New Alternative for Bloom Filters.
Gupta and Breitinger [33] present a new strategy for the
similarity digest search problem, called MRSH-CF. This
approach is based on Cuckoo filters, a new method to
overcome some limitations of Bloom filters. Their strategy is
an alternative/extension for theMRSH-NET approach, where
Cuckoo filters replace the Bloomfilters. Although the authors
presented their approach using the mrsh-v2 tool, since using
with sdhash would be harder to integrate into the system, we
will adapt thismethod toworkwith sdhash to compare it with
the other strategies.

Cuckoo filter [34], amodification of Pagh and Rodler [35]
Cuckoo hashing, is a minimized hash table for performing
membership queries, by using the Cuckoo hashing to resolve
collisions. Data is transformed in a fingerprint before being
inserted into the structure, where it is stored in buckets. The
filter has an array of buckets of size 𝑏, referring to the number
of fingerprints that can be stored on it. Also, there is a load
factor (𝛼) which describes the percentage of the filter being
used in order to decide if the filter needs to be resized.

Cuckoo filters are composed of a hash table and three
hash functions. Each key (entry value) is hashed by two of
the hash functions (𝐻1 and 𝐻2), responsible for assigning
the key to buckets. The first value is tried and checked in the
bucket for an empty space. If there is nothing there, the value
is placed in this bucket. Otherwise, the key is stored in the
second bucket. However, if there is already a key stored on it,

this value is placed in another bucket, and the process repeats
for this registry until all keys are allocated. If a cycle happens,
where the same bucket is visited twice, it means that the table
is not big enough andneeds to be resized, or the hash function
needs to be replaced. The third hash function (𝐻3) is used to
store the key in the structure in a compressed form, hashing
it and using only 𝑓 bits as the tag size [34].

According to Fan et al. [34], the main benefits achieved
with this structure compared to Bloom filters are the sup-
port for adding and removing items dynamically, better
lookup performance, and less space requirement for some
applications (related to some false positive rates). Although
insertion operations are more complex due to possible keys
reallocations, its time complexity is the same one as that for
Bloom filters (𝑂(1)). The deletion and lookup complexities
are also 𝑂(1).

To allow similarity identification, MRSH-CF stores only
object features in the filter instead of the whole object.
Based on MRSH-NET, this new Cuckoo filter-based strategy
considers an object match when a specific number of features
are found in the structure.

The preparation phase of this strategy requires the extrac-
tion of the features from the reference list objects using the
chosen approximate matching tool. Then, the Cuckoo filter
structure is created, and all features are inserted on it.

In the operational phase, the first step is to load the struc-
ture into main memory. The queried objects have its features
extracted and checked within the filter. If a number equal to
or higher than a threshold of features is found, the queried
object is said to be part of the set; otherwise, it is put away,
and the lookup procedure continues with the next object.

The main limitations of this approach are the same
ones of MRSH-NET: membership queries and high memory
consumption. The Cuckoo filter strategy only gives binary
answers: the object belongs to the set or not. It does not point
out which is similar object, which could be enough for some
problems, but for KFF it represents a limitation.

3.6. Other Strategies. There are other similarity digest search
strategies not addressed in this paper for a particular reason
or because we are not aware of them. A particular one is
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Table 1: Similarity digest search strategies: characteristics.

Strategy Tools Main technology Input Output (𝑡 - threshold) Match
decision

Insert/
remove
elements

Owning
database

Brute force
(sdhash) sdhash Bloom filters sdhash digest Digest ≥ 𝑡 Bloom filter

comparison ✓/✓ ×
Brute force
(ssdeep) ssdeep Rolling Hash ssdeep digest Digest ≥ 𝑡 Edit distance ✓/✓ ×
Brute force
(TLSH) TLSH LSH TLSH digest Digest ≥ 𝑡 Header/body

distance ✓/✓ ×

DHTnil Nilsimsa DHT (chord) +
Voronoi diagram Bit vector Number of matches ≥ 𝑡

Adapted
Euclidean
distance

✓/✓ ×

iCTPH ssdeep DHT (chord) +
iDistance ssdeep digest Number of matches ≥ 𝑡 Edit distance ✓/✓ ×

F2S2 ssdeep Indexing (𝑛-grams) +
hash table ssdeep digest Candidates sharing the

same 𝑛-gram queried Edit distance ✓(∗)/✓ ✓

MRSH-NET sdhash,
mrsh-v2

Single, huge Bloom
filter Object features

Yes/No (consecutive
features found in the filter

≥ 𝑡)
Bloom filter
matches ×/× ✓

BF-based tree sdhash,
mrsh-v2

Bloom filter tree
structure Object features

Candidate with highest
number of features found

in the filter ≥ 𝑡
Bloom filter
matches ×/× ✓

MRSH-CF sdhash,
mrsh-v2 Cuckoo filter Object features

Yes/No (consecutive
features found in the filter

≥ 𝑡)
Cuckoo filter
matches ×/✓ ✓

Observation: (∗): the data set increase (beyond its real capacity) is allowed at the cost of performance.

proposed by Chawathe [28, 36] which is based on a locality-
sensitive hashing (LSH) method. However, due to the lack of
data presented in the paper, we choose not to include it in our
analysis.

4. Comparison of Similarity Digest
Search Strategies

In this section, we present a comparison of all strategies
for similarity digest search discussed previously. We divide
our analysis into two parts: characteristics and evaluation.
We first present the strategies regarding some characteristics
and then an assessment of time and space required by the
approaches, alongwith other topics such as false positive rates
and detection capability.

4.1. Characteristics. Our first analysis involves comparing
the approaches regarding their main characteristics. Table 1
presents our results followed by a discussion of the evaluated
aspects and their importance for the performance of the
strategies.

4.1.1. Supported Tools and Technology. Some strategies can be
used with any tool while others are restricted to a specific
one. In the latter case, we may have to use a tool with low
accuracy depending on the strategy. On one hand, this would
decrease the time to perform a similarity digest search, but,
on the other hand, it would increase the process of manual

inspection of the results due to the high number of false
positives. Also, some tools could miss relevant data in the
search. Another point of consideration is that depending on
the chosen technology to perform the search, we need more
computational power than we have, as the cases of iCPTH
andDHTnil.They require several machines working together
to solve the problem efficiently. This equipment may not be
available in a forensics agency, and therefore these methods
would not be appropriate.

4.1.2. Strategy Input/Output. Each approach aiming at reduc-
ing the time for the similarity digest search requires a
different input format. Some strategies require only the digest
created by the supported similarity tool while others require
a precomputed set of values generated by a subprocess of the
tool. The naive brute force method requires as input only
the digest created by the chosen tool, while other methods
require the object features extracted by sdhash or mrsh-v2
in an intermediary phase of the digest generation (MRSH-
NET, Bloom filter tree, and MRSH-CF). Some strategies give
to the forensics examiner a list of possible candidates found
above some threshold (e.g., brute force ones and F2S2) or the
most similar digest (Bloom filter tree), where the examiner
needs to inspect manually. Before that, the examiner can use
the corresponding approximate matching tool to confirm the
similarity and eliminate some of the candidates. Other tools
(e.g., DHTnil and iCPTH) give just the number of matches
found or just the presence or not of the queried item in the
set (MRSH-NET and MRSH-CF), which could be sufficient
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in a blacklisting case to separate the corresponding media for
further and deeper analysis.

4.1.3. Strategy’s Match Decision. The match decision method
usually incorporates the characteristics of the approximate
matching tools supported and take advantage of their struc-
ture. F2S2 creates 𝑛-grams of a ssdeep digest based on the
assumption that the tool encodes each “feature” extracted
from the object in one byte in the digest. This way, similar
objects will have similar features, and then the strategy can
catch them by comparing these small parts (𝑛 consecutive
bytes). MRSH-NET, BF-based tree, and MRSH-CF take the
features extracted from sdhash/mrsh-v2 and insert them into
a single, hugeBloomfilter, BF-based tree structure, orCuckoo
filter, respectively. The match decision in such cases is the
number of following features found in the structures. F2S2
does not create false positives due to its match decision
method since it does not decide whether two digests are
similar or not [27]. However, MRSH-NET, BF-based tree,
and MRSH-CF approaches do, according to the explanation
presented below.

According to Breitinger et al. [32], the false positive
probability for an object is calculated by 𝑝𝑓 = 𝑝𝑟, where
𝑝 is the false positive probability for a single feature and 𝑟
the number of following features required to be found in
the filter to be considered a match. While 𝑟 can be adjusted
according to the desired false positive rate, 𝑝 is defined by
𝑝 ≈ (1 − 𝑒−𝑘𝑧/𝑚)𝑘, where 𝑘 is the number of independent hash
functions, 𝑧 the number of features inserted into the Bloom
filter, and𝑚 the filter size [32]. This way, the strategy decides
when a match is found by a number of features present in the
filter, and based on it, it can create more or less false positives
depending on the parameters used by the strategy.

On the other hand, we have strategies in which a match
decision does not depend on the strategy itself, but on the
tool under consideration. The chosen comparison method
is the tool’s comparison function, and it is responsible
for establishing when a match is found or not. The most
simple strategy, the brute force one, is an example of such
case. When using sdhash, the method is the comparison of
Bloom filters. Using ssdeep, it changes to the edit distance,
while for TLSH it uses a distance header/body (Hamming
distance approximation) function. Changing the tool does
not interfere in the strategy itself, but only in the comparison
function, which is tool-related.

4.1.4. Inserting/Removing Elements and Owning Database.
With respect to the insertion of new elements, some strategies
allow the increase of the database dynamically, while others
need to be constructed considering the knowledge of the
maximum number of objects stored on it. The brute force
ones, DHTnil, iCPTH, and F2S2 are examples which allow
the data set to increase dynamically without requiring the
database recreation. F2S2, which uses a chaining hash table,
is a particular case in which the insertion beyond its real
capacity is allowed at the cost of performance degradation
(linear as the table fills). Other strategies as MRSH-NET
and BF-based rely on technologies (Bloom filters) which

require the knowledge about the maximum number of items
beforehand to adjust some parameters, like false positives
rates, for instance. Although it is possible to insert as many
items into Bloom filters as we want, its false positive rates
will increase and degrade the search quality, compromising
the results of the strategy. In such cases, a new data structure
will have to be created and adjusted to the new number of
items. MRSH-CF is another case which needs the maximum
number of objects before the structure creation since the hash
table and buckets have a fixed and predefined size. However,
this structure is more robust than Bloom filters as it can store
multiple elements in each bucket without altering the false
positives rates significantly.

Removal operations are also possible for most strategies,
except for the ones based on Bloom filters, in which, once we
insert several elements, we cannot distinguish the positions
set in the filter for an item from another. This way, removing
elements is not possible.

Some strategies have their own technology to store the
similarity data, as F2S2 (hash table), MRSH-NET (Bloom
filter), BF-based tree (Bloom filter tree), and MRSH-CF
(Cuckoo filter). Others, like the brute force ones, DHTnil,
and iCPTH, require a database to store the digests. These
strategies may use whatever storage technology the examiner
want: ordinary databases, files, xml, and so on. Although the
aforementioned methods scale better to set increasing, they
may have their efficiency degraded depending on the chosen
technology, causing some extra delays.

4.2. Evaluation. Our second analysis evaluates the ap-
proaches concerning time and space requirements, false
positives rates, and detection capabilities. We present in this
section a discussion of these aspects and summarize ours
results in Table 2.

4.2.1. Memory Requirements. We evaluated all similarity
digest search strategies related to the amount of memory
required for different data set sizes, varying from 1GiB to
1 TiB. Our results are shown in Table 2, describing the amount
required (MiB orGiB) and compression rate for each strategy.
The details of our calculation are presented in Appendices A
and B.

We highlight that some strategies, as MRSH-NET and
BF-based tree, have their structure size adjusted for practical
issues, since they are based on Bloom filters whose size has to
be a power of two (2𝑐, for 𝑐 ∈ N). This way, when calculating
the filter size and getting a result of 231.27 bits, for instance, we
need to adjust their size for 232. Although this modification
can almost double the theoretical size of the filter in some
cases, it is necessary for practical implementations. Other
strategies have a minor effect regarding this issue, as MRSH-
CF, which also needs some adjustments in the tag size. After
defining the size for the item representation in the filter
according to the false positive rate and number of entries in
each bucket, we may have a decimal number. In such case,
we choose the next integer not to increase the false positive
rates. The result is an increase in the structure size, but not
as significant as it happens with the Bloom filter approaches.
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Table 2: Similarity digest search strategies: performance assessment of different properties.

Strategy Memory requirements Single lookup
complexity

False
positives

Resemblance/containment
detection1GiB 10GiB 100GiB 1 TiB

Brute force
(sdhash)

25.60MiB
(2.50%)

256.00MiB
(2.50%)

2.50GiB
(2.50%)

25.60GiB
(2.50%) 𝑂(𝑛) No ✓/✓

Brute force
(ssdeep)

0.19MiB
(0.02%)

1.87MiB
(0.02%)

18.75MiB
(0.02%)

192.00MiB
(0.02%) 𝑂(𝑛) No ✓/×

Brute force
(TLSH)

0.07MiB
(0.01%)

0.68MiB
(0.01%)

6.84MiB
(0.01%)

70.00MiB
(0.01%) 𝑂(𝑛) No ✓/×

DHTnil 32.49MiB
(3.17%)

33.05MiB
(0.32%)

38.68MiB
(0.04%)

96.43MiB
(0.01%) 𝑂(𝑛) No ✓/×

iCTPH 96.62MiB
(9.44%)

98.30MiB
(0.96%)

115.18MiB
(0.11%)

288.43MiB
(0.03%) 𝑂(𝑛) No ✓/×

F2S2 1.71MiB
(0.17%)

17.07MiB
(0.17%)

170.70MiB
(0.17%)

1.71 GiB
(0.17%) 𝑂(𝑛) No ✓/×

MRSH-NET 16.00MiB
(1.56%)

128.00MiB
(1.25%)

1.00GiB
(1.00%)

16.00GiB
(1.56%) 𝑂(1) Yes ✓/✓

BF-based tree 176.00MiB
(17.19%)

1.79GiB
(17.90%)

17.64GiB
(17.64%)

336.00GiB
(32.81%) 𝑂(log(𝑛)) Yes ✓/✓

MRSH-CF 14.00MiB
(1.37%)

140.00MiB
(1.37%)

1.37GiB
(1.37%)

14.00GiB
(1.37%) 𝑂(1) Yes ✓/✓

Thebrute force, DHTnil, iCTPH, and F2S2 do not suffer from
such issue.

The first point to mention about our analysis is the
memory growth rate of some strategies, as shown in Figure 3.
While some of them have a linear behavior (brute force ones,
F2S2, MRSH-NET, BF-based tree, andMRSH-CF), others do
not (DHTnil and iCTPH). The latter group presents some
specific costs which do not scale linearly since they have
minimum setting costs necessary for operation, as the need
for storing the Chord finger table and reference points list
in each node (which in our case are kept fixed for all data
set sizes). These two values are counted in the final memory
requirement and, as the digests of both approaches have a
short length, this setting cost stands out for small data sets.

According to our results, we see a significant disparity
from one approach to another, especially increasing the data
set size.This fact is noticed comparing the brute force (TLSH)
and BF-based tree approaches. For a 1 TiB data set, the
difference is ≈4915 times. The main reason for this is related
to the approximate matching tool being used, a fact that can
be corroborated comparing all other approaches with the
ones using sdhash. Comparing the brute force approaches
using TLSH (35 bytes) and ssdeep (up to 96 bytes) with the
one using sdhash (vary according to the object size: ≈2.6%),
we can see another great disparity, sdhash being 374.50
and 136.53 times more expensive than TLSH and ssdeep,
respectively. The same applies to F2S2 and the methods
using Bloom/Cuckoo filters (MRSH-NET, BF-based tree, and
MRSH-CF), where the former beats the others since it is
based on ssdeep and the others on sdhash.

Due to efficiency reasons, the structures should fit into
main memory, a major problem for some strategies as the
reference list grows. By the results, we can see that BF-
based tree approach stands out due to its high memory
consumption in comparison to the others. It has a bad

compression rate, consuming about 336GiB of memory for
1 TiB data set size (corresponding to 32.81% of the whole
set size). Given a blacklisting case and the increasing size of
data nowadays, since images and videos are becoming larger
due to high-quality standards, 1 TiB is a reasonable size to
consider. Therefore, this approach becomes impractical for
examiners to handle. On the other hand, for the same amount
of data, F2S2 consumes only 1.71 GiB in its compressed form
(0.17%), which is easier to deal with. Other strategies like
brute force (TLSH), brute force (ssdeep), DHTnil, and iCTPH
consume even less, about 70, 192.00, 96.43, and 288.43MiB,
respectively. The structure size must be taken into consider-
ation when choosing a strategy. A good choice would be the
one that fits at the hardware specifications of the processing
machine since loading the entire structure intomainmemory
is the desirable form to have a more efficient search.

4.2.2. Lookup Complexity. The lookup complexity gives us
an idea on how the strategies would scale in response to the
reference list data set increase, presented in the form of Big-
O notation. Table 2 shows the asymptotic upper bound for
performing a single lookup. Our results indicateMRSH-NET
and MRSH-CF as the best options for performing efficient
queries, with time complexity of 𝑂(1), although they are
limited to only membership queries. Besides, experiments
corroborate this statement since they indicate that MRSH-
NET (best case) is about 12 times faster than sdhash brute
force [31]. The BF-based tree strategy comes up as our
third option, with𝑂(log(𝑛)) complexity. All other approaches
presented complexity equal to the naive brute force method
(𝑂(𝑛)).

Although the lookup complexity is an important and nec-
essary measurement for evaluating similarity digest search
strategies, in some cases having experiments on time spent
in the process is a more accurate form of comparison.
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Figure 3: Memory requirements: growing behavior of the strategies according to the data set increasing.

Most strategies are much faster than brute force for normal
operating conditions and yet have the same time complexity,
as F2S2, for instance. Winter et al. [27] show that calcu-
lating the complexity of this approach requires two steps:
finding candidates (digests sharing the same 𝑛-gram as the
queried item) and similarity calculus. The first task can be
accomplished with 𝑂(log(𝑛)) for fixed index table or 𝑂(1)
for dynamic resizing of the index table, while the second
one presents complexity similar to brute force: 𝑂(𝑛). The
reason for this high complexity is because the effort required
is proportional to the size of the reference list. Then, when
summing the complexity of the two steps, we get a complexity
of 𝑂(𝑛) + 𝑂(log(𝑛)) ≈ 𝑂(𝑛) (single lookup) for both
dynamic resizing and fixed index table. However, in practice,
the benefits achieved by F2S2 will depend mainly on the
efficiency and effectiveness of the candidates’ selection. As
we will not compare the queried item with all reference list
digests but with a restricted set of those sharing the same 𝑛-
grams with it, we expect a much faster process. According to
Winter et al. [27] experiments, F2S2 achieved speedup above
2000 times faster than ssdeep brute force.

Other strategies may also be faster than the brute force
approach, as DHTnil and iCPTH. In both methods, instead
of computing 𝑟 operations for a single lookup procedure
just like the brute force approach, we compute only 𝑝 + 𝑙
operations, where 𝑝 denotes the number of reference points
chosen and 𝑙 the sum of the number of digests presented in
each selected node. The sum 𝑝 + 𝑙 is expected to be much
smaller than 𝑟, resulting in a significant reduction in the
search time in practice. However, the time complexity for
this approach is the same as the brute force one (𝑂(𝑟)), since
𝑝 + 𝑙 is proportional to the data set size and increases with
it.

This way, it is important to analyze the strategies regard-
ing their time complexity and their running time for a more
accurate comparison, since some schemes may perform bet-
ter in practice. We did not evaluate the running time for the
strategies since some of them do not have a prototype, their

source code is unavailable, and/or they require a complex
environment for performing the experiments (e.g., DHTnil
and iCPTH which are P2P-based approaches). However,
we planned as future work to analyze the strategies and
derive equations to estimate their time for both phases, the
preparation and operational one. This will allow us to study
how the approaches scale in practice and in which conditions
one is better than the other.

4.2.3. False Positives. As discussed in Section 4.1.3, some
approaches create false positives in the similarity digest
search, asMRSH-NET, BF-based tree, andMRSH-CF. Others
do not have the match decision incorporated in the strategy
(brute force) and rely on the decision given by the tool.

DHTnil, iCTPH, and F2S2 are a middle term class since
they have the match decision associated with the strategy.
However, they do not create new false positives because
the approach does not decide which objects are similar.
The process is delegated to a function derived from the
approximate matching tool and their goal is to separate a
small set of possible candidates only. The tool’s comparison
function is later used to compare the set with the queried
item to decide the similarity and hence reduce the number
of objects to be manually inspected by forensics examiners.

4.2.4. Resemblance/Containment Detection. Detecting both
resemblance and containment is a desirable property in any
approximate matching tool since an examiner can find either
of the objects that resemble each other as those contained
in another. However, most approximate matching techniques
are designed to detect only resemblance, the most basic
operation mode. sdhash is the only one that can efficiently
identify both modes. This statement is corroborated by Lee
and Atkison [37] showing that sdhash performed the best
regarding this aspect in comparison to most tools. Since the
strategy is mostly tied to the tool it uses, it becomes limited
to the sort of detection performed by it.
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Most strategies analyzed in this work cannot detect
containment. Only those based on sdhash have this ability
(MRSH-NET, BF-based tree, and MRSH-CF). There is no
current analysis about the effectiveness of the strategies and
the amount of data shared between two objects in order
to detect containment. However, as these strategies encode
the features extracted by sdhash in the filter structures, any
element sharing the same features will be a possible candidate
for both detection modes. Since the strategies require a
minimum number of following features found in the filter to
consider it a match, any object fragment (small piece of data)
already stored in the set is expected to have its features found
in the filter and be considered a match.

4.2.5. Approximate Matching Tool’s Precision. The search pre-
cision is more tied to the tool than the strategy itself. In some
cases, the strategy only reduces the number of comparisons
the examiner should do. While some approaches are based
on tools like sdhash, which have interesting characteristics
and can detect resemblance and containments for a variety of
object sizes without compromising the results, others rely on
limited tools. An example is the classic ssdeep, limited to only
comparing objects of similar sizes and not suitable for dealing
with large objects. This is corroborated by Roussev [10]
and Breitinger et al. [38], showing that sdhash outperforms
ssdeep in accuracy and scalability. Furthermore, Breitinger
and Roussev [39] presented an evaluation of ssdeep, mrsh-
v2, and sdhash using real data (extracted from the t5 corpus
database [10]). They have analyzed the precision and recall
rates of these tools and pointed out that sdhash had the best
overall performance.The authors also stated that even though
the precision rates of ssdeep and sdhash are high, the recall of
all tools was relatively low.

With respect to Nilsimsa tool, Oliver et al. [25] state
that even though this technique has powerful capabilities
for resemblance detection, it suffers from significantly higher
false positive rates than TLSH. Harichandran et al. [11]
mention that TLSH is less powerful than sdhash for cross
correlation.

Considering the tools’ precision aspect, the strategies
using sdhash are a better choice than the ones using ssdeep,
Nilsimsa, or TLSH since the final result will be more accurate
and scalable. Besides, it can detect both detection modes
efficiently.

5. Discussion

All similarity digest search strategies presented in this work
either show a high cost associated with memory require-
ments, have an approximatematching functionnot as suitable
as the best ones available nowadays, or have high costs
related to the lookup procedure. In the first case, we have the
Bloom filter-based tree strategy which incorporates sdhash
as similarity function, with good results from detection rates
in both resemblance and containment. However, the tree
structure is too memory-consuming and becomes infeasible
to work with for large data sets. On the other hand, F2S2
presents better scalability regarding memory consumption,

but it uses ssdeep as similarity function, which has several
limitations that can compromise and/or restrict an analysis.

Other strategies that use a good similarity tool (sdhash),
as MRSH-NET andMRSH-CF, for instance, with low lookup
complexity and less memory consumption compared to
the BF-based tree approach, are restricted to membership
queries, which limits their application.The two P2P strategies
(DHTnil and iCPTH) require the smallest memory in aver-
age, but they use weak approximate matching tools (Nilsimsa
and ssdeep), require several machines working together, and
may suffer from network communication delays. The fewer
the machines are used, the more the P2P strategies become
similar to brute force. The more the machines, the higher the
costs and delays.

The brute force methods are very time-consuming, inde-
pendent of the chosen similarity tool due to the high number
of comparisons when comparing large data sets. Any other
strategies can perform better than this naive approach. They
are not suitable candidates for conducting investigations
since the amount of data for each case has been increasing
very fast [1]. Besides, they are strongly dependent on the tool
in terms of precision, time, and memory requirement.

Our findings show that none of the similarity digest
search strategies presented so far address at least the most
desirable aspects: low memory requirement, high detection
capabilities (for both resemblance and containment), and
efficient lookup procedure. New strategies are required to
address the overwhelming amount of data forensics examin-
ers have to deal with. For this reason, in Section 7 we present
some requirements for a new similarity digest search strategy,
aiming to fulfill themost desirable points discussed so far and
also other complementary characteristics.

6. Conclusion

This paper presented the state of the art of similarity digest
search strategies aiming at reducing the time taken in
forensics investigations. By using white/black lists, examiners
can lessen the amount of time it takes in the search for
evidence and/or reduce the volume of data analyzed. We
detailed the working process of each strategy and performed
a comparison of them regarding their characteristics to point
out strengths and weakness. Among all aspects evaluated, we
highlight the three most important ones: time complexity,
memory requirement, and search precision. Our analysis
showed that even though some strategies outperform others
in some aspects, they fail in others. There is no currently
suitable approach combining at least the most relevant
requirements, exposing an opportunity on the field.

7. Future Directions

Future work on KFF techniques can be divided into two
categories: approximate matching tools and similarity digest
search strategies.

Since the search precision of the strategies is usually tied
to the approximate matching tool under use, improvements
on this topic are necessary. New research is needed to
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compare the existing tools more precisely. sdhash, developed
in 2010, is the most well-known tool and still the most accu-
rate one, able to detect both resemblance and containment,
a missing characteristic in newer tools. Improving sdhash
regarding some of its limitations can be a target of future
studies. Also, as new approaches have come up recently
and have been compared mostly to sdhash to show their
improvements, an evaluation of all available approximate
matching tools according to their precision, time, and space
is required to expose the big picture and show the deficiencies
still existing in the field.

Concerning the similarity digest search strategies, future
work involves analyzing the approaches to derive equations
and estimate the amount of time taken in a practical scenario.
An analysis of the effectiveness of current strategies (MRSH-
NET, BF-based tree, and MRSH-CF) in detecting object
containment is also required.

Given the limitations of current approaches, we present a
set of requirements for a new similarity digest search strategy
which seeks to address the main issues on investigations
dealing with massive amounts of data. A desirable approach
is the one which fulfills the following requirements:

(i) Having low memory consumption
(ii) Having efficient lookup procedure (low time com-

plexity)
(iii) Supporting the most accurate approximate matching

tools
(iv) Allowing both detection modes: resemblance and

containment
(v) Returning the actual object(s) similar to the queried

item (in contrast to membership queries)
(vi) Having no extra false positives in the process
(vii) Relying on its own storage structure
(viii) Inserting/removing elements dynamically

Ideally, this new strategy would fulfill all requirements.
As shown by our analysis, none of the current approaches
can address well all these aspects, since they mostly focus on
improving only a particular aspect in detriment of the others.
Finding a balance of these requirements would already be a
significant improvement to the field, allowing more efficient
investigations in an era of an overwhelming amount of data.

Appendix

A. Strategies

To estimate the amount of space required by each strategy
for comparing them and analyzing how they scale with the
data increasing, we developed and adapted some formulas.
In the calculus, we first needed to estimate the number
of files a data set with the chosen size would have. Then,
we can calculate the number of digests that needed to be
created of all objects, the number of entries in the hash
tables, the size of the Bloom filters, and any other parameters
required. To this end, we estimate an average object size

and divide it by the data set size. The object size chosen
was 512 KiB (this is an approximation of the size found
in some known forensics data sets, as the govdoc-corpus
(http://digitalcorpora.org/corpora/files (last accessedMay 25,
2017).), for instance). For the rest of this section, we will
consider 𝑛 as the number of objects in the reference list.

A.1. Brute Force. The costs associated with memory require-
ment for the brute force approaches will be calculated for the
two most used and known tools nowadays, which are ssdeep
and sdhash. We will also consider the TLSH tool although
none of the similarity strategies presented in the paper use
it as approximate matching tool. We will show how TLSH
would perform in an investigation as a brute force strategy
due to its interesting characteristics (precision and recall rates
and low digest length) and because it is a recently developed
technique. Even though saHash [40] was newer, it was not
chosen because it only works for objects of similar sizes and
produces a minimum digests length of 769 bytes (≈22 times
greater than TLSH).

(1) ssdeep andTLSH.Thememory consumption of ssdeep and
TLSH is calculated in the same way, by

𝑚ss = 𝑛 ⋅ 𝑠ss, (A.1)

where 𝑠ss is the size of the digest created by ssdeep/TLSH.

(2) sdhash. To calculate the memory requirement for sdhash,
first, we need to estimate the number of features present
in an object (on average). According to Breitinger et al.
[32], “sdhash maps 160 features into a Bloom filter for every
approximately 10 KiB of input file.” This way, we can calculate
𝑧 (number of features) in the following way:

𝑧 = (𝜇 ⋅ 220 ⋅ 160)
(10 ⋅ 210) = 214 ⋅ 𝜇, (A.2)

where 𝜇 is the reference list size (MiB) and 220 and 210 are
factors to change, from MiB and KiB to bytes, respectively.
Once we have calculated the number of features on the
reference list, we can figure out how many Bloom filters
will be needed to represent all these features and hence the
memory requirement. To this end, we use

𝑚sd = (𝑧 ⋅ 𝑠bf)
𝑓max

(bits) , (A.3)

where 𝑠bf is the size of each Bloom filter (bits) and 𝑓max
the maximum number of features allowed to be inserted by
sdhash in each filter.

A.2. DHTnil. To calculate the memory requirement for
DHTnil, we can use

𝑚Dnil = (𝑛 ⋅ 𝑠nil) + (𝑛nodes ⋅ (𝐿 f t + 𝐿 rp)) (bits) , (A.4)

where 𝑠nil is the size of Nilsimsa digests (256 bits), 𝑛nodes is
the number of nodes in the Chord network, 𝐿 f t the size of

http://digitalcorpora.org/corpora/files
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the routing table of each node, and 𝐿 rp the size of the list of
reference points stored in each node. We choose the number
of entries in each finger table as 𝑚 = log(𝑁), where𝑁 is the
number of nodes. The finger table size is

𝐿 f t = (2 ⋅ 𝐿 id ⋅ 𝑚) + 𝐿 idP + 𝐿 idS (bits) , (A.5)

where 𝐿 id is the ID length of each one of the 𝑚 entries (key
and value), 𝐿 idP is the ID length of the predecessor node,
and 𝐿 idS is the ID length of the successor node. These values
are necessary information to the management of the Chord
nodes. Also, 𝐿 rp refers to a list of digests which represent the
reference nodes kept by each node to manage the search. Its
length is

𝐿 rp = 𝑛rf ⋅ 𝑠nil (bits) , (A.6)

where 𝑛rf is the reference points number chosen.

A.3. iCPTH. The same formula used by DHTnil is applied
to iCPTH (see (A.4)). The difference here is the digest size,
where ssdeep is used instead of Nilsimsa.

A.4. F2S2. Equation (A.7) estimates the amount of memory
required for this strategy:

𝑚F2S2 = 𝑛 ⋅ 𝑠ss ⋅ (1 + 𝑝fac) + 𝑠name (bytes) , (A.7)

where 𝑠ss is the size of ssdeep digests, 𝑝fac the payload factor
added for the index (between 7 and 8), and 𝑠name the length
of each object name in the reference list.

A.5. MRSH-NET. To calculate the amount of memory
required for the MRSH-NET approach, we can use the
equation from Breitinger et al.’s work [31]:

𝑚MRSH-NET = 𝑘 ⋅ 𝑠 ⋅ 214
ln (1 − 𝑘⋅𝑟min√𝑝𝑓) (bits) , (A.8)

where 𝑘 denotes the number of subhashes, 𝑠 the object set
size in MiB, 214 the number of features in the set 𝑠, 𝑟min the
number of following features required to produce a match,
and 𝑝𝑓 the probability of false positive for an object.

A.6. BF-Based Tree. Estimating the amount of memory
required for this approach can be done using Breitinger’s
equations [31]. We first need to determine the size of the root
Bloom filter, using

𝑚BFroot = ⌈−𝑧 ⋅ ln𝑝
ln (2)2 ⌉ (bits) , (A.9)

where 𝑧 is the number of features in the set (estimated by
(A.2)) and 𝑝 the false positive probability for a single feature,
calculated by 𝑝 = 𝑟min√𝑝𝑓. The parameter 𝑟min is the number
of consecutive features needed to be found in the filter and 𝑝𝑓
the false positive probability for an object.

The next step involves calculating the level of the tree,
using

ℎ = log𝑥 (𝑛) , (A.10)

where 𝑥 is the degree of the tree (e.g., 𝑥 = 2 for a binary tree).

Table 3: Similarity digest search strategies experiments: parameters.

Parameter Value
𝑠ss (ssdeep) 96 (bytes)
𝑠ss (TLSH) 35 (bytes)
𝑠nil 256 (bits)
𝑠bf 2048 (bits)
𝑓max 160 (features)
𝑘 5 (subhashes)
𝑟min 6 (features)
𝑝𝑓 10−6
𝑝 0.1
𝑥 2 (binary)
𝛼 0.95
𝑏 4 (items/bucket)
𝑝fac 8
𝑠name 10 (bytes)
𝐿 id/𝐿 idP/𝐿 idS 160 (bits)
𝑚 10 (nodes)

Then we calculate the memory required for the Bloom
filter tree structure using

𝑚BFtree = 𝑚BFroot ⋅ ℎ (bits) , (A.11)

where 𝑚BFroot denotes the size of the Bloom filter root (see
(A.9)) and ℎ the level of the tree (see (A.10)).
A.7. MRSH-CF. To estimate the amount of memory required
for MRSH-CF, we first need to compute the tag size for each
item, which can be done using

𝑓 = log2 ( 1𝑝) + log2 (2 ⋅ 𝑏) (bits) . (A.12)

Here, 𝑝 is the false positive probability for a single feature and
𝑏 the number of entries of each bucket in the hash table.

Then, we need to estimate the average of bits per item 𝐶.
According to Fan et al. [34], each entry in the hash table stores
one fingerprint, but not all of them are occupied. This way,
there must be some slack in the table to the avoid failures
when inserting new items, making each item cost more than
a fingerprint. This value can be calculate by

𝐶 = 𝑓
𝛼 (bits/item) . (A.13)

𝛼, in this case, is the load factor (0 ≤ 𝛼 ≤ 1) used to express
the percentage of the filter currently used.

Finally, we can estimate the amount of memory required
by MRSH-CF using

𝑚MRSH-CF = 𝑧 ⋅ 𝐶 (bits) , (A.14)

where 𝑧 is the number of features extracted from the reference
list (see (A.2)) and 𝐶 the average bit per item (see (A.13)).

B. Parameters

For our experiments, we have adopted the parameters pre-
sented in Table 3.
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[9] C. F. Dorneles, R. Gonçalves, and R. dos Santos Mello,
“Approximate data instancematching: a survey,”Knowledge and
Information Systems, vol. 27, no. 1, pp. 1–21, 2011.

[10] V. Roussev, “An evaluation of forensic similarity hashes,”Digital
Investigation, vol. 8, pp. S34–S41, 2011.

[11] V. S. Harichandran, F. Breitinger, and I. Baggili, “Bytewise
approximate matching: the good, the bad, and the unknown,”
Journal of Digital Forensics, Security and Law, vol. 11, no. 2,
article 59, 2016.

[12] Y. Li, S. C. Sundaramurthy, A. G. Bardas, X. Ou, D. Caragea,
X. Hu et al., “Experimental study of fuzzy hashing in malware
clustering analysis,” in Proceedings of the 8th workshop on cyber
security experimentation and test (CSET ’15), vol. 5, p. 52,
USENIX Association.

[13] P. C. Bjelland, K. Franke, and A. Årnes, “Practical use of
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