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This work is about extended pythagorean triples, called NPT, APT, and AI-PT. We generate infinitely many NPTs and APTs and
then develop algorithms for infinitely many AI-PTs. Since AI-PT (𝑎, 𝑏, 𝑐) is of |𝑎 − 𝑏| = 1, we ask generally for PT (𝑎, 𝑏, 𝑐) satisfying
|𝑎 − 𝑏| = 𝑘 for any 𝑘 ∈ N. These triples are solutions of certain diophantine equations.

1. Introduction

A pythagorean triple (PT) is an integer solution (𝑎, 𝑏, 𝑐)
satisfying the polynomial 𝑥2 + 𝑦2 = 𝑧2, and it is said to be
primitive (PPT) if gcd(𝑎, 𝑏, 𝑐) = 1. There have been many
ways for finding solutions of 𝑥2+𝑦2 = 𝑧2, and one of the well-
knownmethods is due to Euclid, BC 300.The investigation of
integer solutions of 𝑥2+𝑦2 = 𝑧2 has been expanded to various
aspects. One direction is to deal with polynomials 𝑥2 + 𝑦2 =
𝑧2 ± 1, where in [1] its integer solutions were called almost
pythagorean triple (APT) or nearly pythagorean triple (NPT)
depending on the sign ±. Another side is to study solutions
of 𝑥2 + 𝑦2 = 𝑧2 having some special conditions. A solution
(𝑎, 𝑏, 𝑐) is called isosceles if 𝑎 = 𝑏. Since there is no isosceles
integer solution of 𝑥2 + 𝑦2 = 𝑧2, isosceles-like integer triples
(𝑎, 𝑏, 𝑐) with |𝑎 − 𝑏| = 1 were investigated. We shall call the
(𝑎, 𝑏, 𝑐) an almost isosceles pythagorean triple (AI-PT), and
typical examples are (3, 4, 5) and (20, 21, 29). In literatures
[2–4], AI-PT was studied by solving Pell polynomial. And a
few others [5, 6] used triangular square numbers for finding
AI-PT. We note that in some articles AI-PT was called
almost isosceles right angled (AIRA) triangle. But in order to
emphasize relationships with PT, APT, and NPT in this work,
we shall refer to AIRA as AI-PT. APT and NPT were studied
in [1] while AI-PT was studied in [2, 4], and so forth, but it
seems that no one has asked about their connections.

In this work we generate infinitely many APTs and NPTs
and then apply the results in order to develop algorithms
for constructing infinitely many AI-PTs. Moreover we study

PTs (𝑎, 𝑏, 𝑐) satisfying |𝑎 − 𝑏| = 𝑘 for any 𝑘 ≥ 1. So the
study of these triples can be regarded as a research of solving
diophantine equations 𝑥2 + 𝑦2 = 𝑧2 ± 1 and 𝑥2 − 𝑧2 = 2𝑦𝑧.

2. Almost and Nearly Pythagorean Triples

APT and NPT, respectively, are integer solutions of 𝑥2 + 𝑦2 =
𝑧2 + 1 and 𝑥2 + 𝑦2 = 𝑧2 − 1, respectively. If (𝑎, 𝑏, 𝑐) is an
APT or NPT, so it is (±𝑎, ±𝑏, ±𝑐) hence we generally assume
𝑎, 𝑏, 𝑐 > 0. Some triples were listed in [1] by experimental
observations:

NPT: (10, 50, 51), (20, 200, 201), (30, 450, 451), (40,
800, 801), . . .

APT: (5, 5, 7), (4, 7, 8), (8, 9, 12), (7, 11, 13), (11, 13,
17), (10, 15, 18), . . .

Lemma 1 (see [1]). If (𝑎, 𝑏, 𝑐) is an APT then (2𝑎𝑐, 2𝑏𝑐, 2𝑐2+1)
is a NPT. Conversely if (𝑎, 𝑏, 𝑐) is a NPT then (2𝑎2+1, 2𝑎𝑏, 2𝑎𝑐)
is an APT.

Theorem 2. If 𝑎 is an even integer then we have the following.

(1) (𝑎, 𝑏, 𝑏 + 1) is an APT if 𝑏 = 𝑎2/2 − 1, while it is a NPT
if 𝑏 = 𝑎2/2.

(2) (2𝑎2 + 1, 𝑎3, 𝑎(𝑎2 + 2)) is an APT and (𝑎3, 𝑎2(𝑎2/2 −
1), 𝑎4/2 + 1) is a NPT.
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Table 1

𝑎

APT NPT NPT APT

(𝑎,
𝑎
2
− 2

2
,
𝑎
2

2
) (𝑎3,

𝑎
2
(𝑎
2
− 2)

2
,
𝑎
4
+ 2

2
) (𝑎,

𝑎
2

2
,
𝑎
2
+ 2

2
) (2𝑎2 + 1, 𝑎3, 𝑎 (𝑎2 + 2))

2 (2, 1, 2) (8, 4, 9) (2, 2, 3) (9, 8, 12)

4 (4, 7, 8) (64, 112, 129) (4, 8, 9) (33, 64, 72)

6 (6, 17, 18) (216, 612, 649) (6, 18, 19) (73, 216, 228)

Table 2

𝑎 NPT (𝑎,
𝑎2 − 24

10
,
𝑎2 + 26

10
) APT 𝑎 APT (𝑎,

𝑎2 − 26

10
,
𝑎2 + 24

10
)

8 (8, 4, 9) (129, 64, 144) 14 (14, 17, 22)

12 (12, 12, 17) (289, 288, 408) 16 (16, 23, 28)

18 (18, 30, 35) (649, 1080, 1260) 24 (24, 55, 60)

Proof. If 𝑐 = 𝑏 + 1 then 𝑐2 − 𝑏2 = 2𝑏 + 1. If 𝑏 = 𝑎2/2 − 1
then 𝑐2 − 𝑏2 = 𝑎2 − 1, so (𝑎, 𝑏, 𝑐) is an APT. If 𝑏 = 𝑎2/2 then
𝑐2 − 𝑏2 = 𝑎2 + 1, so (𝑎, 𝑏, 𝑐) is a NPT.

Due to Lemma 1, the NPT (𝑎, 𝑎2/2, 𝑎2/2 + 1) yields an
APT (2𝑎2 + 1, 𝑎3, 𝑎(𝑎2 + 2)), while the APT (𝑎, 𝑎2/2 − 1, 𝑎2/2)
provides a NPT (𝑎3, 𝑎2(𝑎2/2 − 1), 𝑎4/2 + 1) (see Table 1).

Theorem 2 gives infinitely many APTs and NPTs (𝑎, 𝑏, 𝑐)
such that 𝑐 − 𝑏 = 1. Not only this, we can generate APT and
NPT (𝑎, 𝑏, 𝑐) with 𝑐 − 𝑏 = 5.

Theorem 3. (1) If 𝑎 ≡ ±2 (mod 10) and 𝑏 = (𝑎2 − 24)/10 then
(𝑎, 𝑏, 𝑏 + 5) is a NPT.

(2) If 𝑎 ≡ ±4 (mod 10) and 𝑏 = (𝑎2 −26)/10 then (𝑎, 𝑏, 𝑏 +
5) is an APT.

Proof. Thetriple (𝑎, 𝑏, 𝑏+5) is aNPT if 𝑎2+𝑏2 = (𝑏+5)2−1; that
is, 𝑏 = (𝑎2 − 24)/10. Since 𝑏 > 0 is integer, it must be 𝑎2 > 24
and 𝑎2 ≡ 24 (mod 10). So 𝑎 ≡ ±2 (mod 10) with 𝑎 ≥ 8. On
the other hand (𝑎, 𝑏, 𝑏 + 5) is an APT if 𝑎2 = 10𝑏 + 26; that
is, 𝑏 = (𝑎2 − 26)/10. Similar to the above, we have 𝑎2 > 26
and 𝑎2 ≡ 26 ≡ 42 (mod10). Hence 𝑎 ≡ ±4 (mod10) with
𝑎 ≥ 6.

Theorem 3 together with Lemma 1 yields infinitely many
NPTs and APTs (see Table 2).

Though there are APT and NPT (𝑎, 𝑏, 𝑏+𝑘)with 𝑘 = 1, 5,
no NPT (𝑎, 𝑏, 𝑏+𝑘) exists if 𝑘 = 2 or 3. In fact if (𝑎, 𝑏, 𝑏+2) is a
NPT then 𝑎2 = 4𝑏 + 3. But since 𝑎2 ≡ 3 (mod 4) is quadratic
nonresidue, no solution 𝑎 exists. Similarly if 𝑘 = 3 then 𝑎2 ≡
2 (mod 6), so no integer solution 𝑎.

Theorem4. For any 𝑘 > 0, APTs of the form (𝑎, 𝑏, 𝑏+𝑘) always
exist. If 𝑘 − 1 is even and square then there exist NPTs of the
form (𝑎, 𝑏, 𝑏 + 𝑘).

Proof. A triple (𝑎, 𝑏, 𝑏+𝑘) is anAPT if 𝑎2+𝑏2 = (𝑏+𝑘)2+1; that
is, 𝑏 = (𝑎2 −𝑘2 −1)/2𝑘. Then 𝑎2 ≡ 𝑘2 +1 ≡ (𝑘±1)2 (mod 2𝑘).

Hence if we let 𝑎 = 2𝑚𝑘 ± (𝑘 ± 1) and 𝑏 = 2𝑚(𝑚𝑘 ± 𝑘 ± 1) + 1
for𝑚 ∈ Z, then it can be observed that
(2𝑚𝑘 ± (𝑘 + 1) , 2𝑚 (𝑚𝑘 ± 𝑘 ± 1) + 1, 2𝑚 (𝑚𝑘 ± 𝑘 ± 1)

+ 1 + 𝑘)
(1)

is an APT. In particular, (𝑘+1, 1, 𝑘+1) is an APT for all 𝑘 > 0.
Let 𝑘−1 = 𝑢2 = 2V (𝑢, V ∈ N). For (𝑎, 𝑏, 𝑏+𝑘) to be a NPT,

we must have 𝑎2 = 2𝑘𝑏 + 𝑘2 − 1; that is, 𝑏 = (𝑎2 − 𝑘2 + 1)/2𝑘.
Hence 𝑎2 ≡ 𝑘2 − 1 (mod 2𝑘), so

𝑎
2
≡ (2V + 1)2 − 1 = 4V2 + 4V = V (4V + 2) + 2V ≡ 2V

= 𝑢
2
(mod 2𝑢2 + 2) .

(2)

Write 𝑎2 = 𝑢2+2𝑚(𝑢2+1) for𝑚 ∈ Z.Then 𝑏 = −𝑢2/2+𝑚 and
𝑐 = 𝑏+𝑘 = 𝑢2/2+1+𝑚. And since 𝑐2−𝑏2−1 = 𝑘(2𝑏+𝑘)−1 =
(𝑢2 + 1)(2𝑚 + 1) − 1 = 𝑎2, (𝑎, 𝑏, 𝑐) is a NPT.

For instance, (31, 43, 53), (51, 125, 135) are APTs (𝑎, 𝑏, 𝑐)
with 𝑐 − 𝑏 = 10. Similarly (34, 47, 58), (56, 137, 148) are APTs
with 𝑐−𝑏 = 11. So we have infinitely many APTs (𝑎, 𝑏, 𝑐) such
that 𝑐 − 𝑏 is any integer.

On the other hand, consider 𝑘 = 1, 5, 17, 37 such that 𝑘−1
is square. Then Theorem 4 yields NPT (𝑎, 𝑏, 𝑏 + 𝑘) satisfying
𝑎
2 = 2𝑘𝑏 + 𝑘2 − 1 and 𝑏 = (𝑎2 − 𝑘2 + 1)/2𝑘. If 𝑘 = 1 then
𝑎 ≡ 0 (mod 2) and 𝑏 = −𝑎2/2 yielding that (𝑎, 𝑏, 𝑏 + 1) is a
NPT; say (2, 2, 3), and so forth. If 𝑘 = 5 then 𝑎 ≡ ±2 (mod
10) and 𝑏 = (𝑎2 − 24)/10 with 𝑎2 > 24 implying that (𝑎, 𝑏, 𝑏 +
5) is a NPT; say (8, 4, 9), and so forth. If 𝑘 = 17 then 𝑎 ≡
±4 (mod 34) and 𝑏 = (𝑎2 − 288)/34 with 𝑎2 > 288 implying
that (𝑎, 𝑏, 𝑏 + 17) is a NPT; say (30, 18, 35), and so forth.

Corollary 5. Let 𝑛 ≡ 0 (mod10). If 𝑎 = 𝑛 + 10𝑘 and 𝑏 =
𝑛2/2 + 10𝑘(𝑛 + 5𝑘) for any 𝑘 ≥ 0 then (𝑎, 𝑏, 𝑏 + 1) is a NPT.

The proof is clear. Thus (10, 50, 51), (20, 200, 201),
(30, 450, 451), (40, 800, 801), . . . are NPTs, where the list
corresponds to the findings in [1]. We now discuss another
way to construct NPTs from PPT.
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Table 3

𝑘 𝑎2 = 𝑘2 − 1 (mod 2𝑘) 𝑎 (mod 2𝑘) 𝑎 > 𝑘 𝑏 (𝑎, 𝑏, 𝑏 + 𝑘) NPT

5 𝑎2 ≡ 24 ≡ 4 (mod 10) ±2
8 4 (8, 4, 9)

12 12 (12, 12, 17)

18 30 (18, 30, 35)

17 𝑎
2
≡ 288 ≡ 16 (mod 34) ±4

30 18 (30, 18, 35)

38 34 (38, 34, 51)

64 112 (64, 112, 129)

37 𝑎2 ≡ 1368 ≡ 36 (mod 74) ±6

68 44 (68, 44, 81)

80 68 (80, 68, 105)

142 254 (142, 254, 291)

Table 4

𝑧 𝑎2 = 𝑧2 − 1 (mod 2𝑧) 𝑎 (mod 2𝑧) 𝑎 > 𝑧 𝑏 (𝑎, 𝑏, 𝑏 + 𝑧) NPT

13 𝑎2 ≡ 168 ≡ 64 (mod 26) ±8

18 6 (18, 6, 19)

34 38 (34, 38, 51)

44 68 (44, 68, 81)

25 𝑎
2
≡ 624 ≡ 324 (mod 50) ±18

32 8 (32, 8, 33)

68 80 (68, 80, 105)

82 122 (82, 122, 147)

29 𝑎2 ≡ 840 ≡ 144 (mod 58) ±12

46 22 (46, 22, 51)

70 70 (70, 70, 99)

128 268 (128, 268, 297)

Theorem6. For any PPT (𝑥, 𝑦, 𝑧), there areNPTs (𝑎, 𝑏, 𝑐)with
𝑐 − 𝑏 = 𝑧.

Proof. The PPT (𝑥, 𝑦, 𝑧) can be written as 𝑥 = 𝑢2 − V2, 𝑦 =
2𝑢V, and 𝑧 = 𝑢2 + V2 where 𝑢 > V > 0 are bipartite and
gcd(𝑢, V) = 1. Let 𝑢 = 2𝑟 and V = 2𝑠 + 1 (𝑟, 𝑠 ∈ N). Clearly
𝑧 = 𝑢2 + V2 ≡ 1 (mod 4) and 𝑧 is odd. For (𝑎, 𝑏, 𝑏 + 𝑧) to be a
NPT, it satisfies 𝑎2 = 2𝑏𝑧 + 𝑧2 − 1 and 𝑏 = (𝑎2 − 𝑧2 + 1)/2𝑧.
So 𝑎2 ≡ 𝑧2 − 1 (mod 2𝑧) implies 𝑎2 ≡ −1 (mod 𝑧) and 𝑎2 ≡
𝑧2 − 1 ≡ 0 (mod 2).

If 𝑧 is a prime then 𝑎2 ≡ −1 (mod 𝑧) has integer solutions
since 𝑧 ≡ 1 (mod4). So with 𝑏 = (𝑎2 − 𝑧2 + 1)/2𝑧, there
exists a NPT of the form (𝑎, 𝑏, 𝑏 + 𝑧). On the other hand if
𝑧 = 𝑝

1
⋅ ⋅ ⋅ 𝑝
𝑗
(𝑝
𝑖
odd primes, 1 ≤ 𝑖 ≤ 𝑗), then 𝑧 ≡ 1 (mod 4)

implies that either every 𝑝
𝑖
≡ 1 (mod4) or there are even

number of 𝑝
𝑖
such that 𝑝

𝑖
≡ −1 (mod 4) for 1 ≤ 𝑖 ≤ 𝑗. Thus

Legendre symbol (−1/𝑧) equals (−1/𝑝
1
) ⋅ ⋅ ⋅ (−1/𝑝

𝑗
) = 1, so

𝑎2 ≡ −1 (mod 𝑧) has integer solutions; hence there is a NPT
(𝑎, 𝑏, 𝑏 + 𝑧).

The PPT (𝑥, 𝑦, 𝑧) with 𝑧 ≤ 40 are (3, 4, 5), (5, 12, 13),
(8, 15, 17), (7, 24, 25), (20, 21, 29), and (12, 35, 37). If 𝑧 =

5, 17, 37 then Table 3 contains the list of NPTs. When 𝑧 =
13, 25, 29, NPTs are as shown in Table 4.

AnAPT (𝑎, 𝑏, 𝑐) satisfying 𝑎 = 𝑏 is called an isosceles APT
(iso-APT). Analogously an iso-NPT is defined.Though there
is no isosceles PT, there are many iso-APTs and iso-NPTs.
Indeed iso-APT and iso-NPT (𝑎, 𝑎, 𝑐) satisfy 𝑎2 + 𝑎2 = 𝑐2 ± 1,
so that the pair (𝑎, 𝑐) is an integer solution of 2𝑥2 − 𝑦2 = ±1,

which is the Pell polynomial. If (𝑎
1
, 𝑐
1
), (𝑎
2
, 𝑐
2
) are integer

solutions of 2𝑥2 − 𝑦2 = −1 then

1 = (2𝑎
2

1
− 𝑐
2

1
) (2𝑎
2

2
− 𝑐
2

2
)

= −2 (𝑎
1
𝑐
2
+ 𝑎
2
𝑐
1
)
2

+ (2𝑎
1
𝑎
2
+ 𝑐
1
𝑐
2
)
2

.

(3)

Shows that (𝑎
1
𝑐
2
+ 𝑎
2
𝑐
1
, 2𝑎
1
𝑎
2
+ 𝑐
1
𝑐
2
) satisfies 2𝑥2 − 𝑦2 = −1.

If (𝑎
1
, 𝑐
1
), (𝑎
2
, 𝑐
2
) are roots of 2𝑥2 − 𝑦2 = 1 then (𝑎

1
𝑐
2
+

𝑎
2
𝑐
1
, 2𝑎
1
𝑎
2
+ 𝑐
1
𝑐
2
) holds 2𝑥2 − 𝑦2 = −1.

Let us define a multiplication (𝑎
1
, 𝑐
1
)(𝑎
2
, 𝑐
2
) by (𝑎

1
𝑐
2
+

𝑎
2
𝑐
1
, 2𝑎
1
𝑎
2
+ 𝑐
1
𝑐
2
) [7]. For example, a root (2, 3) of 2𝑥2 − 𝑦2 =

−1 yields (2, 3)2 = (12, 17) satisfying 2𝑥2 − 𝑦2 = −1. And
a root (5, 7) of 2𝑥2 − 𝑦2 = 1 shows that (5, 7)2 = (70, 99)
holds 2𝑥2 −𝑦2 = −1. So the first few nonnegative solutions of
2𝑥2 − 𝑦2 = ±1 are

{(0, 1)
−
, (1, 1)

+
, (2, 3)

−
, (5, 7)

+
, (12, 17)

−
, (29, 41)

+
,

(70, 99)
−
, (169, 239)

+
, . . .} ,

(4)

where the subscripts +, − indicate solutions of 2𝑥2 −𝑦2 = ±1,
respectively.

Theorem 7. Let 𝑠
𝑛
= (𝑎
𝑛
, 𝑏
𝑛
) for 𝑠

𝑛+1
= 2𝑠
𝑛
+ 𝑠
𝑛−1

with 𝑠
0
=

(0, 1), 𝑠
1
= (1, 1). Then the following hold.

(1) 𝑎
𝑛+1

= 𝑎
𝑛
+ 𝑐
𝑛
and 𝑐
𝑛+1

= 𝑎
𝑛+1
+ 𝑎
𝑛
and 2𝑎

𝑛
𝑎
𝑛−1
−

𝑐
𝑛
𝑐
𝑛−1
= (−1)

𝑛. So 𝑆 = {𝑠
𝑛
}
𝑛≥0

is a sequence of solutions
of 2𝑥2 − 𝑦2 = (−1)𝑛+1.
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(2) Let 𝐴 = ( 1 2
1 1
). Then 𝑠

𝑛
= 𝑠
𝑛−1
𝐴 = 𝑠
0
𝐴𝑛 by considering

𝑠
𝑛
as a matrix.

(3) Let 𝑆
+
, 𝑆
−
be subsets of 𝑆 consisting of 𝑠

𝑛+
, 𝑠
𝑛−
, respec-

tively. If 𝑠
𝑛
∈ 𝑆
±
then 𝑠

𝑛+1
∈ 𝑆
∓
and 𝑠
𝑛+2
∈ 𝑆
±
.

Proof. The recurrence 𝑠
𝑛+1

= 2𝑠
𝑛
+ 𝑠
𝑛−1

shows (𝑎
𝑛+1
, 𝑐
𝑛+1
) =

(2𝑎
𝑛
+ 𝑎
𝑛−1
, 2𝑐
𝑛
+ 𝑐
𝑛−1
). So 𝑎

2
= 2𝑎
1
+ 𝑎
0
= 2 = 𝑎

1
+ 𝑐
1
and

𝑐
2
= 2𝑐
1
+𝑐
0
= 3 = 𝑎

2
+𝑎
1
. Hence if we assume 𝑎

𝑛
= 𝑎
𝑛−1
+𝑐
𝑛−1

and 𝑐
𝑛
= 𝑎
𝑛
+ 𝑎
𝑛−1

then 𝑎
𝑛+1
= 2𝑎
𝑛
+ 𝑎
𝑛−1
= 𝑎
𝑛
+ (𝑎
𝑛
+ 𝑎
𝑛−1
) =

𝑎
𝑛
+ 𝑐
𝑛
and 𝑐
𝑛+1
= (2𝑎
𝑛
+ 𝑎
𝑛−1
) + 𝑎
𝑛
= 𝑎
𝑛+1
+ 𝑎
𝑛
.

Clearly 𝑠
𝑖
= (𝑎
𝑖
, 𝑐
𝑖
) (1 ≤ 𝑖 ≤ 3) are solutions of 2𝑥2 −

𝑦
2
= (−1)

𝑖+1, and 2𝑎
𝑖
𝑎
𝑖−1
− 𝑐
𝑖
𝑐
𝑖−1
= (−1)

𝑖. If (𝑎
𝑖
, 𝑐
𝑖
) satisfies the

identities for 𝑖 ≤ 𝑛 then

2𝑎
2

𝑛+1
− 𝑐
2

𝑛+1
= 2 (2𝑎

𝑛
+ 𝑎
𝑛−1
)
2

− (2𝑐
𝑛
+ 𝑐
𝑛−1
)
2

= 4 (2𝑎
2

𝑛
− 𝑐
2

𝑛
) + (2𝑎

2

𝑛−1
− 𝑐
2

𝑛−1
)

+ 4 (2𝑎
𝑛
𝑎
𝑛−1
− 𝑐
𝑛
𝑐
𝑛−1
) = (−1)

𝑛+2
,

2𝑎
𝑛+1
𝑎
𝑛
− 𝑐
𝑛+1
𝑐
𝑛
= 2 (2𝑎

2

𝑛
− 𝑐
2

𝑛
) + (2𝑎

𝑛
𝑎
𝑛−1
− 𝑐
𝑛
𝑐
𝑛−1
)

= (−1)
𝑛+1
.

(5)

Now 𝑠
0
𝐴 = (1, 1) = 𝑠

1
and 𝑠
1
𝐴 = (2, 3) = 𝑠

2
= 𝑠
0
𝐴2.

So if we assume 𝑠
𝑛−1
𝐴 = 𝑠

𝑛
= 𝑠
0
𝐴𝑛 then 𝑠

0
𝐴𝑛+1 = 𝑠

𝑛
𝐴 =

(𝑎
𝑛
+ 𝑐
𝑛
, 2𝑎
𝑛
+ 𝑐
𝑛
) = (𝑎

𝑛+1
, 𝑐
𝑛+1
) = 𝑠
𝑛+1

.
Moreover for 𝑠

𝑛
= (𝑎
𝑛
, 𝑐
𝑛
), 𝑠
𝑛+1
= (𝑎
𝑛
+𝑐
𝑛
, 2𝑎
𝑛
+𝑐
𝑛
) satisfies

2(𝑎
𝑛
+ 𝑐
𝑛
)
2
− (2𝑎
𝑛
+ 𝑐
𝑛
)
2
= −(2𝑎2

𝑛
− 𝑐2
𝑛
). Similarly from 𝑠

𝑛+2
=

𝑠
𝑛
𝐴2 = (3𝑎

𝑛
+ 2𝑐
𝑛
, 4𝑎
𝑛
+ 3𝑐
𝑛
), we have 2(3𝑎

𝑛
+ 2𝑐
𝑛
)
2
− (4𝑎
𝑛
+

3𝑐
𝑛
)
2
= 2𝑎2
𝑛
− 𝑐2
𝑛
.Thus if 𝑠

𝑛
∈ 𝑆
±
then 𝑠

𝑛+1
∈ 𝑆
∓
and 𝑠
𝑛+2
∈ 𝑆
±
.

This completes the proof.

Corollary 8. Let (𝑎
1
, 𝑎
1
, 𝑐
1
) (𝑖 = 1, 2) be either iso-NPTs or

iso-APTs. Define a multiplication by (𝑎
1
, 𝑎
1
, 𝑐
1
)(𝑎
2
, 𝑎
2
, 𝑐
2
) =

(𝑎
1
𝑐
2
+ 𝑎
2
𝑐
1
, 𝑎
1
𝑐
2
+ 𝑎
2
𝑐
1
, 2𝑎
1
𝑎
2
+ 𝑐
1
𝑐
2
). Then the multiplication

of iso-NPTs (or iso-APTs) yields an iso-NPT. And the multipli-
cation of iso-APT and iso-NPT yields an iso-APT.

The corollary about iso-APT and iso-NPT follows imme-
diately. Hence sets 𝑆

−
and 𝑆

+
yield iso-NPTs {(2, 2, 3), (12,

12, 17), (70, 70, 99), (408, 408, 577), . . .} and iso-APTs {(1, 1,
1), (5, 5, 7), (29, 29, 41), (169, 169, 239), . . .}.

3. Almost Isosceles Pythagorean Triple

The nonexistence of isosceles integer solution of 𝑥2 +𝑦2 = 𝑧2
intrigues investigations for finding solutions that look more
and more like isosceles. By an almost isosceles pythagorean
triple (AI-PT), we mean an integer solution (𝑎, 𝑏, 𝑐) of 𝑥2 +
𝑦2 = 𝑧2 such that 𝑎 and 𝑏 differ by only 1. The triples
(3, 4, 5), (20, 21, 29), (119, 120, 169), and (696, 697, 985) are
typical examples of AI-PT.

Let (𝑎, 𝑏, 𝑐) be anAI-PTwith 𝑏 = 𝑎+1. If 𝑐 = 𝑏+𝑘 for 𝑘 ∈ N
then 𝑎2 + (𝑎 + 1)2 = (𝑎 + 1 + 𝑘)2, so 𝑎2 − 2𝑘𝑎 − (𝑘2 + 2𝑘) = 0.
The solution 𝑎 = 𝑘 ± √2𝑘(𝑘 + 1) is an integer if 2𝑘(𝑘 + 1)
is a perfect square. In fact, if 𝑘 = 1 then 2𝑘(𝑘 + 1) = 4, so
𝑎 = 3, 𝑏 = 4 yields an AI-PT (3, 4, 5). Let 2𝑘(𝑘 + 1) = 𝑢2 for

Table 5

𝑛 (𝑢
𝑛
, V
𝑛
) 𝑘

𝑛
𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛

2 (2, 3) 1 3, 4, 5

4 (12, 17) 8 20, 21, 29

6 (70, 99) 49 119, 120, 169

8 (408, 577) 288 696, 697, 985

𝑢 ∈ N. Then 𝑢2 − 2𝑘2 − 2𝑘 = 0, so 2𝑢2 − (2𝑘 + 1)2 = −1. If
V = 2𝑘 + 1 then 2𝑢2 − V2 = −1, so the pairs (𝑢, V) correspond
to the pairs (𝑢

𝑛
, V
𝑛
) ∈ 𝑆
−
in Theorem 7. Hence the set 𝑆

−
=

{(2, 3), (12, 17), (70, 99), . . .} together with 𝑘
𝑛
= (V
𝑛
− 1)/2,

𝑎
𝑛
= 𝑢
𝑛
+ 𝑘
𝑛
, 𝑏
𝑛
= 𝑎
𝑛
+ 1, and 𝑐

𝑛
= 𝑏
𝑛
+ 𝑘
𝑛
provides Table 5 of

AI-PT (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
).

Theorem9. (1)When (𝑢
𝑛
, V
𝑛
) ∈ 𝑆
−
, let 𝑎
𝑛
= 𝑢
𝑛
+(1/2)(V

𝑛
−1),

𝑏
𝑛
= 𝑢
𝑛
+ (1/2)(V

𝑛
+ 1), and 𝑐

𝑛
= 𝑢
𝑛
+ V
𝑛
. Then (𝑎

𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) is an

AI-PT with 𝑐
𝑛
− 𝑏
𝑛
= (1/2)(V

𝑛
− 1).

(2) If (𝑢
𝑛
, V
𝑛
) ∈ 𝑆

+
then (𝑎

𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) is an AI-PT for 𝑎

𝑛
=

(1/2)(V
𝑛
− 1), 𝑏

𝑛
= (1/2)(V

𝑛
+ 1), and 𝑐

𝑛
= 𝑢
𝑛
.

Proof. If (𝑢
𝑛
, V
𝑛
) ∈ 𝑆
−
then V

𝑛
is odd since V

𝑛
= 2V
𝑛−1
+V
𝑛−2

in
Theorem 7. So if we let 𝑘

𝑛
= (1/2)(V

𝑛
− 1) then 𝑎

𝑛
= 𝑢
𝑛
+ 𝑘
𝑛
,

𝑏
𝑛
= 𝑎
𝑛
+ 1, and 𝑐

𝑛
− 𝑏
𝑛
= (𝑢
𝑛
+ V
𝑛
) − 𝑢
𝑛
− (1/2)(V

𝑛
+ 1) =

(1/2)(V
𝑛
− 1) = 𝑘

𝑛
.Thus

2 (𝑎
2

𝑛
+ 𝑏
2

𝑛
) = 2 (2𝑎

2

𝑛
+ 2𝑎
𝑛
+ 1)

= 4 (𝑢
𝑛
+
V
𝑛
− 1

2
)
2

+ 4 (𝑢
𝑛
+
V
𝑛
− 1

2
) + 2

= 4𝑢
2

𝑛
+ 4𝑢
𝑛
V
𝑛
+ V2
𝑛
+ 1

= 2𝑢
2

𝑛
+ (2𝑢

2

𝑛
+ 1) + 4𝑢

𝑛
V
𝑛
+ V2
𝑛

= 2𝑢
2

𝑛
+ V2
𝑛
+ 4𝑢
𝑛
V
𝑛
+ V2
𝑛
= 2 (𝑢

𝑛
+ V
𝑛
)
2

= 2𝑐
2

𝑛
,

(6)

since (𝑢
𝑛
, V
𝑛
) ∈ 𝑆
−
satisfies 2𝑢2

𝑛
− V2
𝑛
= −1. So (𝑎

𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) is an

AI-PT.
Similarly Theorem 7 says if (𝑢

𝑛
, V
𝑛
) ∈ 𝑆

+
then (𝑢

𝑛−1
,

V
𝑛−1
) ∈ 𝑆
−
, where

(𝑢
𝑛−1
, V
𝑛−1
) = (𝑢

𝑛
, V
𝑛
) (
1 2

1 1
)

−1

= (−𝑢
𝑛
+ V
𝑛
, 2𝑢
𝑛
− V
𝑛
) .

(7)

Hence by letting 𝑎
𝑛
= −𝑢
𝑛
+V
𝑛
+(1/2)(2𝑢

𝑛
−V
𝑛
−1) = (1/2)(V

𝑛
−

1), 𝑏
𝑛
= −𝑢
𝑛
+ V
𝑛
+ (1/2)(2𝑢

𝑛
− V
𝑛
+ 1) = (1/2)(V

𝑛
+ 1), and

𝑐
𝑛
= −𝑢
𝑛
+ V
𝑛
+ 2𝑢
𝑛
− V
𝑛
= 𝑢
𝑛
, (1) implies that (𝑎

𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) is an

AI-PT.

Table 5 can be compared to the results in [2, 3]. A
feature here is that we first generate infinitely many iso-
NPTs (𝑢

𝑛
, 𝑢
𝑛
, V
𝑛
) and then find AI-PTs (𝑢

𝑛
+ (V
𝑛
− 1)/2, 𝑢

𝑛
+

(V
𝑛
+ 1)/2, 𝑢

𝑛
+ V
𝑛
). For instance, (𝑢

𝑛
, V
𝑛
) = (5, 7),

(29, 41), (169, 239) in 𝑆
+
produce AI-PTs (3, 4, 5), (20, 21, 29),
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(119, 120, 169), respectively, by Theorem 9. Moreover Pell
sequence provides iso-APT, iso-NPT, and AI-PTs.

Theorem 10. Let {𝑃
𝑛
} be the Pell sequence with 𝑃

0
= 0 and

𝑃
1
= 1.

(1) (𝑃
𝑛
, 𝑃
𝑛
, 𝑃
𝑛−1
+ 𝑃
𝑛
) is an iso-APT if 𝑛 is odd; otherwise

it is an iso-NPT.
(2) ((1/2)(𝑃

𝑛
+ 𝑃
𝑛+1
− 1), (1/2)(𝑃

𝑛
+ 𝑃
𝑛+1
+ 1), 𝑃

𝑛+1
) with

even 𝑛 and ((1/2)(𝑃
𝑛−1
+𝑃
𝑛
−1), (1/2)(𝑃

𝑛−1
+𝑃
𝑛
+1), 𝑃

𝑛
)

with odd 𝑛 are AI-PTs.

Proof. Let 𝐴 = ( 1 2
1 1
) = (

𝑃0+𝑃1 2𝑃1

𝑃1 𝑃0+𝑃1
). Then 𝐴

2
=

(
𝑃1+𝑃2 2𝑃2

𝑃2 𝑃1+𝑃2
), and it is easy to see 𝐴𝑛 =

(
𝑃𝑛−2+𝑃𝑛−1 2𝑃𝑛−1

𝑃𝑛−1 𝑃𝑛−2+𝑃𝑛−1
) ( 1 2
1 1
) = (

𝑃𝑛−1+𝑃𝑛 2𝑃𝑛

𝑃𝑛 𝑃𝑛−1+𝑃𝑛
) by 𝑃

𝑛
= 2𝑃
𝑛−1
+

𝑃
𝑛−2

. Hence the determinant (−1)𝑛 = |𝐴𝑛| = (𝑃
𝑛−1
+𝑃
𝑛
)
2
−2𝑃2
𝑛

shows (1) due toTheorem 7.
For (2), clearly 𝑠

𝑛
= 𝑠
0
𝐴𝑛 = (𝑃

𝑛
, 𝑃
𝑛−1
+ 𝑃
𝑛
) and 𝑃

𝑛−1
+ 𝑃
𝑛

is odd. If 𝑛 is even then 𝑠
𝑛
∈ 𝑆
−
, so byTheorem 9 we may let

𝑎
𝑛
= 𝑃
𝑛
+
(𝑃
𝑛−1
+ 𝑃
𝑛
− 1)

2
=
(𝑃
𝑛+1
+ 𝑃
𝑛
− 1)

2
,

𝑏
𝑛
= 𝑃
𝑛
+
(𝑃
𝑛−1
+ 𝑃
𝑛
+ 1)

2
=
(𝑃
𝑛+1
+ 𝑃
𝑛
+ 1)

2
,

𝑐
𝑛
= 𝑃
𝑛
+ (𝑃
𝑛−1
+ 𝑃
𝑛
) = 𝑃
𝑛+1
.

(8)

So we have an AI-PT (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
).

Now if 𝑛 is odd then 𝑠
𝑛
∈ 𝑆
+
. Again by Theorem 9, we

have an AI-PT (𝑎
𝑛
, 𝑏
𝑛
, 𝑐
𝑛
) with 𝑎

𝑛
= (1/2)(𝑃

𝑛
+ 𝑃
𝑛−1
− 1), 𝑏

𝑛
=

(1/2)(𝑃
𝑛
+ 𝑃
𝑛−1
+ 1), and 𝑐

𝑛
= 𝑃
𝑛
.

There are infinitely many iso-APTs and iso-NPTs by
means of Pell sequence, where their corresponding pairs are
regarded as solutions of 2𝑥2 − 𝑦2 = ±1. Moreover infinitely
many AI-PTs (𝑎, 𝑏, 𝑐) arose from Pell sequence are solutions
of 𝑥2 + 𝑦2 = 𝑧2 with 𝑏 − 𝑎 = 1. Indeed, due to Theorem 10, if
𝑛 = 9 then (𝑃

9
, 𝑃
9
, 𝑃
8
+𝑃
9
) = (985, 985, 1393) satisfies𝑥2+𝑦2 =

𝑧2 +1, so it is an iso-APT, while ((1/2)(𝑃
8
+𝑃
9
−1), (1/2)(𝑃

8
+

𝑃
9
+ 1), 𝑃

9
) = (696, 697, 985) meets 𝑥2 + 𝑦2 = 𝑧2, so it is

an AI-PT. On the other hand if 𝑛 = 10 then (𝑃
10
, 𝑃
10
, 𝑃
9
+

𝑃
10
) = (2378, 2378, 3363) is an iso-NPT satisfying 𝑥2 + 𝑦2 =

𝑧2 − 1, while ((1/2)(𝑃
10
+ 𝑃
11
− 1), (1/2)(𝑃

10
+ 𝑃
11
+ 1), 𝑃

11
) =

(4059, 4060, 5741) is an AI-PT satisfying 𝑥2 + 𝑦2 = 𝑧2.
Besides Pell sequence, Fibonacci sequence is also use-

ful to generate AI-PT. Horadam [8] proved that the four
Fibonacci numbers {𝐹

𝑛
, 𝐹
𝑛+1
, 𝐹
𝑛+2
, 𝐹
𝑛+3
} generate a PT 𝑇

𝑛
=

(𝐹
𝑛
𝐹
𝑛+3
, 2𝐹
𝑛+1
𝐹
𝑛+2
, 𝐹2
𝑛+1
+ 𝐹2
𝑛+2
). So {𝑇

𝑛
}
𝑛≥1
= {(3, 4, 5), (5, 12,

13), (16, 30, 34), (39, 80, 89), (105, 208, 233), . . .} are all PTs.
As a generalization, we say a sequence {𝑓

𝑛
} is Fibonacci type if

𝑓
𝑛
+𝑓
𝑛+1
= 𝑓
𝑛+2

with any initials𝑓
1
and𝑓
2
. Clearly {𝑓

𝑛
} = {𝐹

𝑛
}

if 𝑓
1
= 𝑓
2
= 1, and any four Fibonacci type numbers 𝑏 − 𝑎,

𝑎, 𝑏, and 𝑏 + 𝑎 (𝑏 > 𝑎 > 0) yield a PT (𝑏2 − 𝑎2, 2𝑎𝑏, 𝑏2 + 𝑎2),
Euclid’s formula. Let us consider Fibonacci type numbers and
their corresponding PTs:

{𝑓
𝑛
} : {𝑏 − 𝑎, 𝑎, 𝑏, 𝑏 + 𝑎} {𝑏 + 𝑎, 𝑏, 2𝑏 + 𝑎, 3𝑏 + 𝑎}

𝑇
𝑛
: (𝑏2 − 𝑎2, 2𝑎𝑏, 𝑏2 + 𝑎2) (3𝑏2 + 4𝑎𝑏 + 𝑎2, 4𝑏2 + 2𝑎𝑏, 5𝑏2 + 4𝑎𝑏 + 𝑎2) . (9)

In particular if 𝑎 = 1 and 𝑏 = 2, we have

{𝑓
𝑛
} : {1, 1, 2, 3} {3, 2, 5, 7} {7, 5, 12, 17} {17, 12, 29, 41} ⋅ ⋅ ⋅

𝑇
𝑛
: (3, 4, 5) (21, 20, 29) (119, 120, 169) (697, 696, 985) ⋅ ⋅ ⋅ .

(10)

And we notice that middle two terms of {𝑓
𝑛
} are consecutive

Pell numbers and the corresponding PT 𝑇
𝑛
are all AI-PT.

Theorem 11. Let 𝑎 = 𝑃
𝑛
, 𝑏 = 𝑃

𝑛+1
be Pell numbers. Then the

PT generated by four Fibonacci type numbers 𝑏 − 𝑎, 𝑎, 𝑏, and
𝑏 + 𝑎 is an AI-PT.

Proof. Consider four Fibonacci type numbers {𝑏−𝑎, 𝑎, 𝑏, 𝑏+𝑎}
and its generated triple𝑇

𝑛
. We have seen that𝑇

𝑛
are all AI-PT

if 1 ≤ 𝑛 ≤ 4. Now let 𝑇
𝑛
= (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) be the PT generated

by {𝑃
𝑛+1
− 𝑃
𝑛
, 𝑃
𝑛
, 𝑃
𝑛+1
, 𝑃
𝑛+1
+ 𝑃
𝑛
} for any 𝑛 > 0. Since 𝑥

𝑛
=

𝑃
2

𝑛+1
− 𝑃
2

𝑛
, 𝑦
𝑛
= 2𝑃
𝑛
𝑃
𝑛+1

, and 𝑧
𝑛
= 𝑃
2

𝑛
+ 𝑃
2

𝑛+1
, it is not hard to

see that
𝑥
𝑛
− 𝑦
𝑛
= (𝑃
𝑛+1
− 𝑃
𝑛
)
2

− 2𝑃
2

𝑛
= (𝑃
𝑛
+ 𝑃
𝑛−1
)
2

− 2𝑃
2

𝑛

= (−1)
𝑛

(11)

due to the determinant of 𝐴𝑛 in Theorem 10. Thus 𝑇
𝑛
is an

AI-PT.

Like for triples (𝑥, 𝑦, 𝑧) satisfying |𝑦 − 𝑥| = 1, it is worth
asking for triples (𝑥, 𝑦, 𝑧) satisfying |𝑦 − 𝑥| = 𝑘 for 𝑘 ∈ N. For
instance, the Fibonacci type numbers {1, 1, 2, 3}, {1, 2, 3, 5},
and {1, 3, 4, 7} produce PTs (𝑥, 𝑦, 𝑧) = (3, 4, 5), (5, 12, 13),
(7, 24, 25), respectively, where 𝑦 − 𝑥 = 1, 7, 17.

Theorem 12. For any positive integer 𝑘, there are infinitely
many PTs (𝑥, 𝑦, 𝑧) satisfying |𝑦 − 𝑥| = 2𝑘2 − 1.

Proof. We assume 𝑎
1
= 1 and 𝑏

1
= 𝑘. Fibonacci type numbers

{𝑎
1
, 𝑏
1
, 𝑎
1
+ 𝑏
1
, 𝑎
1
+ 2𝑏
1
} make a PT 𝑇(𝑘)

1
= (2𝑘 + 1, 2𝑘(𝑘 +

1), 2𝑘(𝑘+1)+1), where the difference 𝛿(𝑘)
1
= |𝑦
1
−𝑥
1
| = 2𝑘2−1.
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Table 6

𝑛 𝑓
𝑛
’s 𝑇(1)

𝑛
with 𝛿(1)

𝑛
= 1 𝑓

𝑛
’s 𝑇(2)

𝑛
with 𝛿(2)

𝑛
= 7 𝑓

𝑛
’s 𝑇(3)

𝑛
with 𝛿(3)

𝑛
= 17 𝑓

𝑛
’s 𝑇(4)

𝑛
with 𝛿(4)

𝑛
= 31

1 1, 1, 2, 3 (3, 4, 5) 1, 2, 3, 5 (5, 12, 13) 1, 3, 4, 7 (7, 24, 25) 1, 4, 5, 9 (9, 40, 41)

2 3, 2, 5, 7 (21, 20, 29) 5, 3, 8, 11 (55, 48, 73) 7, 4, 11, 15 (105, 88, 137) 9, 5, 14, 19 (171, 140, 221)

3 7, 5, 12, 17 (119, 120, 169) 11, 8, 19, 27 (297, 304, 425) 15, 11, 26, 37 (555, 572, 797) 19, 14, 33, 47 (893, 924, 1285)

Secondly if 𝑎
2
= 𝑎
1
+ 2𝑏
1
, 𝑏
2
= 𝑎
1
+ 𝑏
1
then Fibonacci type

numbers {𝑎
2
, 𝑏
2
, 𝑎
2
+𝑏
2
, 𝑎
2
+2𝑏
2
} yield a PT𝑇(𝑘)

2
= (8𝑘2+10𝑘+

3, 6𝑘2+10𝑘+4, 10𝑘2+14𝑘+5), with 𝛿(𝑘)
2
= |𝑦
2
−𝑥
2
| = 2𝑘2−1.

Now for any 𝑛 > 1, let 𝑎
𝑛
= 𝑎
𝑛−1
+2𝑏
𝑛−1

and 𝑏
𝑛
= 𝑎
𝑛−1
+𝑏
𝑛−1

.
Assume that the PT𝑇(𝑘)

𝑛
= (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) = (𝑎

𝑛
(𝑎
𝑛
+2𝑏
𝑛
), 2𝑏
𝑛
(𝑎
𝑛
+

𝑏
𝑛
), 𝑏2
𝑛
+ (𝑎
𝑛
+ 𝑏
𝑛
)
2
) generated by Fibonacci type numbers

{𝑎
𝑛
, 𝑏
𝑛
, 𝑎
𝑛
+ 𝑏
𝑛
, 𝑎
𝑛
+ 2𝑏
𝑛
} satisfies 𝛿(𝑘)

𝑛
= |2𝑘2 − 1|. Then the

next PT 𝑇(𝑘)
𝑛+1

generated by {𝑎
𝑛+1
, 𝑏
𝑛+1
, 𝑎
𝑛+1
+𝑏
𝑛+1
, 𝑎
𝑛+1
+2𝑏
𝑛+1
}

forms

𝑇
(𝑘)

𝑛+1
= (𝑎
𝑛+1
(𝑎
𝑛+1
+ 2𝑏
𝑛+1
) , 2𝑏
𝑛+1
(𝑎
𝑛+1
+ 𝑏
𝑛+1
) , 𝑏
2

𝑛+1

+ (𝑎
𝑛+1
+ 𝑏
𝑛+1
)
2

) .

(12)

And we also have

𝛿
(𝑘)

𝑛+1
=
󵄨󵄨󵄨󵄨𝑦𝑛+1 − 𝑥𝑛+1

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨2 (𝑎𝑛 + 𝑏𝑛) (2𝑎𝑛 + 3𝑏𝑛) − (𝑎𝑛 + 2𝑏𝑛) (3𝑎𝑛 + 4𝑏𝑛)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝑎
2

𝑛
− 2𝑏
2

𝑛

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨2𝑏𝑛 (𝑎𝑛 + 𝑏𝑛) − 𝑎𝑛 (𝑎𝑛 + 2𝑏𝑛)

󵄨󵄨󵄨󵄨

=
󵄨󵄨󵄨󵄨󵄨
𝛿
(𝑘)

𝑛

󵄨󵄨󵄨󵄨󵄨
=
󵄨󵄨󵄨󵄨󵄨
2𝑘
2
− 1
󵄨󵄨󵄨󵄨󵄨
.

(13)

So we have infinitely many PTs (𝑥
𝑛
, 𝑦
𝑛
, 𝑧
𝑛
) such that |𝑦

𝑛
−

𝑥
𝑛
| = 2𝑘

2
− 1.

If 𝑎
1
= 1, 𝑎

2
= 𝑘 (1 ≤ 𝑘 ≤ 4) then 𝑇(𝑘)

1
with 𝛿(𝑘)

1
= |2𝑘2 −

1| are {(3, 4, 5), (5, 12, 13), (7, 24, 25), (9, 40, 41)}. 𝑇(𝑘)
𝑛

(1 ≤
𝑛, 𝑘 ≤ 4) with 𝛿(𝑘)

𝑛
= |2𝑘2 − 1| are as shown in Table 6.
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