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The constrained rankminimization problemhas various applications inmany fields includingmachine learning, control, and signal
processing. In this paper, we consider the convex constrained rank minimization problem. By introducing a new variable and
penalizing an equality constraint to objective function, we reformulate the convex objective function with a rank constraint as
a difference of convex functions based on the closed-form solutions, which can be reformulated as DC programming. A stepwise
linear approximative algorithm is provided for solving the reformulatedmodel.Theperformance of ourmethod is tested by applying
it to affine rank minimization problems and max-cut problems. Numerical results demonstrate that the method is effective and of
high recoverability and results on max-cut show that the method is feasible, which provides better lower bounds and lower rank
solutions compared with improved approximation algorithm using semidefinite programming, and they are close to the results of
the latest researches.

1. Introduction

In recent decades, with the increase of the system acquisition
and data services, the explosion of data poses challenges to
storage, transmission, and processing, as well as device
design. The burgeoning theory of sparse recovery reveals
the outstanding sensing ability on the large scales of high-
dimensional data. Recently, a new theory called compressed
sensing (or compressive sampling (CS)) has appeared. And
this theory is praised as a big deal in signal processing area.
This approach can acquire the signals while compressing
data properly. Its sampling frequency is lower than that of
Nyquist, whichmakes the collections of high resolution signal
possible. One noticeable merit of this approach is its ability
to combine traditional data collection and data compression
into a union when facing sparse representation signals. This
merit means that sampling frequency of signals, time and
computational cost consuming on data processing, and
expense for data storage and transmission are all greatly
reduced. Thus this approach leads signal processing to a new
age. However, same with CS, Low Rank Matrix theory can
also solve signal reconstruction problems that are related to
theory and practice. It is also carried out through exerting

dimension reduction treatments on unknown multidimen-
sion signals validly. And then use sparse concepts in a more
broad sense to the problems. That is to say, reconstruct
the original high-dimensional signals array completely or
approximately by a small number of values measured by
sparse (or reducing dimensions) sampling. Considering that
both of these two theories are closely related to intrinsic
sparsity of signals, we generally view them as sparse recovery
problems.Themain goal of sparse recovery problems is using
less linear measurement data to recovery high-dimensional
sparse signal. Its core mainly includes three steps: signal
sparse representation, linear dimension reduction measure,
and the nonlinear reconstruction of signal.The three parts for
the sparse recovery theory are closely related; each part will
have a significant impact on the quality of signal reconstruc-
tion. However, the nonlinear reconstruction of signal can be
seen as a special case of rank minimization problem to be
solved.

Constrained rank minimization problems have attracted
a great deal of attention over recent years, which aim to
find sparse solutions of a system. The problems are widely
applicable in a variety of fields including machine learning [1,
2], control [3, 4], Euclidean embedding [5], image processing
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[6], and finance [7, 8], to name but a few. There are some
typical examples of constrained rankminimization problems;
for example, one is affinematrix rankminimization problems
[5, 9, 10]

min 1

2
‖A (𝑋) − 𝑏‖

2

𝐹

s.t. rank (𝑋) ≤ 𝑘,
(1)

where 𝑋 ∈ 𝑅
𝑚×𝑛 is the decision variable and the linear

map A : 𝑅
𝑚×𝑛

→ 𝑅
𝑝 and vector 𝑏 ∈ 𝑅

𝑝 are known.
Equation (1) includes matrix completion, based on affine
rank minimization problem and compressed sensing. Matrix
completion is widely used in collaborative filtering [11,
12], system identification [13, 14], sensor network [15, 16],
image processing [17, 18], sparse channel estimation [19, 20],
spectrum sensing [21, 22], and multimedia coding [23, 24].
Another is max-cut problems [25] in combinatorial optimi-
zation

min Tr (𝐿𝑋)

s.t. diag (𝑋) = 𝑒

rank (𝑋) = 1

𝑋 ⪰ 0,

(2)

where𝑋 = 𝑥𝑥𝑇, 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝐿 = (1/4)(diag(𝑊𝑒) −𝑊),

𝑒 = (1, 1, . . . , 1)
𝑇, 𝑊 is the weight matrix, and so on. As a

matter of fact, these problems can be written as a common
convex constrained rank minimization model; that is,

min 𝑓 (𝑋)

s.t. rank (𝑋) ≤ 𝑘

𝑋 ∈ Γ ∩ Ω,

(3)

where 𝑓 : 𝑅𝑚×𝑛 → 𝑅 is a continuously differentiable convex
function, rank(𝑋) is the rank of a matrix 𝑋, 𝑘 ≥ 0 is a given
integer, Γ is a closed convex set, and Ω is a closed unitarily
invariant convex set. According to [26], a set 𝐶 ⊆ 𝑅𝑛×𝑛 is a
unitarily invariant set if

{𝑈𝑋𝑉:𝑈 ∈ 𝑈𝑚, 𝑉 ∈ 𝑈𝑛, 𝑋 ∈ 𝐶} = 𝐶, (4)

where 𝑈𝑛 denotes the set of all unitary matrices in 𝑅𝑛×𝑛.
Various types of methods have been proposed to solve (3) or
its special cases with different types of Γ ∩ Ω.

When Γ ∩ Ω is 𝑅𝑚×𝑛, (3) is the unconstrained rank
minimization problem. One approach is to solve this case by
convex relaxation of rank(⋅). Cai et al. [9] proposed singular
value thresholding (SVT) algorithm; Ma et al. [10] proposed
fixed point continuation (FPC) algorithm. Another approach
is to solve rank constraint directly. Jain et al. [27] proposed
simple and efficient algorithm Singular Value Projection
(SVP) based on the projected gradient algorithm. Haldar
and Hernando [28] proposed an alternating least squares
approach. Keshavan et al. [29] proposed an algorithm based
on optimization over a Grassmann manifold.

When Γ ∩ Ω is a convex set, (3) is a convex constrained
rank minimization problem. One approach is to solve it
by replacing rank constraint with other constraints, such as
trace constraint and norm constraint. Based on this, several
heuristicmethods have been proposed in literature; for exam-
ple, Nesterov et al. [30] proposed interior-point polynomial
algorithms; Weimin [31] proposed an adaptive seminuclear
norm regularization approach; in addition, semidefinite pro-
gramming (SDP) has also been applied; see [32]. Another
approach is to solve rank constraint directly. Grigoriadis
and Beran [33] proposed alternating projection algorithms
for linear matrix inequalities problems. Mohseni et al. [24]
proposed penalty decomposition (PD) method based on
penalty function. Gao and Sun [34] recently proposed the
majorized penalty approach. Burer et al. [35] proposed
nonlinear programming (NLP) reformulation approach.

In this paper, we consider problem (3). We introduce a
new variable and penalize equality constraints to objective
function. By this technique, we can obtain closed-form
solution and use it to reformulate the objective function in
problem (3) as a difference of convex functions; then (3) is
reformulated as DC programming which can be solved via
linear approximation method. A function is called DC if it
can be represented as the difference of two convex functions.
Mathematical programming problems dealingwithDC func-
tions are called DC programming problems. Our method is
different from original PD [26]; for one thing we penalize
equality constraints to objective function and keep other
constraints, while PD penalizes all except rank constraint
to objective function, including equality and inequality con-
straints; for another each subproblem of PD is approximately
solved by a block coordinate descent method, while we
approximate problem (3) to a convex optimization to be
solved finally. Compared with PD method, our method uses
the closed-form solutions to remove rank constraint, while
PD needs to consider rank constraint in each iteration. It is
known that rank constraint is a nonconvex and discontinuous
constraint, which is not easy to deal. And due to the
remaining convex constraints, the formulated programming
can be solved by solving a series of convex programming.
In our method, we use linear function instead of the last
convex function to formulate the programming to convex
programming. We test the performance of our method by
applying it to affine rank minimization problems and max-
cut problems. Numerical results show that the algorithm is
feasible and effective.

The rest of this paper is organized as follows. In Section 1.1,
we introduce the notation that is used throughout the paper.
Our method is shown in Section 2. In Section 3, we apply it
to some practical problems to test its performance.

1.1. Notations. In this paper, the symbol 𝑅𝑛 denotes the 𝑛-
dimensional Euclidean space, and the set of all𝑚×𝑛matrices
with real entries is denoted by 𝑅𝑚×𝑛. Given matrices𝑋 and 𝑌
in 𝑅𝑚×𝑛, the standard inner product is defined by ⟨𝑋, 𝑌⟩ fl
Tr(𝑋𝑌𝑇), where Tr(⋅) denotes the trace of a matrix. The
Frobenius norm of a real matrix 𝑋 is defined as ‖𝑋‖

𝐹
fl

√Tr(𝑋𝑋𝑇). ‖𝑋‖
∗
denotes the nuclear norm of 𝑋, that is, the

sumof singular values of𝑋.The rank of amatrix𝑋 is denoted
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by rank(𝑋). We use 𝐼
𝑞
to denote the identity matrix, whose

dimension is 𝑞.Throughout this paper, we always assume that
the singular values are arranged in nonincreasing order, that
is, 𝜎
1
≥ 𝜎
2
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑟
> 0 = 𝜎

𝑟+1
= ⋅ ⋅ ⋅ = 𝜎min{𝑚,𝑛}. 𝜕𝑓 denotes

the subdifferential of the function 𝑓. We denote the adjoint
of 𝐴 by 𝐴∗. ‖𝐴𝐴𝑇‖

(𝑘)
is used to denote Ky Fan 𝑘-norms. Let

𝑃
Ω
be the projection onto the closed convex setΩ.

2. An Efficient Algorithm Based on
DC Programming

In this section, we first reformulated problem (3) as aDCpro-
gramming problem with the convex constrained set, which
can be solved via stepwise linear approximation method.
Then, the convergence is provided.

2.1. Model Transformation. Let𝑋 = 𝑌. Problem (3) is rewrit-
ten as

min 𝑓 (𝑋)

s.t. 𝑋 = 𝑌,

rank (𝑌) ≤ 𝑘,

𝑋 ∈ Γ ∩ Ω.

(5)

Adopting penalty function method to penalize 𝑋 = 𝑌 to
objective function and choosing proper penalty parameter 𝜌,
then (5) can be reformulated as

min 𝑓 (𝑋) +
𝜌

2
‖𝑋 − 𝑌‖

2

𝐹

s.t. rank (𝑌) ≤ 𝑘,

𝑋 ∈ Γ ∩ Ω.

(6)

Solving 𝑌 with fixed𝑋 ∈ Γ ∩ Ω, (6) can be treated as

min
𝑋

{𝑓 (𝑋) + min
rank(𝑌)≤𝑘

𝜌

2
‖𝑋 − 𝑌‖

2

𝐹
}

s.t. 𝑋 ∈ Γ ∩ Ω.

(7)

In fact, given the singular value decomposition, 𝑋 = 𝑈𝑆𝑉𝑇,
and singular values of 𝑋: 𝜎

𝑗
(𝑋), 𝑗 = 1, . . . ,min{𝑚, 𝑛}, where

𝑈 ∈ 𝑅
𝑚×𝑚and𝑉 ∈ 𝑅𝑛×𝑛 are orthogonalmatrices, theminimal

optimal problem with respect to 𝑌 with 𝑋 fixed in (7), that
is, minrank(𝑌)≤𝑘(𝜌/2)‖𝑋 − 𝑌‖

2

𝐹
, has closed-form solution 𝑌 =

𝑈𝐶𝑉
𝑇 with

𝐶 = (

𝐷 0

0 0
) , (8)

where 𝐷 = diag(𝜎
1
, 𝜎
2
, 𝜎
3
, . . . , 𝜎

𝑘
) ∈ 𝑅

𝑘×𝑘. Thus, by the
closed-form solution and the unitary invariance of 𝐹-norm,
we have

min
rank(𝑌)≤𝑘

𝜌

2
‖𝑋 − 𝑌‖

2

𝐹
= min

rank(𝑌)≤𝑘

𝜌

2


𝑈
𝑇
𝑋𝑉 − 𝑈

𝑇
𝑌𝑉


2

𝐹

=
𝜌

2
‖𝑆 − 𝐶‖

2

𝐹

=
𝜌

2
‖𝑋‖
2

𝐹
−
𝜌

2

𝑘

∑

𝑖=1

𝜎
2

𝑖
(𝑋) .

(9)

Substituting the above into problem (7), problem (3) is refor-
mulated as

min 𝑓 (𝑋) +
𝜌

2
‖𝑋‖
2

𝐹
−
𝜌

2

𝑘

∑

𝑖=1

𝜎
2

𝑖
(𝑋)

s.t. 𝑋 ∈ Γ ∩ Ω.

(10)

Clearly, 𝑓(𝑋) + (𝜌/2)‖𝑋‖2
𝐹
is a convex function about 𝑋.

Define function 𝑔 : 𝑅𝑚×𝑛 → 𝑅, 𝑔(𝑋) = ∑𝑘
𝑖=1
𝜎
2

𝑖
(𝑋), 1 ≤ 𝑘 ≤

min{𝑚, 𝑛}. Next, we will study the property of 𝑔(𝑋). Problem
(3) would be reformulated as a DC programming problem
with convex constraints if 𝑔(𝑋) is a convex function, which
can be solved via stepwise linear approximation method. In
fact, it does hold, and 𝑔(𝑋) equals a trace function.

Theorem 1. Let

𝑊 = (

𝐼
𝑘
𝑂

𝑂 𝑂

) ∈ 𝑅
𝑚×𝑚

, (11)

where 𝑂 denotes zero matrix whose dimension is determined
depending on context; then, for any 𝑋 = 𝑈𝑆𝑉

𝑇
∈ 𝑅
𝑚×𝑛, the

following hold:

(1) 𝑔(𝑋) is a convex function;

(2) 𝑔(𝑋) = Tr(𝑋𝑇𝑈𝑊𝑈𝑇𝑋).

Proof. (1) Since {𝜎2
𝑗
(𝑋) 𝑗 = 1, . . . ,min(𝑚, 𝑛)} are eigenvalues

of𝑋𝑋𝑇, then 𝑔(𝑋) = ∑𝑘
𝑖=1
𝜎
2

𝑖
(𝑋) = ‖𝑋𝑋

𝑇
‖
(𝑘)
, where ‖ ⋅ ‖

(𝑘)
is

Ky Fan 𝑘-norms (defined in [36]). Clearly, ‖ ⋅ ‖
(𝑘)

is a convex
function. Let 𝜑(⋅) = ‖ ⋅ ‖

(𝑘)
, 1 ≤ 𝑘 ≤ min{𝑚, 𝑛}. For ∀𝐴, 𝐵 ∈

𝑅
𝑚×𝑛 and 𝛼 ∈ [0, 1] we have

𝑔 (𝛼𝐴 + (1 − 𝛼) 𝐵)

= 𝜑 ((𝛼𝐴 + (1 − 𝛼) 𝐵) (𝛼𝐴 + (1 − 𝛼) 𝐵)
𝑇
)

= 𝜑 (𝛼
2
𝐴𝐴
𝑇
+ 𝛼 (1 − 𝛼)𝐴𝐵

𝑇
+ 𝛼 (1 − 𝛼) 𝐵𝐴

𝑇

+ (1 − 𝛼)
2
𝐵𝐵
𝑇
) ≤ 𝛼
2
𝜑 (𝐴𝐴

𝑇
) + 𝛼 (1 − 𝛼)

⋅ 𝜑 (𝐴𝐵
𝑇
) + 𝛼 (1 − 𝛼) 𝜑 (𝐵𝐴

𝑇
) + (1 − 𝛼)

2
𝜑 (𝐵𝐵

𝑇
) .

(12)
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Note that 𝐵𝐴𝑇 = (𝐴𝐵𝑇)𝑇; thus they have the same nonzero
singular values, and then 𝜑(𝐵𝐴𝑇) = 𝜑(𝐴𝐵𝑇) holds. Together
with (12), we have

𝜑 ((𝛼𝐴 + (1 − 𝛼) 𝐵) (𝛼𝐴 + (1 − 𝛼) 𝐵)
𝑇
)

≤ 𝛼
2
𝜑 (𝐴𝐴

𝑇
) + 2𝛼 (1 − 𝛼) 𝜑 (𝐴𝐵

𝑇
)

+ (1 − 𝛼)
2
𝜑 (𝐵𝐵

𝑇
) .

(13)

It is known that for arbitrary matrices 𝐴, 𝐵 ∈ 𝑅𝑚×𝑚,

𝜎
𝑗
(𝐴
∗
𝐵) ≤

1

2
𝜎
𝑗
(𝐴
∗
𝐴 + 𝐵

∗
𝐵) ,

1 ≤ 𝑗 ≤ 𝑚, (see Theorem IX.4.2 in [36]) .
(14)

Further,

𝑘

∑

𝑗=1

𝜎
𝑗
(𝐴
𝑇
𝐵) ≤

𝑘

∑

𝑗=1

1

2
𝜎
𝑗
(𝐴
∗
𝐴 + 𝐵

∗
𝐵) , 1 ≤ 𝑘 ≤ 𝑛. (15)

That is,

𝜑 (𝐴𝐵
𝑇
) ≤

1

2
𝜑 (𝐴𝐴

𝑇
+ 𝐵𝐵
𝑇
) , (16)

where𝐴𝐴𝑇 and 𝐵𝐵𝑇 are symmetric matrices. It is also known
that, for arbitrary Hermitianmatrices𝐴𝐴𝑇, 𝐵𝐵𝑇 ∈ 𝑅𝑚×𝑚, 𝑘 =
1, 2, . . . , 𝑚, the following holds (see Exercise II.1.15 in [24])

𝑘

∑

𝑗=1

𝜎
𝑗
(𝐴𝐴
𝑇
+ 𝐵𝐵
𝑇
) ≤

𝑘

∑

𝑗=1

𝜎
𝑗
(𝐴𝐴
𝑇
) +

𝑘

∑

𝑗=1

𝜎
𝑗
(𝐵𝐵
𝑇
) . (17)

Thus

𝜑 (𝐴
𝑇
𝐴 + 𝐵

𝑇
𝐵) = 𝜑 (𝐴𝐴

𝑇
+ 𝐵𝐵
𝑇
)

≤ 𝜑 (𝐴𝐴
𝑇
) + 𝜑 (𝐵𝐵

𝑇
) .

(18)

Together with (13) and (16), (18) yields

𝑔 (𝛼𝐴 + (1 − 𝛼) 𝐵) ≤ 𝛼𝜑 (𝐴𝐴
𝑇
) + (1 − 𝛼) 𝜑 (𝐵𝐵

𝑇
)

= 𝛼𝑔 (𝐴) + (1 − 𝛼) 𝑔 (𝐵) .

(19)

Hence, 𝑔(𝑋) = ∑𝑘
𝑖=1
𝜎
2

𝑖
(𝑋) is a convex function.

(2) Let Θ = diag(𝜎
1
, 𝜎
2
, 𝜎
3
, . . . , 𝜎

𝑟
) and 𝑟 is the rank of𝑋,

𝑘 ≤ 𝑟

𝑆 = (

Θ 𝑂

𝑂 𝑂

) (20)

and we have

Tr (𝑋𝑇𝑈𝑊𝑈𝑇𝑋) = Tr (𝑉𝑆𝑇𝑈𝑇𝑈𝑊𝑈𝑇𝑈𝑆𝑉𝑇)

= Tr (𝑉𝑆𝑇𝑊𝑆𝑉𝑇) = Tr (𝑆𝑇𝑊𝑆) .
(21)

Moreover

𝑆
𝑇

𝑊𝑆 = (

Θ 𝑂

𝑂 𝑂
)

𝑇

(

𝐼
𝑘
𝑂

𝑂 𝑂
)(

Θ 𝑂

𝑂 𝑂
) = (

Θ 𝑂

𝑂 𝑂

) , (22)

where Θ = diag (𝜎2
1
, 𝜎
2

2
, 𝜎
2

3
, . . . , 𝜎

2

𝑘
).

Thus, Tr(𝑆𝑇𝑊𝑆) = ∑𝑘
𝑖=1
𝜎
2

𝑖
(𝑋) = 𝑔(𝑋) holds.

According to above theorem, (10) can be rewritten as

min 𝑓 (𝑋) +
𝜌

2
‖𝑋‖
2

𝐹
−
𝜌

2
Tr (𝑋𝑇𝑈𝑊𝑈𝑇𝑋)

s.t. 𝑋 ∈ Γ ∩ Ω.

(23)

Since the objective function of (23) is a difference of convex
functions, the constrained set Γ ∩ Ω is a closed convex con-
straint, so (23) isDCprogramming.Next, wewill use stepwise
linear approximate method to solve it.

2.2. Stepwise Linear Approximative Algorithm. In this subsec-
tion, we use stepwise linear approximation method [37] to
solve reformulated model (23). Let 𝐹(𝑋) represent objective
function of model (23); that is,

𝐹 (𝑋) = 𝑓 (𝑋) +
𝜌

2
‖𝑋‖
2

𝐹
−
𝜌

2
Tr (𝑋𝑇𝑈𝑊𝑈𝑇𝑋) , (24)

and the linear approximation function of𝐹(𝑋) can be defined
as

𝐻(𝑋,𝑋
𝑖
) = 𝑓 (𝑋) +

𝜌

2
‖𝑋‖
2

𝐹

−
𝜌

2
{𝑔 (𝑋

𝑖
) + ⟨𝜕𝑔 (𝑋

𝑖
) , 𝑋 − 𝑋

𝑖
⟩} ,

(25)

where (𝜕𝑔(𝑋)/𝜕𝑋)(𝜕Tr(𝑋𝑇𝑈𝑊𝑈𝑇𝑋)/𝜕𝑋) = 2𝑈𝑊𝑈𝑇𝑋 (see
5.2.2 in [36]).

Stepwise linear approximative algorithm for solving
model (23) can be described as follows.

Given the initial matrix 𝑋0 ∈ Γ ∩ Ω, penalty parameter
𝜌 > 0, rank 𝑘 > 0, 𝜏 > 1, set 𝑖 = 0.

Step 1. Compute the single value decomposition of 𝑋𝑖,
𝑈
𝑖
Σ
𝑖
𝑉
𝑖
= 𝑋
𝑖
.

Step 2. Update

𝑋
𝑖+1
∈ arg min
𝑋∈Γ∩Ω

{𝐻 (𝑋,𝑋
𝑖
)} (26)

Step 3. If stopping criterion is satisfied, stop; else set 𝑖 ← 𝑖+1

and 𝜌 ← (1 + 𝜏)𝜌 and go to Step 1.

Remark

(1) Subproblem (26) can be done by solving a series of
convex subproblems.The efficient method for convex
programming is multiple and it has perfect theory
guarantees.
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(a) When Γ ∩ Ω is 𝑅𝑚×𝑛, closed-form solutions can
be obtained; for example, when solving model
(1), 𝑋𝑖+1 = (𝐴

∗
𝐴 + 𝜌𝐼)

−1
(𝜌𝑈
𝑖
𝑊(𝑈
𝑖
)
𝑇
𝑋
𝑖
) are

obtained by the first-order optimality condi-
tions

0 ∈ 𝜕𝑓 (𝑋) + 𝜌𝑋 − 𝜌𝑈
𝑖
𝑊(𝑈

𝑖
)
𝑇

𝑋
𝑖
. (27)

(b) When Γ ∩ Ω is a general convex set, the closed-
form solution is hard to get, but subproblem
(26) can be solved by some convex optimization
software programs (such as CVX and CPLEX).
According to different closed convex constraint
sets, we can pick and choose suitable convex
programming algorithm to combine with our
method. The toolbox listed in this paper is just
an alternative choice.

(2) The stop rule that we adopted here is ‖𝑋𝑖+1 −𝑋𝑖‖
𝐹
≤ 𝜀

with some 𝜀 small enough.

2.3. Convergence Analysis. In this subsection, we analyze
the convergence properties of the sequence {𝑋𝑖} generated
by above algorithm. Before we prove the main convergence
result, we give the following lemma which is analogous to
Lemma 1 in [10].

Lemma 2. For any 𝑌
1
and 𝑌

2
∈ 𝑅
𝑚×𝑛


𝑌
1
− 𝑌
2

𝐹
≤
𝑌1 − 𝑌2

𝐹
, (28)

where 𝑌
𝑖
is the pre-𝑘 singular values approximate of 𝑌

𝑖
(𝑖 =

1, 2).

Proof. Without loss of generality, we assume 𝑚 ≤ 𝑛 and the
singular value decomposition 𝑌

1
= 𝑈
1
𝑆
1
𝑉
𝑇

1
𝑌
2
= 𝑈
2
𝑆
2
𝑉
𝑇

2

with

𝑆
1
= (

diag (𝜎) 0
0 0

) ∈ 𝑅
𝑚×𝑛

𝑆
2
= (

diag (𝛾) 0
0 0

) ∈ 𝑅
𝑚×𝑛
,

(29)

where 𝜎 = (𝜎
1
, 𝜎
2
, . . . , 𝜎

𝑠
), 𝜎
1
≥ ⋅ ⋅ ⋅ ≥ 𝜎

𝑠
> 0 and 𝛾 =

(𝛾
1
, 𝛾
2
, . . . , 𝛾

𝑡
), 𝛾
1
≥ ⋅ ⋅ ⋅ ≥ 𝛾

𝑡
> 0. 𝑌

𝑖
can be written as

𝑌
𝑖
= 𝑈
𝑖
𝑊𝑆
𝑖
𝑉
𝑇

𝑖
, (𝑖 = 1, 2). Note that 𝑈

1
, 𝑉
1
, 𝑈
2
, 𝑉
2
are

orthogonal matrices; we have

𝑌1 − 𝑌2


2

𝐹
−

𝑌
1
− 𝑌
2



2

𝐹

= Tr ((𝑌
1
− 𝑌
2
)
𝑇

(𝑌
1
− 𝑌
2
))

− Tr ((𝑌
1
− 𝑌
2
)
𝑇

(𝑌
1
− 𝑌
2
))

= Tr (𝑌𝑇
1
𝑌
1
− 𝑌
1

𝑇

𝑌
1
+ 𝑌
𝑇

2
𝑌
2
− 𝑌
2

𝑇

𝑌
2
)

− 2Tr (𝑌𝑇
1
𝑌
2
− 𝑌
1

𝑇

𝑌
2
)

=

𝑠

∑

𝑖=1

𝜎
2

𝑖
−

𝑘

∑

𝑖=1

𝜎
2

𝑖
+

𝑡

∑

𝑖=1

𝛾
2

𝑖
−

𝑘

∑

𝑖=1

𝛾
2

𝑖

− 2Tr (𝑌𝑇
1
𝑌
2
− 𝑌
1

𝑇

𝑌
2
) .

(30)

And we note that

Tr (𝑌𝑇
1
𝑌
2
− 𝑌
1

𝑇

𝑌
2
) = Tr ((𝑌

1
− 𝑌
1
)
𝑇

(𝑌
2
− 𝑌
2
)

+ (𝑌
1
− 𝑌
1
)
𝑇

𝑌
2
+ 𝑌
1

𝑇

(𝑌
2
− 𝑌
2
))

= Tr (𝑉
1
(𝑆
1
−𝑊𝑆
1
)
𝑇

𝑈
𝑇

1
𝑈
2
(𝑆
2
−𝑊𝑆
2
) 𝑉
𝑇

2

+ 𝑉
1
(𝑆
1
−𝑊𝑆
1
)
𝑇

𝑈
𝑇

1
𝑈
2
𝑊𝑆
2
𝑉
𝑇

2

+ 𝑉
1
(𝑊𝑆)
𝑇
𝑈
𝑇

1
𝑈
2
(𝑆
2
−𝑊𝑆
2
) 𝑉
𝑇

2
)

= Tr ((𝑆
1
−𝑊𝑆
1
)
𝑇

𝑈 (𝑆
2
−𝑊𝑆
2
) 𝑉
𝑇

+ (𝑆
1
−𝑊𝑆
1
)
𝑇

𝑈𝑊𝑆
2
𝑉
𝑇

+ (𝑊𝑆
1
)
𝑇

𝑈 (𝑆
2
−𝑊𝑆
2
) 𝑉
𝑇
) ,

(31)

where 𝑈 = 𝑈𝑇
1
𝑈
2
, 𝑉 = 𝑉

𝑇

1
𝑉
2
are also orthogonal matrices.

Next we estimate an upper bound for Tr(𝑌𝑇
1
𝑌
2
− 𝑌
1

𝑇

𝑌
2
).

According to Theorem 7.4.9 in [38], we get that an orthog-
onal matrix 𝑈 is a maximizing matrix for the problem
max{Tr(𝐴𝑈):𝑈 is orthogonal}, if and only if 𝐴𝑈 is positive
semidefinite matrix. Thus, Tr((𝑆

1
− 𝑊𝑆

1
)
𝑇
𝑈(𝑆
2
− 𝑊𝑆

2
)𝑉
𝑇
),

Tr((𝑆
1
− 𝑊𝑆

1
)
𝑇
𝑈𝑊𝑆
2
𝑉
𝑇
), and Tr((𝑊𝑆)𝑇𝑈(𝑆

2
− 𝑊𝑆

2
)𝑉
𝑇
)

achieve their maximum, if and only if (𝑆
1
− 𝑊𝑆

1
)
𝑇
𝑈(𝑆
2
−

𝑊𝑆
2
)𝑉
𝑇, (𝑆
1
− 𝑊𝑆
1
)
𝑇
𝑈𝑊𝑆
2
𝑉
𝑇, and (𝑊𝑆

1
)
𝑇
𝑈(𝑆
2
− 𝑊𝑆
2
)𝑉
𝑇

are all positive semidefinite. It is known that when 𝐴𝐵 is
positive semidefinite,

Tr (𝐴𝐵) = ∑
𝑖

𝜎
𝑖
(𝐴𝐵) ≤ ∑

𝑖

𝜎
𝑖
(𝐴) 𝜎
𝑖
(𝐵) . (32)

Applying (32) to above three terms, we have

Tr ((𝑆
1
−𝑊𝑆
1
)
𝑇

𝑈 (𝑆
2
−𝑊𝑆
2
) 𝑉
𝑇
)

≤ ∑

𝑖

𝜎
𝑖
(𝑆
1
−𝑊𝑆
1
) 𝜎
𝑖
(𝑆
2
−𝑊𝑆
2
)

Tr ((𝑆
1
−𝑊𝑆
1
)
𝑇

𝑈𝑊𝑆
2
𝑉
𝑇
)

≤ ∑

𝑖

𝜎
𝑖
(𝑆
1
−𝑊𝑆
1
) 𝜎
𝑖
(𝑊𝑆
2
)

Tr ((𝑊𝑆
1
)
𝑇

𝑈(𝑆
2
−𝑊𝑆
2
) 𝑉
𝑇
)

≤ ∑

𝑖

𝜎
𝑖
(𝑊𝑆
1
) 𝜎
𝑖
(𝑆
2
−𝑊𝑆
2
) .

(33)
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Hence, without loss of generality, assuming 𝑘 ≤ 𝑠 ≤ 𝑡, we have

𝑌1 − 𝑌2


2

𝐹
−

𝑌
1
− 𝑌
2



2

𝐹

≥

𝑠

∑

𝑖=1

𝜎
2

𝑖
−

𝑘

∑

𝑖=1

𝜎
2

𝑖
+

𝑡

∑

𝑖=1

𝛾
2

𝑖
−

𝑘

∑

𝑖=1

𝛾
2

𝑖
− 2(

𝑠

∑

𝑖=𝑘+1

𝜎
𝑖
𝛾
𝑖
)

=

𝑠

∑

𝑖=𝑘+1

(𝜎
𝑖
− 𝛾
𝑖
)
2

+

𝑡

∑

𝑖=𝑠+1

𝛾
2

𝑖
≥ 0

(34)

which implies that ‖𝑌
1
− 𝑌
2
‖
𝐹
≤ ‖𝑌
1
− 𝑌
2
‖
𝐹
holds.

Next, we claim the value of iterations of stepwise linear
approximative algorithm is nonincreasing.

Theorem 3. Let {𝑋𝑖} be the iterative sequence generated by
stepwise linear approximative algorithm.Then {𝐹(𝑋𝑖)} is mon-
otonically nonincreasing.

Proof. Since𝑋𝑖+1 ∈ argmin{𝐻(𝑋,𝑋𝑖) | 𝑋 ∈ Γ ∩ Ω}, we have

𝐻(𝑋
𝑖+1
, 𝑋
𝑖
) ≤ 𝐻(𝑋

𝑖
, 𝑋
𝑖
)

= 𝑓 (𝑋
𝑖
) +

𝜌

2


𝑋
𝑖

2

𝐹
−
𝜌

2
𝑔 (𝑋
𝑖
)

= 𝐹 (𝑋
𝑖
) ,

(35)

and 𝜕𝑔(𝑋) is the subdifferential of 𝑔(𝑋), which implies

∀𝑋𝑌, 𝑔 (𝑋) ≥ 𝑔 (𝑌) + ⟨𝜕𝑔 (𝑌) , 𝑋 − 𝑌⟩ . (36)

Let𝑋 = 𝑋𝑖+1, 𝑌 = 𝑋𝑖 in above inequality; we have

𝑔 (𝑋
𝑖+1
) ≥ 𝑔 (𝑋

𝑖
) + ⟨𝜕𝑔 (𝑋

𝑖
) , 𝑋
𝑖+1
− 𝑋
𝑖
⟩ . (37)

Therefore,

𝐻(𝑋
𝑖+1
, 𝑋
𝑖
) = 𝑓 (𝑋

𝑖+1
) +

𝜌

2


𝑋
𝑖+1

2

𝐹

−
𝜌

2
{𝑔 (𝑋

𝑖
) + ⟨𝜕𝑔 (𝑋

𝑖
) , 𝑋 − 𝑋

𝑖
⟩}

≥ 𝑓 (𝑋
𝑖+1
) +

𝜌

2


𝑋
𝑖+1

2

𝐹
−
𝜌

2
𝑔 (𝑋
𝑖+1
)

= 𝐹 (𝑋
𝑖+1
) .

(38)

Consequently,

𝐹 (𝑋
𝑖+1
) ≤ 𝐻(𝑋

𝑖+1
, 𝑋
𝑖
) ≤ 𝐻(𝑋

𝑖
, 𝑋
𝑖
) = 𝐹 (𝑋

𝑖
) . (39)

We immediately obtain the conclusion as desired.

Next, we show the convergence of iterative sequence
generated by stepwise linear approximative algorithm when
solving (23).Theorem 4 shows the convergence when solving
(23) with Γ ∩ Ω = 𝑅𝑚×𝑛.

Theorem 4. Let Υ be the set of stable points of problem (23)
with no constraints; then the iterative sequence {𝑋𝑖} generated
by linear approximative algorithm converges to some𝑋𝑜𝑝𝑡 ∈ Υ
when 𝜌 → ∞.

Proof. Assuming that 𝑋opt
∈ Υ is any optimal solution of

problem (23) with Γ ∩ Ω = 𝑅𝑚×𝑛, according to the first-order
optimality conditions, we have

0 = 𝜕𝑓 (𝑋
opt
) + 𝜌𝑋

opt
− 𝜌𝑈

opt
𝑊(𝑈

opt
)
𝑇

𝑋
opt
. (40)

Since 𝑋𝑖+1 ∈ argmin𝑓(𝑋) + (𝜌/2)‖𝑋‖2
𝐹
− (𝜌/2){𝑔(𝑋

𝑖
) +

⟨𝜕𝑔(𝑋
𝑖
), 𝑋 − 𝑋

𝑖
⟩}, then

0 = 𝜕𝑓 (𝑋
𝑖+1
) + 𝜌𝑋

𝑖+1
− 𝜌𝑈
𝑖
𝑊(𝑈

𝑖
)
𝑇

𝑋
𝑖
. (41)

Equation (41) subtracts (40):

𝑋
𝑖+1
− 𝑋

opt
=
1

𝜌
(𝜕𝑓 (𝑋

𝑖+1
) − 𝜕𝑓 (𝑋

opt
))

+ 𝑈
opt
𝑊(𝑈

opt
)
𝑇

𝑋
opt

− 𝑈
𝑖
𝑊(𝑈

𝑖
)
𝑇

𝑋
𝑖

(42)

in which 𝑈
opt
𝑊(𝑈

opt
)
𝑇
𝑋

opt
− 𝑈

𝑖
𝑊(𝑈
𝑖
)
𝑇
𝑋
𝑖

=

𝑈
opt
𝑊∑

opt
(𝑉

opt
)
𝑇
− 𝑈
𝑖
𝑊∑
𝑖
(𝑉

opt
)
𝑇
.

By Lemma 2, we have


𝑈

opt
𝑊(𝑈

opt
)
𝑇

𝑋
opt
− 𝑈
𝑖
𝑊(𝑈

𝑖
)
𝑇

𝑋
𝑖
𝐹

=



𝑈
opt
𝑊

opt

∑ (𝑉
opt
)
𝑇

− 𝑈
𝑖
𝑊

𝑖

∑ (𝑉
𝑖
)
𝑇

𝐹

≤

𝑋
𝑖
− 𝑋

opt𝐹
.

(43)

Norming both sides of (42), by the triangle inequalities prop-
erty of norms, we have


𝑋
𝑖+1
− 𝑋

opt𝐹
= lim
𝜌→∞


𝑋
𝑖+1
− 𝑋

opt𝐹

≤ lim
𝜌→∞

(
1

𝜌


𝜕𝑓 (𝑋

𝑖+1
) − 𝜕𝑓 (𝑋

opt
)
𝐹

+

𝑋
𝑖
− 𝑋

opt𝐹
) = lim
𝜌→∞

1

𝜌


𝜕𝑓 (𝑋

𝑖+1
)

− 𝜕𝑓 (𝑋
opt
)
𝐹
+ lim
𝜌→∞


𝑋
𝑖
− 𝑋

opt𝐹
=

𝑋
𝑖

− 𝑋
opt𝐹 ,

(44)

which implies that the sequence {‖𝑋𝑖 − 𝑋opt
‖
𝐹
} is monoton-

ically nonincreasing when 𝜌 → ∞. We then observe that
{‖𝑋
𝑖
− 𝑋

opt
‖
𝐹
} is bounded, and hence lim

𝑖→∞
‖𝑋
𝑖
− 𝑋

opt
‖
𝐹

exists, denoted by ‖𝑋 − 𝑋opt
‖
𝐹
, where 𝑋 is the limited point

of {𝑋𝑖}. Let 𝑖 → ∞ in (41); by the continuity, we get
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0 = 𝜕𝑓(𝑋) + 𝜌𝑋 − 𝜌𝑈𝑊𝑈
𝑇

𝑋, which implies that 𝑋 ∈ Υ.
By setting𝑋 = 𝑋opt, we have

lim
𝑖→∞


𝑋
𝑖
− 𝑋

opt𝐹 =

𝑋 − 𝑋

opt𝐹 = 0, (45)

which completes the proof.

Now, we are ready to give the convergence of iterative
sequence when solving (23) with general closed convex Γ∩Ω.

Theorem 5. Let 𝜉 be the set of optimal solutions of problem
(23); then the iterative sequence {𝑌𝑖} generated by stepwise
linear approximative algorithm converges to some 𝑌𝑜𝑝𝑡 ∈ 𝜉
when 𝜌 → ∞.

Proof. Generally speaking, subproblem (26) can be solved by
projecting a solution obtained via solving a problem with
no constraints onto a closed convex set; that is, 𝑌𝑖+1 =

𝑃
Γ∩Ω
(𝑋
𝑖+1
), where 𝑋𝑖+1 ∈ argmin{𝐻(𝑋,𝑋𝑖)}. According to

Theorem 4, the sequence {‖𝑋𝑖 − 𝑋opt
‖
𝐹
} is monotonically

nonincreasing and convergent when 𝜌 → ∞; together with
thewell known fact that𝑃 is a nonexpansive operator, we have


𝑌
𝑖
− 𝑌

opt𝐹 =

𝑃
Γ∩Ω

(𝑋
𝑖
) − 𝑃
Γ∩Ω

(𝑋
opt
)
𝐹

≤

𝑋
𝑖
− 𝑋

opt𝐹 ,
(46)

where𝑌opt is the projection of𝑋opt onto Γ∩Ω. Clearly,𝑌opt
∈

𝜉.
Hence, 0 ≤ lim

𝑖→∞
‖𝑌
𝑖
− 𝑌

opt
‖
𝐹
≤ lim
𝑖→∞

‖𝑋
𝑖
− 𝑋

opt
‖
𝐹
=

0, which implies that 𝑌𝑖 converge to 𝑌opt. We immediately
obtain the conclusion.

3. Numerical Results

In this section, we demonstrate the performance of our
method proposed in Section 2 by applying it to solve affine
rank minimization problems (image reconstruction and
matrix completion) andmax-cut problems.The codes imple-
mented in this section are written in MATLAB and all
experiments are performed in MATLAB R2013a running
Windows 7.

3.1. Image Reconstruction Problems. In this subsection, we
apply our method to solve one case of affine rank minimiza-
tion problems. It can be formulated as

min 1

2
‖A (𝑋) − 𝑏‖

2

𝐹

s.t. rank (𝑋) ≤ 𝑘

𝑋 ∈ 𝑅
𝑚×𝑛
,

(47)

where 𝑋 ∈ 𝑅𝑚×𝑛 is the decision variable and the linear map
A : 𝑅

𝑚×𝑛
→ 𝑅
𝑝 and vector 𝑏 ∈ 𝑅𝑝 are known. Clearly, (47)

is a special case of problem (3). Hence, our method can be
suitably applied to (47).

Recht et al. [39] have demonstrated that when we sample
linearmaps froma class of probability distributions, then they
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Figure 1: Performance curves under four different measurement
matrices: SNR versus the number of linear constraints.

would obey the Restricted Isometry Property. There are two
ingredients for a random linear map to be nearly isometric.
First, it must be isometric in expectation. Second, the prob-
ability of large distortions of length must be exponentially
small. In our numerical experiments, we use four nearly
isometric measurements. The first one is the ensemble with
independent, identically distributed (i.i.d.) Gaussian entries.
The second one has entries sampled from an i.i.d. symmetric
Bernoulli distribution, which we call Bernoulli.The third one
has zeros in two-thirds of the entries and others sampled
from an i.i.d. symmetric Bernoulli distribution, which we
call Sparse Bernoulli. The last one has an orthonormal basis,
which we call Random Projection.

Now we conduct numerical experiments to test the per-
formance of our method for solving (47). To illustrate the
scaling of low rank recovery for a particular matrix 𝑋,
consider the MIT logo presented in [39]. The image has 46
rows and 81 columns (the total number of pixels is 46 ×
81 = 3726). Since the logo only has 5 distinct rows, it has
rank 5. We sample it using Gaussian i.i.d., Bernoulli i.i.d.,
Sparse Bernoulli i.i.d., and Random Projection measure-
ments matrix with the number of linear constraints ranging
between 700 and 2400. We declared MIT logo 𝑋 to be
recovered if ‖𝑋 − 𝑋opt

‖
𝐹
/‖𝑋‖
𝐹
≤ 10
−3; that is, SNR ≥60 dB

(SNR = −20 log(‖𝑋 − 𝑋opt
‖
𝐹
/‖𝑋‖
𝐹
)). Figures 1 and 2 show

the results of our numerical experiments.
Figure 1 plots the curves of SNR under four different

measurement matrices mentioned above with different num-
bers of linear constraints. The numerical values on the 𝑥-axis
represent the number of linear constraints 𝑝, that is, number
of measurements, while those on 𝑦-axis represent the Signal
to Noise Ration between the true original 𝑋 and 𝑋opt recov-
ered by our method. Noticeably, Gauss and Sparse Binary
can successfully reconstruct MIT logo images from about
1000 constraints, while Random Projection requires about
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Figure 2: Performance curves of nuclear norm heuristic method
under four different measurementmatrices: SNR versus the number
of linear constraints.

1200 constraints. Binary requires the minimal constraints
about 950.TheGauss and Sparse Binary measurements reach
their maximal SNR of 220 dB at around 1500 constraints;
the Binary measurements can reach its maximal SNR of
180 dB at around 1400 constraints. Random Projection has
more large phase transition point but has the best recovery
error. We observe a sharp transition to perfect recovery near
1000 measurements lower than 2𝑘(𝑚 + 𝑛 − 𝑘). Compared
with Figure 2, which shows results of nuclear norm heuristic
method in [39] and the method that is a kind of convex
relaxations, there is a sharp transition to perfect recovery
near 1200 measurements which is approximately equal to
2𝑘(𝑚 + 𝑛 − 𝑘). The comparison shows our method has
better performance that it can recover an image with less
constraints; namely, it needs less samples. In addition, we
observe that SNR of nuclear norm heuristic method achieves
120 dB when the number of measurements approximately
equals 1500, while ourmethod just needs 1200measurements,
which decrease by 20% compared with 1500. If the number
of measurements is 1500, accuracy of our method would
be higher. Among precisions of four different measurement
matrixes, the smallest one is precision of Random Projection.
However, the precision value is also higher than 120 dB. The
performance illustrates that our method is more accurate.
Observing the curve of between 1200 and 1500, we can find
that our curve rises smoothly compared with the curve in the
same interval in Figure 2; this shows that ourmethod is stable
for reconstructing image.

Figure 3 shows recovered images under four different
measurement matrices with 800, 900, and 1000 linear con-
straints. And Figure 4 shows recovered images by ourmethod
and that by SeDuMi. We chose to use this interior-point
method because it yields the highest accuracy. Distinctly, the
recovered images by SeDuMi have some shadow, while ours
is clear. Moreover, as far as time is concerned, our method
is more fast and the computational time is not extremely

Table 1: DC versus SeDuMi in time (second).

𝑝 800 900 1000 1100 1200 1500
DC 46.82 50.49 50.78 51.38 51.96 54.09
SeDuMi 93.26 120.16 138.24 159.44 161.76 245.38

sensitive to𝑝 compared to SeDuMi.The reason is that closed-
form solutions can be obtained when we solve this problem.
Comparisons are shown in Table 1.

3.2. Matrix Completion Problems. In this subsection, we
apply our method to matrix completion problems. It can be
reformulated as

min 1

2

𝑃Ω (𝑋) − 𝑃Ω (𝑀)


2

𝐹

s.t. rank (𝑋) ≤ 𝑘

𝑋 ∈ 𝑅
𝑚×𝑛
,

(48)

where 𝑋 and 𝑀 are both 𝑚 × 𝑛 matrices and Ω is a subset
of index pairs (𝑖, 𝑗). Up to now, numerous methods were
proposed to solve the matrix completion problem (see, e.g.,
[9, 10, 29, 31]). It is easy to see that problem (48) is a special
case of general rank minimization problem (3) with 𝑓(𝑋) =
(1/2)‖𝑃

Ω
(𝑋) − 𝑃

Ω
(𝑀)‖
2

𝐹
.

In our experiments, we first created random matrices
𝑀
𝐿
∈ 𝑅
𝑚×𝑘 and 𝑀

𝑅
∈ 𝑅
𝑚×𝑘 with i.i.d. Gaussian entries

and then set 𝑀 = 𝑀
𝐿
𝑀
𝑇

𝑅
. We sampled a subset Ω of 𝑝

entries uniformly at random. We compare against singular
value thresholding (SVT) method [9], FPC, FPCA [10], and
the OptSpace (OPT) method [29] using

𝑃Ω (𝑋) − 𝑃Ω (𝑀)
𝐹

𝑃Ω (𝑀)
𝐹

≤ 10
−3 (49)

as a stop criterion. The maximum number of iterations is no
more than 1500 in all methods; other parameters are default.
We report result averaged over 10 runs.

We use SR = 𝑝/(𝑚𝑛) to denote sampling ratio and
FR = 𝑘(𝑚 + 𝑛 − 𝑘)/𝑝 to represent the dimension of the set
of rank 𝑘 matrices divided by the number of measurements.
NS and AT denote number of matrices that are recovered
successfully and average times (seconds) that are successfully
solved, respectively. RE represents the average relative error of
the successful recovered matrices. We use the relative error

𝑀 − 𝑋
∗𝐹

\ ‖𝑀‖𝐹 (50)

to estimate the closeness of𝑋∗ to𝑀, where𝑋∗ is the optimal
solution to (48) produced by our method. We declared𝑀 to
be recovered if the relative error was less than 10−3.

Table 2 shows that our method has the close performance
with OptSpace in column of NS. These performances are
better than those of SVT, FPC, and FPCA. However, SVT,
FPC, and FPCA cannot obtain the optimal matrix within
1500 iterationswhich shows that ourmethodhas advantage in
finding the neighborhood of optimal solution.The results do
not mean that these algorithms are invalid, but themaximum



Mathematical Problems in Engineering 9

Table 2: Numerical results for problems with𝑚 = 𝑛 = 40 and SR = 0.5.

Alg 𝑘 FR NS AT RE 𝑘 FR NS AT RA
DC

1 0.0988

10 0.02 1.23𝐸 − 04

6 0.5550

9 0.12 4.64𝐸 − 04

SVT 10 0.11 1.59𝐸 − 04 0 — —
FPC 9 0.13 6.52𝐸 − 04 0 — —
FPCA 10 0.03 3.98𝐸 − 05 0 — —
OptSpace 10 0.01 1.31𝐸 − 04 10 0.21 4.05𝐸 − 04

DC

2 0.1950

10 0.03 1.50𝐸 − 04

7 0.6388

9 0.17 6.11𝐸 − 04

SVT 9 0.18 1.83𝐸 − 04 0 — —
FPC 8 0.14 6.52𝐸 − 04 0 — —
FPCA 10 0.02 5.83𝐸 − 05 0 — —
OptSpace 10 0.01 1.51𝐸 − 04 9 0.37 5.37𝐸 − 04

DC

3 0.2888

10 0.05 2.68𝐸 − 04

8 0.7200

7 0.28 7.90𝐸 − 04

SVT 2 0.36 2.47𝐸 − 04 0 — —
FPC 5 0.25 8.58𝐸 − 04 0 — —
FPCA 10 0.06 1.38𝐸 − 04 0 — —
OptSpace 10 0.04 1.75𝐸 − 04 9 0.82 6.68𝐸 − 04

DC

4 0.3800

10 0.06 2.84𝐸 − 04

9 0.7987

4 0.40 8.93𝐸 − 04

SVT 1 0.62 1.38𝐸 − 04 0 — —
FPC 1 0.25 8.72𝐸 − 04 0 — —
FPCA 0 — — 0 — —
OptSpace 10 0.05 2.68𝐸 − 04 4 1.48 9.28𝐸 − 04

DC

5 0.4688

10 0.08 3.82𝐸 − 04

SVT 0 — —
FPC 0 — —
FPCA 0 — —
OptSpace 10 0.09 3.16𝐸 − 04

Table 3: Numerical results for problems with𝑚 = 𝑛 = 100 and SR = 0.2.

Alg 𝑘 FR NS AT RE 𝑘 FR NS AT RA
DC

1 0.0995

10 0.30 1.91𝐸 − 04

5 0.4875

10 1.50 5.05𝐸 − 04

SVT 7 1.82 2.04𝐸 − 04 0 — —
FPC 10 3.14 8.06𝐸 − 04 0 — —
FPCA 10 0.12 1.73𝐸 − 04 0 — —
OptSpace 10 0.03 1.71𝐸 − 04 10 0.58 5.57𝐸 − 04

DC

2 0.1980

10 0.77 3.34𝐸 − 04

6 0.5820

6 2.82 7.45𝐸 − 04

SVT 0 — — 0 — —
FPC 0 — — 0 — —
FPCA 8 0.21 2.97𝐸 − 04 0 — —
OptSpace 10 0.05 2.27𝐸 − 04 9 0.97 6.57𝐸 − 04

DC

3 0.2955

10 0.64 3.03𝐸 − 04

7 0.6755

5 3.24 7.66𝐸 − 04

SVT 0 — — 0 — —
FPC 0 — — 0 — —
FPCA 6 0.09 2.20𝐸 − 04 0 — —
OptSpace 10 0.12 3.76𝐸 − 04 5 1.89 7.95𝐸 − 04

DC

4 0.3920

9 1.16 4.40𝐸 − 04

SVT 0 — —
FPC 0 — —
FPCA 0 — —
OptSpace 10 0.22 3.85𝐸 − 04
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Figure 3: Recovered images under four measurement matrices with different numbers of linear constraints. From left to right: the original,
results under Gauss, Binary, Sparse Binary, and Random Projection measurement. From top to bottom: 𝑝 = 800, 𝑝 = 900, and 𝑝 = 1000.

Table 4: Numerical results for problems with𝑚 = 𝑛 = 100 and SR = 0.3.

Alg 𝑘 FR NS AT RE 𝑘 FR NS AT RA
DC

1 0.0663

10 0.19 1.49E − 04

7 0.4530

10 0.61 3.64E − 04
SVT 10 0.68 1.66E − 04 0 — —
FPC 10 1.33 4.47E − 04 0 — —
FPCA 10 0.17 6.12E − 05 0 — —
OptSpace 10 0.05 1.29E − 04 10 0.47 3.39E − 04
DC

2 0.1320

10 0.20 1.69E − 04

8 0.5120

10 0.87 4.70E − 04
SVT 8 1.39 1.66E − 04 0 — —
FPC 10 2.18 4.84E − 04 0 — —
FPCA 10 0.16 7.68E − 05 0 — —
OptSpace 10 0.04 1.48E − 04 10 0.63 3.67E − 04
DC

3 0.1970

10 0.25 1.92E − 04

9 0.5730

9 1.03 4.85E − 04
SVT 4 1.77 1.23E − 04 0 — —
FPC 9 4.32 5.82E − 04 0 — —
FPCA 9 0.19 1.21E − 04 0 — —
OptSpace 10 0.07 1.98E − 04 10 1.40 4.87E − 04
DC

4 0.2613

10 0.32 2.30E − 04

10 0.6333

8 1.36 6.21E − 04
SVT 4 9.82 4.67E − 04 0 — —
FPC 7 5.02 6.59E − 04 0 — —
FPCA 10 0.18 6.63E − 04 0 — —
OptSpace 10 0.09 2.08E − 04 10 1.80 5.97E − 04
DC

5 0.3250

10 0.37 2.72E − 04

11 0.6930

9 2.19 7.29E − 04
SVT 0 — — 0 — —
FPC 1 8.18 7.34E − 04 0 — —
FPCA 10 0.10 2.20E − 04 9 — —
OptSpace 10 0.19 2.67E − 04 5 4.11 7.05E − 04
DC

6 0.3880

10 0.47 3.00E − 04

12 0.7520

6 2.83 8.79E − 04
SVT 0 — — 0 — —
FPC 0 — — 0 — —
FPCA 0 0.09 2.20E − 04 0 — —
OptSpace 10 0.25 3.25E − 04 6 6.44 8.47E − 04

number of iterations is limited to 1500. When the rank of
matrix is large (i.e., 𝑘 ≥ 5), the average time of our algorithm
is less than that of OptSpace. In some cases, the relative errors
of DC are minimal. When the dimension of matrix becomes
larger,DCmethodhas a better performance ofNS and similar
relative errors with that of OptSpace. In terms of time, our
time is longer than that of OptSpace, but shorter than that
of FPC and SVT. Tables 3 and 4 show the above results. In

conclusion, our method has better performance in “hard”
problems; that is, FR > 0.34. The problems involved matrices
that are not of very low rank, according to [10].

Table 5 gives the numerical results for problemswith large
dimensions. In these numerical experiments, the maximum
number of iterations is chosen by default of each compared
method. We observe that our method can recover problems
successfully as other four methods, while our method is
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Figure 4: Recovered images under different numbers of linear con-
straints. From left to right: the original, results under our method,
and results by SeDuMi. From top to bottom: 𝑝 = 800, 𝑝 = 900, and
𝑝 = 1000.

Table 5: Numerical results for problems with different dimension.

𝑚(𝑛) 𝑘 𝑝 SR FR Alg NS AT RA

100 10 5666 0.57 0.34

DC 10 0.14 1.91E − 04
SVT 10 2.81 1.85E − 04
FPC 10 5.23 1.83E − 04
FPCA 10 0.28 4.94E − 05

OptSpace 10 0.9 1.41E − 04

200 10 15665 0.39 0.25

DC 10 0.80 1.65E − 04
SVT 10 2.93 2.53E − 04
FPC 10 4.18 2.73E − 04
FPCA 10 0.08 6.88E − 05

OptSpace 10 0.41 1.72E − 04

300 10 27160 0.30 0.22

DC 10 2.72 1.67E − 04
SVT 10 2.57 1.79E − 04
FPC 10 9.8 1.63E − 04
FPCA 10 0.39 6.71E − 05

OptSpace 10 1.85 1.50E − 04

400 10 41269 0.26 0.19

DC 10 5.73 1.56E − 04
SVT 10 2.78 1.66E − 04
FPC 10 13.28 1.30E − 04
FPCA 10 0.73 6.65E − 05

OptSpace 10 3.47 1.46E − 04

500 10 49471 0.20 0.2

DC 10 13.63 1.73E − 04
SVT 10 2.94 1.74E − 04
FPC 10 25.75 1.44E − 04
FPCA 10 1.12 1.07E − 04

OptSpace 10 5.05 1.60E − 04

1000 10 119406 0.12 0.17

DC 10 356.41 1.70E − 04
SVT 10 4.56 1.66E − 04
FPC 10 110.53 1.29E − 04
FPCA 10 5.16 1.64E − 04

OptSpace 10 14.61 1.50E − 04

slower with the increase of dimension. However, our method
is faster than FPC. Though SVT, FPCA, and OptSpace out-
perform our method in terms of speed, they are specifically

developedmethod formatrix completion problemswhile our
method can be applied to more class of problems. To prove
this, we will apply our method to max-cut problems.

3.3. Max-Cut Problems. In this subsection, we apply our
method tomax-cut problems. It can be formulated as follows:

min Tr (𝐿𝑋)
s.t. diag (𝑋) = 𝑒

rank (𝑋) = 1

𝑋 ⪰ 0,

(51)

where𝑋 = 𝑥𝑥𝑇, 𝑥 = (𝑥
1
, . . . , 𝑥

𝑛
)
𝑇, 𝐿 = (1/4)(diag(𝑊𝑒) −𝑊),

𝑒 = (1, 1, . . . , 1)
𝑇, and𝑊 is the weightmatrix. Equation (51) is

one general case of problem (3) with Γ ∩ Ω = {𝑋 | diag(𝑋) =
𝑒𝑋 ∈ 𝑆

+
}. Hence, our method can be suitably applied to (51).

Wenowaddress the initialization and termination criteria
for our method when applied to (51). We set 𝑋0 = 𝑒𝑒𝑇; in
addition, we choose the initial penalty parameter 𝜌 to be 0.01
and set the parameter 𝜏 to be 1.1. And we use ‖𝑋𝑖+1−𝑋𝑖‖

𝐹
≤ 𝜀

as the termination criteria with 𝜖 = 10−5.
In our numerical experiments, we first test several small

scale max-cut problems; then we perform our method on
the standard “𝐺” set problems written by Professor Ginaldi
[40]. In all, we consider 10 problems ranging in size from
800 variables to 1000 variables. The results are shown in
Tables 6 and 7, in which “𝑚” and “𝑘” represent corresponding
dimension of graph and the rank of solution, respectively.The
“obv” denotes objective values of optimal matrix solutions
operated by our method.

In Table 6, “KV” denotes known optimal objective val-
ues and “UB” presents upper bounds for max-cut by the
semidefinite relaxation. It is easy to observe that our method
is effective for solving these problems and it has computed the
global optimal solutions of all problems. Moreover, we obtain
lower rank solution compared with semidefinite relaxation
method.

Table 7 shows the numerical results for standard “𝐺” set
problems. “SUB” denotes upper bounds by spectral bundle
method proposed by Helmberg and Rendl [41]. “GW-cut”
denotes the approximative algorithm proposed by Goemans
and Williamson [42]. “DC” denotes results generated by
our method, DC+ is the results of DC with neighborhood
approximation algorithm, and the right most column, titled
BK, gives best results as we have known according to [43, 44].
We use “—” to indicate that we do not obtain the rank. From
Table 3 we can note that our optimal values are close to
the results of latest researches, better than values given by
GW-cut, and they are all less than the corresponding upper
bounds. For the problems, we all get the lower rank solution
compared with GW-cut; moreover, most solutions satisfy the
constraints rank = 1. The results prove that our algorithm is
effective when used to solve max-cut problems.

4. Concluding Remarks

In this paper we used closed-form of penalty function to
reformulate convex constrained rankminimization problems
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Table 6: Numerical results for famous max-cut problems.

Graph 𝑚 KV GW-cut DC Optimal solutions
UB 𝑘 obv 𝑘

C5 5 4 4.525 5 4 1 (−1; 1; −1; 1; −1)
K5 5 6 6.25 5 6 1 (−1; 1; −1; 1; −1)
AG 5 9.28 9.6040 5 9.28 1 (−1; 1; 1; −1; −1)
BG 12 88 90.3919 12 88 1 (−1; 1; 1; −1; −1; −1; −1; −1; −1; 1; 1; 1)

Table 7: Numerical results for G problems.

Graph 𝑚 SUB GW-cut DC DC+ BK
obv 𝑘 obv 𝑘

G01 800 12078 10612 14 11281 1 11518 11624
G02 800 12084 10617 31 11261 1 11550 11620
G03 800 12077 10610 14 11275 1 11540 11622
G11 800 627 551 30 494 2 528 564
G14 800 3187 2800 13 2806 1 2980 3063
G15 800 3169 2785 70 2767 1 2969 3050
G16 800 3172 2782 14 2800 1 2974 3052
G43 1000 7027 6174 — 6321 1 6519 6660
G45 1000 7020 6168 — 6348 1 6564 6654
G52 1000 4009 3520 — 3383 1 3713 3849

as DC programming, which could be solved by stepwise
linear approximative method. Under some suitable assump-
tions, we showed that accumulation point of the sequence
generated by the stepwise linear approximative method was a
stable point. The numerical results on affine rank minimiza-
tion and max-cut problems demonstrate that our method is
generally comparable or superior to some existing methods
in terms of solution quality, and it can be applied to a class
of problems. However, the speed of our method needs to be
improved.
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