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The problem of actuators’ fault diagnosis is pursued for a class of nonlinear control systems that are affected by bounded
measurement noise and external disturbances. A novel fault diagnosis algorithm has been proposed by combining the idea of
adaptive control theory and the approach of fault detection observer. The asymptotical stability of the fault detection observer is
guaranteed by setting the adaptive adjusting law of the unknown fault vector. A theoretically rigorous proof of asymptotical stability
has been given. Under the condition that random measurement noise generated by the sensors of control systems and external
disturbances exist simultaneously, the designed fault diagnosis algorithm is able to successfully give specific estimated values of
state variables and failures rather than just giving a simple fault warning. Moreover, the proposed algorithm is very simple and
concise and is easy to be applied to practical engineering. Numerical experiments are carried out to evaluate the performance of
the fault diagnosis algorithm. Experimental results show that the proposed diagnostic strategy has a satisfactory estimation effect.

1. Introduction

With the rapid development of modern technology, the
engineering and technical personnel have put forward higher
requirements for the performance and reliability of equip-
ment. Due to the complexity of equipment and harsh work
environment, in order to avoid serious losses, adopting fault
diagnosis technology for real-timemonitoring of equipment’s
status is necessary. In the past few decades, there has been a
rapid development in fault diagnosis technology.

Generally, the fault diagnosismethods can be divided into
model-based approaches [1–3], knowledge-based approaches
[4–6], and the methods based on signal processing [7–
9]. Among these troubleshooting approaches, knowledge-
based fault diagnosis methods are strongly dependent on the
diagnostic systems themselves, and the diagnostic efficiency
is subjective to the integrity of the information about the diag-
nostic systems.The fault diagnosis algorithms based on signal
processing, especially filtering theory, are easy to implement
in practical applications, but the first-order linear truncation
in extended Kalman filters (EKF) can lead to low precision
and filters’ divergence. The model-based fault diagnosis

approaches can make full use of the system’s information for
fault location, determination of the failures’ type, and fault
estimation to obtain higher accuracy. Therefore, the model-
based fault diagnosis technology has been widely studied
by scholars [10, 11]. The state observer technique is very
important inmodel-based fault diagnosis, and it is able to give
specific estimated values of both failures and state variables
simultaneously, which is beneficial to the subsequent design
of fault-tolerant control law. Consequently, fault diagnosis
based on observer has been a research hotspot [12, 13]. The
representative results are analyzed as follows.

A robust fault detection observer was designed for a
Takagi-Sugeno (T-S) fuzzy model with sensor faults [14].
The approach used the technique of descriptor systems by
considering sensor fault as an auxiliary state variable. The
design of robust fault detection observerwas formulated as an
𝐻
−

/𝐻-infinity problem. A solution of the pursued problem
based on nonquadratic Lyapunov functions was then given
via a linear matrix inequality formulation. An example
was presented to demonstrate the design conditions. The
example showed that the proposed fault detection observer
was effective.

Hindawi Publishing Corporation
Mathematical Problems in Engineering
Volume 2016, Article ID 2618534, 12 pages
http://dx.doi.org/10.1155/2016/2618534



2 Mathematical Problems in Engineering

The small-amplitude oscillatory failures in the electrical
flight control system of an aircraft were specifically studied
[15]. A nonlinear observer-based solution to detect oscil-
latory failures with small amplitude at a very early stage
was presented. By narrowing the detection threshold, the
proposed approach could detect a fault with small amplitude
and achieve early fault warning but was not able to give a
specific form of the failure.

The online fault estimation question was further pur-
sued [16]. A nonlinear aircraft model with multiple control
surfaces was considered and a fault detection and isolation
(FDI) algorithm was proposed for the stuck fault detection.
The estimation effect was perfect; however, the proposed
algorithm was based on an ideal analytical model, without
considering external disturbances and measurement noise.

Robust and accurate detection of failures in the actuators
of a civil aircraft is a crucial issue. Actuator failures, if
not accurately detected in time, can often lead to improper
maintenance and may potentially lead to structural damage
or waste of money. Motivated by the actual demand, the
combination of the observer approach and the adaptive
control theory is applied to carry out fault diagnosis for
actuators in a class of nonlinear systems.The adaptivemethod
has been applied in the development of fault detection
observer. Adaptive control is one of the effective theories
of nonlinear systems’ design. By selecting adaptable com-
pensators, the adaptive controller can achieve stable control
of a nonlinear system whose parameters are not accurately
known or affected by disturbances [17, 18]. The adaptive
parameters’ adjusting law of the unknown fault vector has
been set up, guaranteeing the asymptotic stability of the
observer.

The main contributions of this paper lie in three aspects.
Firstly, different from the existing papers, the fault diagnosis
algorithm in this paper is not based on ideal analytical
models; in other words, the random measurement noise and
external disturbances are taken into account simultaneously
during the whole development process [19]. The designed
fault diagnosis algorithm can successfully separate the mea-
surement noise generated by the sensors, the unknown
external disturbances, and the failures when they exist at the
same time. Secondly, the fault diagnosis algorithm is able
to give specific estimated values of both failures and state
variables rather than just giving the estimated values of the
state variables or a fault warning.This is very beneficial for in-
depth fault analysis and taking appropriate troubleshooting
actions. Thirdly, the proposed algorithm is very simple and
concise, which can overcome the problem of “explosion of
complexity” and is easy to be applied to practical engineering.
All the above three aspects of research work are not perfect in
the existing literatures.

The structure of this paper is organized as follows. An
analytical model of nonlinear system with measurement
noise and disturbances is presented in Section 2. Section 3
identifies the diagnostic targets and constraints under which
the diagnosis algorithm is developed. A design scheme of
the nonlinear adaptive fault detection observer is proposed
for actuators’ fault diagnosis. In addition, a theoretically
rigorous proof of asymptotical stability has also been given.

Experimental results are presented in Section 4. Conclusions
and future works are discussed in Section 5.

2. Nonlinear System Statement

Consider a fault-free nonlinear system:

�̇� (𝑡) = 𝑔 (𝑥, 𝑡) + 𝐵𝑢 (𝑡) + 𝑀𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝑁𝑛 (𝑡) ,

(1)

where 𝑥(𝑡) ∈ R𝑛 denotes the state vector and it can be
measured directly; 𝑦(𝑡) ∈ R𝑚 and 𝑢(𝑡) ∈ R𝑟 denote
an output vector and a control input vector, respectively;
𝑑(𝑡) ∈ R𝑛 denotes an external disturbance vector that is
applied to the system’s actuator; 𝑛(𝑡) ∈ R𝑛 denotes a random
measurement noise (band-limited white noise) vector that is
generated by the system’s sensors; 𝐵 and 𝐶 are appropriately
dimensional constant matrices;𝑀 and𝑁 are full rank const.
matrices; 𝑔(𝑥, 𝑡) is a nonlinear function of the state variables
𝑥(𝑡).

Remark 1. Nonlinear control system (1) describes the influ-
ence of disturbances on the state variables and the effect of
measurement noise on the output, respectively.

When there are actuators’ failures, the fault system can be
expressed as

�̇� (𝑡) = 𝑔 (𝑥, 𝑡) + 𝐵 [𝑢 (𝑡) + 𝑓 (𝑡)] + 𝑀𝑑 (𝑡) ,

𝑦 (𝑡) = 𝐶𝑥 (𝑡) + 𝑁𝑛 (𝑡) ,

(2)

where 𝑓(𝑡) ∈ R𝑟 denotes an unknown time-varying fault
vector.

3. Design of the Observer and Adaptive Fault
Estimation Algorithm

3.1. Constraint Conditions. Before designing the fault diagno-
sis algorithm, some constraints need to be satisfied for fault
system (2).

(i) 𝑔(𝑥, 𝑡) in (1) and (2) satisfies the Lipschitz condition
about state vector 𝑥(𝑡); namely, there exists constant 𝛿

1

> 0,
such that

𝑔 (𝑥
1

) − 𝑔 (𝑥
2

)
 ≤ 𝛿
1

𝑥1 − 𝑥
2

 . (3)

Remark 2. To simplify writing, 𝑥(𝑡) is abbreviated to 𝑥. This
kind of writingmethod is suitable for the subsequent content.

(ii) The unknown external time-varying disturbance
vector 𝑑(𝑡) is bounded; that is,

‖𝑀𝑑‖ ≤ 𝜇
0

, (4)

where 𝜇
0

≥ 0 represents the maximum acceptable distur-
bance.

The requirement that the power of external disturbances
is bounded is obviously reasonable. Because the disturbances
must exist actually in the running process of nonlinear system
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(1) or (2), in other words, if ‖𝑀𝑑‖ → +∞, state variables
𝑥(𝑡) and time-varying failures 𝑓(𝑡) will be “drowned” by
disturbances. In this case, state estimation or fault estimation
is impossible.

(iii) The sensor’s measurement noise vector 𝑛(𝑡) is
bounded; that is,

‖𝑁𝑛‖ ≤ 𝜇
1

, (5)

where𝜇
1

≥ 0 represents themaximumamplitude of the noise.
In general, measurement noise is mingled in the feedback

signal coming from the sensors, which means that the noise
signal exists for real. So the measurement noise should be
bounded.

(iv) The time-varying fault vector 𝑓 is a bounded vector
with finite rate of change; that is,

𝑓
 ≤ 𝜇
2

,


�̇�

≤ 𝜇
3

,

(6)

where 𝜇
2

≥ 0 and 𝜇
3

≥ 0 represent the maximum amplitude
of the failures and the rate of change, respectively.

Constraint condition (6) has specified the applicable
scope of the proposed algorithm in this paper; in other words,
only bounded failures with finite rate of change can be given
specific estimated values. If ‖𝑓‖ → +∞ or ‖�̇�‖ → +∞,
specific estimated values of failures will not be obtained.

(v) The state vector 𝑥 is also bounded with finite rate of
change; that is,

‖𝑥‖ ≤ 𝜇
4

,

‖�̇�‖ ≤ 𝜇
5

,

(7)

where 𝜇
4

≥ 0 and 𝜇
5

≥ 0 represent the maximum amplitude
of the states and the rate of change, respectively.

Just as constraint condition (6), because the proposed
algorithm will also give the specific estimated values of state
variables, their values should also be bounded.

3.2. Fault DetectionObserver. For fault system (2), the follow-
ing observer is designed:

̇̂𝑥 = 𝑔 (�̂�) + 𝐵 [𝑢 + �̂�] + 𝐻 (𝑦 − �̂�) ,

�̂� = 𝐶�̂�,

(8)

where �̂� ∈ R𝑛, �̂� ∈ R𝑟, and �̂� ∈ R𝑚 denote state estimation,
fault estimation, and output estimation, respectively; 𝐻 is a
finite gain matrix of the designed observer.

Here, the deviation signal �̃� ∈ R𝑛 is defined in the
following form:

�̃� = 𝑥 − �̂�. (9)

Remark 3. 𝑥 denotes the real values of state variables in fault
system (2), which is measureable. However, �̂� comes from
fault detection observer (8).When failures occur in actuators,
namely, ‖𝑓‖ ̸= 0, 𝑥 is not equal to �̂�; namely, ‖�̃�‖ ̸= 0. In other

words, �̃� always contains the deviation information caused by
actuators’ failure 𝑓. If there are no failures, �̂� asymptotically
approaches 𝑥 and in this case, fault detection observer (8)
becomes a standard state observer. So, (8) is named as “fault
detection observer.”

By fault system (2) and fault detection observer (8), we
can obtain

̇̃𝑥 = �̇� − ̇̂𝑥

= −𝐻𝐶�̃� + (𝑔 − �̂�) + 𝐵 (𝑓 − �̂�) + 𝐸𝑑 − 𝐻𝑁𝑛,

(10)

where �̂� denotes 𝑔(�̂�).

3.3. Adaptive Fault Estimation. Consider the system to be
supervised given by (2); the proposed adaptive fault estima-
tion algorithm for this fault system is given by

̇̂
𝑓 = Π𝐵

𝑇

𝑊�̃�, (11)

where Π = diag{Π
11

, Π
22

, . . . , Π
𝑟𝑟

} ∀Π
𝑖𝑖

> 0, 𝑖 ∈ [1, 𝑟],
denotes a convergence factor matrix, namely, an adaptive
rate, which can influence the estimation performance; 𝑊 is
a symmetric positive definite matrix and the conditions that
need to be satisfied for 𝑊 will be discussed in detail in the
following.

Remark 4. Matrix Π in (11) is discussed here. In the subse-
quent proof process, only the conditions for elementΠ

𝑖𝑖

in the
diagonal of matrixΠ need to be met, that is, ∀Π

𝑖𝑖

> 0, ∀Π
𝑖𝑖

<

+∞, and ∀Π
𝑖𝑗

= 0, 𝑗 ∈ [1, 𝑟] and 𝑖 ̸= 𝑗. These constraint
conditions can ensure that the eigenvalues of matrix Π exist.
In addition, it is easy to satisfy these constraint conditions,
but the optimal value for Π

𝑖𝑖

cannot be given here.

The error signal of fault estimation �̃� ∈ R𝑟 is defined in
the following form:

�̃� = 𝑓 − �̂�. (12)

By constraint condition (6), it can be obtained that
̇̃

𝑓 = �̇� −
̇̂

𝑓 = �̇� − Π𝐵
𝑇

𝑊�̃�. (13)

Theorem 5. If 𝑊 in (11) and the symmetric positive definite
matrix 𝑈 are selected to satisfy the condition

(−𝐻𝐶)
𝑇

𝑊+𝑊(−𝐻𝐶) + 𝛿𝑊𝑊 + 𝛿𝐼 = −𝑈, (14)

where 𝛿 is a positive constant that satisfies Lipschitz condition
(3) and 𝐼 is an appropriately dimensional unit matrix, then
the fault diagnosis algorithm based on fault detection observer
(8) and adaptive fault estimation algorithm (11) can ensure
that state estimation error �̃� and fault estimation error �̃� are
driven asymptotically to bounded constants simultaneously, in
the sense that

lim
𝑡→∞

‖�̃� (𝑡)‖ ≤ 𝜏
1

,

lim
𝑡→∞


�̃� (𝑡)


≤ 𝜏
2

,

(15)

where 𝜏
1

> 0 and 𝜏
2

> 0 denote two bounded positive
constants.
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Proof. We now define a Lyapunov function 𝑉(𝑡) as

𝑉 (𝑡) = �̃�
𝑇

𝑊�̃� + �̃�
𝑇

Π
−1

�̃�. (16)

Remark 6. 𝑉(𝑡) evaluates deviation signal �̃� and fault estima-
tion error �̃� comprehensively.

After taking the time derivative of (16) and substituting
(10) and (13) into it, it can be obtained that

�̇� = ̇̃𝑥
𝑇

𝑊�̃� + �̃�
𝑇

𝑊 ̇̃𝑥 +
̇̃

𝑓

𝑇

Π
−1

�̃� + �̃�
𝑇

Π
−1

̇̃
𝑓. (17)

There are four terms in �̇�. In order to facilitate reading,
they are expanded, respectively, into the following forms:

̇̃𝑥
𝑇

𝑊�̃� = [�̃�
𝑇

(−𝐻𝐶)
𝑇

+ (𝑔 − �̂�)
𝑇

+ �̃�
𝑇

𝐵
𝑇

+ 𝑑
𝑇

𝐸
𝑇

− 𝑛
𝑇

(𝐻𝑁)
𝑇

]𝑊�̃�,

�̃�
𝑇

𝑊 ̇̃𝑥 = �̃�
𝑇

𝑊[(−𝐻𝐶) �̃� + (𝑔 − �̂�) + 𝐵�̃� + 𝐸𝑑

− 𝐻𝑁𝑛] ,

̇̃
𝑓

𝑇

Π
−1

�̃� = (�̇� − Π𝐵
𝑇

𝑊�̃�)
𝑇

Π
−1

�̃� = �̇�
𝑇

Π
−1

�̃�

− �̃�
𝑇

𝑊𝐵�̃�,

�̃�
𝑇

Π
−1

̇̃
𝑓 = �̃�

𝑇

Π
−1

(�̇� − Π𝐵
𝑇

𝑊�̃�) = �̃�
𝑇

Π
−1

�̇�

− �̃�
𝑇

𝐵
𝑇

𝑊�̃�.

(18)

After substituting (18) into (17), �̇� can be expressed as

�̇� = �̃�
𝑇

[(−𝐻𝐶)
𝑇

𝑊+𝑊(−𝐻𝐶)] �̃�

+ [(𝑔 − �̂�)
𝑇

𝑊�̃� + �̃�
𝑇

𝑊(𝑔 − �̂�)]

+ [𝑑
𝑇

𝑀
𝑇

𝑊�̃� + �̃�
𝑇

𝑊𝑀𝑑]

− [𝑛
𝑇

𝑁
𝑇

𝐻
𝑇

𝑊�̃� + �̃�
𝑇

𝑊𝐻𝑁𝑛] + 2�̃�
𝑇

Π
−1

�̇�.

(19)

After utilizing Lipschitz condition (3), the following
inequality can be obtained:

�̇� ≤ �̃�
𝑇

[(−𝐻𝐶)
𝑇

𝑊+𝑊(−𝐻𝐶)] �̃� + 2

�̃�
𝑇

𝑊

𝛿 ‖�̃�‖

+ 2 ‖𝑀𝑑‖ 𝜆max (𝑊) ‖�̃�‖

+ 2 ‖𝐻𝑁𝑛‖ 𝜆max (𝑊) ‖�̃�‖ + 2�̃�
𝑇

Π
−1

�̇�,

(20)

where 𝜆max(𝑊) denotes the maximum eigenvalue of matrix
𝑊.

Next, the last term in (20) can be handled in accordance
with the following form:

2�̃�
𝑇

Π
−1

�̇� ≤ �̃�
𝑇

�̃� + �̇�
𝑇

Π
−1

Π
−1

�̇�

≤

�̃�


2

+

�̇�


2

𝜆max (Π
−1

Π
−1

) ,

(21)

where 𝜆max(Π
−1

Π
−1

) denotes the maximum eigenvalue of
matrix Π−1Π−1.

In addition, because the measurement noise vector 𝑛(𝑡) is
bounded, where ‖𝑁𝑛‖ ≤ 𝜇

1

has been declared in constraint
conditions (5) and𝐻 is the finite gain matrix of the designed
observer, ‖𝐻𝑁𝑛‖ will also be bounded. It can be defined as
follows:

‖𝐻𝑁𝑛‖ ≤ 𝜇
6

, (22)

where 𝜇
6

is a bounded positive constant.
Obviously, by combining conditions (21) and (22), (20)

can be strengthened to

�̇� ≤ �̃�
𝑇

[(−𝐻𝐶)
𝑇

𝑊+𝑊(−𝐻𝐶)] �̃�

+ 𝛿 [

�̃�
𝑇

𝑊


2

+ ‖�̃�‖
2

] + 2𝜇
0

𝜆max (𝑊) ‖�̃�‖

+ 2𝜇
6

𝜆max (𝑊) ‖�̃�‖ +

�̃�


2

+

�̇�


2

𝜆max (Π
−1

Π
−1

)

= �̃�
𝑇

[(−𝐻𝐶)
𝑇

𝑊+𝑊(−𝐻𝐶) + 𝛿𝑊𝑊 + 𝛿𝐼] �̃�

+ 2 (𝜇
0

+ 𝜇
6

) 𝜆max (𝑊) ‖�̃�‖ +

�̃�


2

+

�̇�


2

𝜆max (Π
−1

Π
−1

) ,

(23)

where 𝜇
0

has been defined in (4).
After utilizing constraint condition (6), the following

inequality can be obtained easily:

�̃�

=

𝑓 − �̂�


≤
𝑓

 +

�̂�

≤ 2𝜇
2

, (24)

where 𝜇
2

has been defined in (6).
After substituting (6), (14), and (24) into (23), the condi-

tion can be adjusted into the following expression:

�̇� ≤ −�̃�
𝑇

𝑈�̃� + 2Υ𝜆max (𝑊) ‖�̃�‖ + 4𝜇
2

2

+ 𝜇
2

3

𝜆max (Π
−1

Π
−1

)

≤ −𝜆min (𝑈) ‖�̃�‖
2

+ 2Υ𝜆max (𝑊) ‖�̃�‖ + Ψ,

(25)

where 𝜆min(𝑈) denotes the minimum eigenvalue of matrix𝑈
which satisfies Theorem 5, Υ = (𝜇

0

+ 𝜇
6

) and Ψ = 4𝜇
2

2

+

𝜇
2

3

𝜆max(Π
−1

Π
−1

), and 𝜇
3

has been defined in (6).
Next, in order to complete the stability analysis, two cases

will be examined.

Case 1 (‖�̃�‖ > 𝜂). Consider 𝜂 = (2Υ𝜆max(𝑊) +

√4Υ2𝜆2max(𝑊) + 4Ψ𝜆min(𝑈))/2𝜆min(𝑈).
In this case, �̇� < 0 is established and (8) is a stable

observer of nonlinear fault system (2).

Case 2 (‖�̃�‖ ≤ 𝜂). In this case, �̇� > 0 is established and
observer (8) will be divergent.This causes the increase of ‖�̃�‖,
and let ‖�̃�‖ > 𝜂. Next, it will satisfy Case 1, which brings ‖�̃�‖
to reduce, and so on; namely, the states error ‖�̃�‖ will remain
at a certain level range.
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Consolidating Cases 1 and 2, it can be seen that the
observer is stable, and the designed fault detection observer
is able to keep accurate tracking of fault system (2).

Remark 7. 𝐻 in (14) is a finite gain matrix of fault detection
observer (8), which just needs to satisfy the condition that
ensures that (−𝐻𝐶) is a stable matrix. For example, the
following choice is reasonable:

𝐻 = Θ𝑊𝐶
𝑇

, (26)

where Θ > 0 is an adjustable parameter.

4. Experiments

Experiment 1. It is a comparative study between the proposed
approach and the T-S fuzzy observer.

In order to fully evaluate the performance of the proposed
fault diagnosis algorithm, an actuator motion model is
selected and its parameters are analyzed as the following
expression:

𝑔 (𝑥) = [

𝑥
2

−0.5 sin (𝑥
1

)
] ,

𝐵 = [

1.5 0

0 1
] ,

𝐶 = 𝑀 = 𝑁 = [

1 0

0 1
] .

(27)

Obviously, 𝑔(𝑥) satisfies the Lipschitz condition. The
parameters in fault detection observer (8) are selected accord-
ing to (14) with the following form:

𝛿 = 0.5,

𝑊 = 𝐻 = [

5.2 −4.9

−4.9 6.3
] ,

𝑈 = [

76.08 −84.53

−84.53 95.05
] .

(28)

By combining (27) and (28), the fault detection observer
based on our proposed algorithm in this paper has been
constructed as follows:

[

̇̂𝑥
1

̇̂𝑥
2

] = [

�̂�
2

−0.5 sin (�̂�
1

)
] + [

1.5 0

0 1
][

𝑢
1

+ �̂�
1

𝑢
2

+ �̂�
2

]

+ [

5.2 −4.9

−4.9 6.3
] [

𝑦
1

− �̂�
1

𝑦
2

− �̂�
2

] ,

[

�̂�
1

�̂�
2

] = [

1 0

0 1
] [

�̂�
1

�̂�
2

] .

(29)

The convergence factormatrixΠ in adaptive fault estima-
tion algorithm (11) is selected carefully as

Π = Π
1

= [

1.53 0

0 6.0
] . (30)

The observer based on Takagi-Sugeno (T-S) fuzzymodels
is another important approach for fault detection. So it is
necessary tomake a comparative study between the proposed
approach and T-S fuzzy observer. Here, a reduced-order T-S
fuzzy observer scheme has been cited and its design process is
presented briefly (the specific technical details can be found
in [20]).

The T-S fuzzy system fault model that contains actuators’
failures is given in the following form:

�̇� =

𝑙

∑

𝑖=1

ℎ
𝑖

(𝑥) (𝐴
𝑖

𝑥 + 𝐵
𝑖

(𝑢 + 𝑓)) ,

𝑦 = 𝐶𝑥,

(31)

where 𝑙 is the number of fuzzy rules; ℎ
𝑖

(𝑥) is a membership
function and ℎ

𝑖

(𝑥) ∈ [0, 1]; ∑𝑙
𝑖=1

ℎ
𝑖

(𝑥) = 1; 𝐴
𝑖

and 𝐵
𝑖

are
appropriately dimensional constant matrices; 𝑥, 𝑦, 𝑢,𝑓, and
𝐶 have been defined in (1) and (2) separately.

The fault detection observer based on T-S fuzzy model is
designed:

̇̂𝑥 =

𝑙

∑

𝑖=1

ℎ
𝑖

(�̂�) (𝐴
𝑖

�̂� + 𝐵
𝑖

(𝑢 + �̂�)) ,

�̂� = 𝐶�̂�,

(32)

where �̂�, �̂�, �̂�, and 𝐶 have been defined in (8).
A T-S fuzzy adaptive fault estimation algorithm for fault

system (2) is given by

̇̂
𝑓 =

𝑙

∑

𝑖=1

ℎ
𝑖

(�̂�) Γ�̃�. (33)

Assumed in the diagnosis process, there are no distur-
bances (internal or external); namely, 𝑑 = 𝑛 = [0], but there
are failures described as

𝑓 = [

0.1 cos (3.14 ⋅ 𝑡)
0.4 sin (3.14 ⋅ 𝑡)

] . (34)

The control input vector adopts constants with the follow-
ing form:

𝑢 = [

0.02

0.6
] . (35)
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Figure 1: Estimation of 𝑥
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based on the proposed approach.
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Figure 2: Estimation of 𝑥
2

based on the proposed approach.

Initial state vector 𝑥 and estimation vector �̂� are selected
as follows:

𝑥 = [

15.0

5.0
] ,

�̂� = [

0.0

0.0
] .

(36)

The simulation process lasts 40 seconds. The effects of
state estimation and fault estimation based on the proposed
algorithm in this paper are shown in Figures 1, 2, 3, and 4.The
effects of state estimation and fault estimation based on T-S
fuzzy model are shown in Figures 5, 6, 7, and 8.

From Experiment 1, the following can be seen:

(1) There is no obvious difference between the perfor-
mances of the proposed algorithm in this paper and
the T-S fuzzy model. Both of the two algorithms can
accurately estimate the state variables and the failures,
and only small errors exist.The adjustment time of T-
S fuzzy model is slightly shorter, but it is not obvious
(see Figure 2 versus Figure 6, Figure 3 versus Figure 7,
and Figure 4 versus Figure 8). In addition, from the

point of view of the design process in two observers,
the proposed algorithm is more concise.

(2) The T-S fuzzy observer proposed by [20] did not
consider the influence of time-varying disturbances
(random measurement noise, external disturbances,
etc.) on estimation performance and the solution
to the antidisturbance problem was also not given.
However, the proposed algorithm in this paper
has excellent antidisturbance performance, which is
the most important advantage compared with the
existing approaches. In order to fully illustrate this
point, Experiment 2 is further carried out.

Experiment 2. It is the performance test with the presence of
disturbances and failures.

Assuming that in the diagnosis process there are external
time-varying disturbances as shown in (37) and time-varying
failures as shown in (34) at the same time,

𝑑 = [

0.08 cos (31.4 ⋅ 𝑡)
0.3 sin (31.4 ⋅ 𝑡)

] . (37)
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Figure 3: Estimation of failure 1 based on the proposed approach: (a) estimation of failure 1 and (b) enlarged view.
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Figure 4: Estimation of failure 2 based on the proposed approach: (a) estimation of failure 2 and (b) enlarged view.

In addition, sensors’ random measurement noise 𝑛(𝑡) is
seen as a band-limited white noise with the height of the
power spectral density (PSD) being equal to 0.01 and zero
mean, and its variance is equal to 1; namely,

PSD (𝑛) = 0.01,

mean (𝑛) = 0,

var (𝑛) = 1.

(38)

The control input vector also uses (35); initial state vector
𝑥 and estimation vector �̂� use (36).

In order to thoroughly analyze and evaluate the conver-
gence factors’ impact on the performance of state estimation
and fault estimation, the convergence factor matrix Π in
adaptive fault estimation algorithm (11) is selected as (30) and
(39), respectively:

Π = Π
2

= 0.5 ∗ Π
1

= [

0.765 0

0 3.0
] . (39)

The effects of estimation based onΠ
1

are shown in Figures
9–12. The effects of estimation based on Π

2

are shown in
Figures 13–16.

For the proposed algorithm in this paper, the following
can be concluded from Experiments 1 and 2:

(1) The performance of state estimation is perfect.
Regardless of whether there are disturbances, the
error signals of state estimation in stable state are
very small; namely, lim

𝑡→∞

‖�̃�‖ ≈ [0̃] (see Figures
1, 2, 9, 10, 13, and 14). This shows that the designed
fault detection observer (8) is not only stable but also
very accurate. The precise state estimation provides
the basis for the fault diagnosis of small-amplitude
failures.

(2) The external disturbances and random measurement
noise have a very obvious influence on the results of
fault estimation. From Experiment 2, it can be found
that, with the presence of disturbances and noise,
the values of fault estimation have obvious “burr”
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based on the T-S fuzzy models.
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Figure 6: Estimation of 𝑥
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based on the T-S fuzzy models.

(see Figures 11(b), 12(b), 15(b), and 16(b)). At this time,
the estimated failures will oscillate around the actual
failures. However, when there are no disturbances
or noise, the values of fault estimation are very
“smooth” (see Figures 3 and 4). In actual operation,
fault system (2) has difficulty avoiding the influence
of disturbances and noise, and therefore the results
in Experiment 2 are more consistent with the actual
situations.

(3) There are slight constant phase differences between
actual values and estimated values in steady state
(see Figures 3(b), 4(b), 11(b), 12(b), 15(b), and 16(b)).
According toTheorem5, the fault diagnosis algorithm
based on fault detection observer (8) and fault estima-
tion algorithm (11) can only ensure that state estima-
tion error �̃� and fault estimation error �̃� are driven
asymptotically to bounded positive constants, not to
zero. In other words, the proposed algorithm is not an
error-free estimation. So these simulation results are
consistent with Lyapunov stability theory and this is
why constant phase differences are generated. But the

phase differences are not too large and are within an
acceptable range.

(4) The convergence factor matrix Π has a significant
impact on the performance of fault estimation. In
Experiment 2, through the comparison of Π

1

=

[
1.53 0

0 6.0

] and Π
2

= [
0.765 0

0 3.0

], it can be found that if
Π
1

is selected, the estimated failures in stable status
have smaller amplitude errors (see Figure 11(b) versus
Figure 15(b) and Figure 12(b) versus Figure 16(b)).
Therefore, an appropriate increase of convergence
factors can improve the accuracy of fault estimation
and reduce the estimation errors. However, it is also
found through experiments that too large values of
convergence factors will cause the observer’s diver-
gence; therefore, careful selection of convergence
factors is always required.

5. Conclusion

A nonlinear fault detection observer and an adaptive fault
estimation algorithm have been proposed for the diagnosis
of a class of nonlinear systems that have actuators’ failures.
Satisfactory experimental results have been achieved. The
most important contribution of this paper is to present a
novel diagnostic strategy that is able to give specific estimated
values of state variables and failures when the external
disturbances and measurement noise exist simultaneously. It
has been proved that the fault detection observer, obtained
via a Lyapunov function, is useful to achieve asymptotical
stability in the case where unknown bounded disturbances
and noise exist.

In this paper, we only discuss the problem of detection
and estimation of actuators’ failures. Future works will be
focused on three aspects: the first aspect is the selection
of convergence factors Π in (11). A guided approach of
parameters’ selection should be studied to guarantee that the
proposed algorithm has faster estimation speed and smaller
estimation errors; the second aspect is diagnosis algorithm’s
spreading. We hope that not only actuators’ failures but also
sensors’ failures can be detected and estimated simultane-
ously; the third aspect is the practical use. This paper focuses
on the theoretical research and how to apply the given results
to engineering practice more effectively is also amajor task to
be completed in the future.
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Figure 7: Estimation of failure 1 based on the T-S fuzzy models: (a) estimation of failure 1 and (b) enlarged view.
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Figure 11: Estimation of failure 1 with Π
1

: (a) estimation of failure 1 and (b) enlarged view.
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: (a) estimation of failure 1 and (b) enlarged view.
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