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In this manuscript, An unsteady axisymmetric flow of nonconducting, Newtonian fluid squeezed between two circular plates is
studied with slip and no-slip boundaries. Using similarity transformation, the system of nonlinear partial differential equations
is reduced to a single fourth order ordinary differential equation. The resulting boundary value problems are solved by optimal
homotopy asymptotic method (OHAM) and fourth order explicit Runge-Kutta method (RK4). It is observed that the results
obtained from OHAM are in good agreement with numerical results by means of residuals. Furthermore, the effects of various
dimensionless parameters on the velocity profiles are investigated graphically.

1. Introduction

Thesqueezing of an incompressible viscous fluid between two
parallel plates is an essential type of flow that is frequently
observed in many hydro dynamical tools and machines. In
food industries, squeezing flows have several applications
particularly in chemical engineering [1, 2]. Compression and
injection molding, polymer processing, and modeling of
lubrication system are some practical examples of squeezing
flows. The modeling and analysis of squeezing flow has
started in nineteenth century and continues to receive sig-
nificant attention due to its vast applications in biophysical
and physical sciences.The initial work in squeezing flows has
been done by Stefan [3], who developed an ad hoc asymptotic
solution of Newtonian fluids. An explicit solution of the
squeeze flow, considering inertial terms, has been established
by Thorpe and Shaw [4]. However, P. S. Gupta and A. S.
Gupta [5] proved that the solution set up by [4] fails to
satisfy the boundary conditions. Considering fluid inertia
effects, Elkouh [6] studied the squeeze film between two
plane annuli. Verma [7] and Singh et al. [8] have conducted
Numerical solutions of the squeezing flow between parallel
plates. Leider and Bird [9] performed theoretical analysis
for squeezing flow of power-law fluid between parallel disks.

Analytic solution for the squeezing flow of viscous fluid
between two parallel disks with suction or blowing effect
has been proposed by Domairry and Aziz [10]. Islam et
al. [11] studied Newtonian squeezing fluid flow in a porous
medium channel. Ullah et al. [12] discussed the Newtonian
fluid flow with slip boundary condition keeping MHD effect
into account. Siddiqui et al. [13] investigated the unsteady
squeezing flow of viscous fluid with magnetic field. Apart
from the mentioned researchers, other prominent scholars
have conducted various theoretical and experimental studies
of squeezing flows [14–17].

The difference between fluid and boundary velocity
is proportional to the shear stress at the boundary. The
dimension of proportionality constant is length, which is
known as slip parameter. In fluids with elastic character, slip
condition has great importance [18]. It has many applications
in medical sciences, for instance, polishing artificial heart
valves [19]. There are various situations in which no-slip
boundary condition is inappropriate. Some of these situations
include polymeric liquids when the weight of molecule is
high, flow on multiple interfaces, fluids containing concerted
suspensions, and thin film problems. The general boundary
condition which shows the fluid slip at the wall was ini-
tially proposed by Navier [20]. Recently, Ebaid [21] studied
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the effect of magnetic field in Newtonian fluid in an asym-
metric channel with wall slip conditions.

Most of scientific incidents are modeled by nonlinear
partial or ordinary differential equations. In literature, we
have variety of perturbation techniques which can solve
nonlinear boundary value problems analytically. But the
limitations of these techniques are based on the assumption
of small parameters. Detailed review of these methods is
given by He [22]. In recent times, the ideas of Homotopy and
Perturbation have been combined together. Liao [23] and He
[24, 25] have done the primary work in this regard. In series
of papers, Marinca with various scholars used OHAM to find
the approximate solution of nonlinear differential equations
arising in heat transfer, steady flow of a fourth-grade fluid,
and thin film flow [26–28].

In this work, OHAM is used to analyze an unsteady
squeezing fluid flow between two circular nonrotating disks
with slip and no-slip boundary conditions. In addition,
movement of the circular plates is considered to be symmetric
about the axial line and the fluid is considered to be Newto-
nian, incompressible and viscous. Sections 2 and 3 include the
description and mathematical formulation of the problem.
Sections 4, 5, and 6 present the basic theory of OHAM and
its application in case of no-slip and slip boundaries. Results
and discussions are given in Section 7 while conclusions are
mentioned in Section 8.

2. Description of the Problem

Theunsteady axisymmetric squeezing flow of incompressible
Newtonian fluid with density 𝜌, viscosity 𝜇 and kinematic
viscosity ], squeezed between two circular plates having
speed V

𝑤
(𝑡) is considered. It is assumed that at any time 𝑡, the

distance between two circular plates is 2𝑠(𝑡). It is also assumed
that 𝑟-axis is the central axis of the channel while 𝑧-axis is
taken normal to it. Plates move symmetrically with respect to
the central axis 𝑧 = 0 while the flow is axisymmetric about
𝑟 = 0. The longitudinal and normal velocity components
in radial and axial directions are 𝑢

𝑟
(𝑟, 𝑧, 𝑡) and 𝑢

𝑧
(𝑟, 𝑧, 𝑡),

respectively.The geometrical interpretation of the problem is
given in Figure 1.

3. Mathematical Formulation

The governing equations of motion are

∇ ⋅ U = 0,

𝜌 [
𝜕U
𝜕𝑡

+ (U ⋅ ∇)U] = 𝜌𝑓 + ∇ ⋅ T,
(1)

where

T = −𝑝I + 𝜇A
1
,

A
1
= ∇U + (∇U)𝑡,

(2)

and U is the velocity vector, 𝑝 is the pressure, 𝑓 is the body
force, T is the Cauchy stress tensor, A

1
is the Rivlin-Ericksen

2s(t)r = 0

z = 0

r

r
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Figure 1: Geometrical interpretation of the problem.

tensor, and 𝜇 is the coefficient of viscosity. Now we formulate
the unsteady two-dimensional flow. Let us assume that

U = [𝑢
𝑟
(𝑟, 𝑧, 𝑡) , 0, 𝑢

𝑧
(𝑟, 𝑧, 𝑡)] , (3)

and introduce the vorticity functionΩ(𝑟, 𝑧, 𝑡) and generalized
pressure ℎ(𝑟, 𝑧, 𝑡) as

Ω (𝑟, 𝑧, 𝑡) =
𝜕𝑢
𝑧

𝜕𝑟
−
𝜕𝑢
𝑟

𝜕𝑧
, (4)

ℎ (𝑟, 𝑧, 𝑡) =
𝜌

2
[𝑢
2

𝑟
+ 𝑢
2

𝑧
] + 𝑝. (5)

Equations (1) are reduced to
𝜕𝑢
𝑟

𝜕𝑟
+
𝑢
𝑟

𝑟
+
𝜕𝑢
𝑧

𝜕𝑧
= 0,

𝜕ℎ

𝜕𝑟
+ 𝜌(

𝜕𝑢
𝑟

𝜕𝑡
− 𝑢
𝑧
Ω) = −𝜇

𝜕Ω

𝜕𝑧
,

𝜕ℎ

𝜕𝑧
+ 𝜌(

𝜕𝑢
𝑧

𝜕𝑡
+ 𝑢
𝑟
Ω) =

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟Ω) .

(6)

The boundary conditions on 𝑢
𝑟
(𝑟, 𝑧, 𝑡) and 𝑢

𝑧
(𝑟, 𝑧, 𝑡) are

𝑢
𝑟
(𝑟, 𝑧, 𝑡) = 0, 𝑢

𝑧
(𝑟, 𝑧, 𝑡) = V

𝑤
(𝑡) at 𝑧 = 𝑠

𝜕

𝜕𝑧
𝑢
𝑟
(𝑟, 𝑧, 𝑡) = 0, 𝑢

𝑧
(𝑟, 𝑧, 𝑡) = 0 at 𝑧 = 0,

(7)

where V
𝑤
(𝑡) = 𝑑𝑠/𝑑𝑡 is the velocity of the plates. The

boundary conditions (7) are due to symmetry at 𝑧 = 0 and
no-slip at the upper plate when 𝑧 = 𝑠. If we introduce the
dimensionless parameter

𝜂 =
𝑧

𝑠 (𝑡)
. (8)

Equations (4) and (6) transforms to

Ω (𝑟, 𝑧, 𝑡) =
𝜕𝑢
𝑧

𝜕𝑟
−
1

𝑠

𝜕𝑢
𝑟

𝜕𝜂
, (9)

𝜕𝑢
𝑟

𝜕𝑟
+
𝑢
𝑟

𝑟
+
1

𝑠

𝜕𝑢
𝑧

𝜕𝜂
= 0, (10)

𝜕ℎ

𝜕𝑟
+ 𝜌(

𝜕𝑢
𝑟

𝜕𝑡
− 𝑢
𝑧
Ω) = −

𝜇

𝑠

𝜕Ω

𝜕𝜂
, (11)

1

𝑠

𝜕ℎ

𝜕𝜂
+ 𝜌(

𝜕𝑢
𝑧

𝜕𝑡
+ 𝑢
𝑟
Ω) =

𝜇

𝑟

𝜕

𝜕𝑟
(𝑟Ω) . (12)
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The boundary conditions on 𝑢
𝑟
and 𝑢

𝑧
are

𝑢
𝑟
= 0, 𝑢

𝑧
= V
𝑤
(𝑡) at 𝜂 = 1

𝜕𝑢
𝑟

𝜕𝜂
= 0, 𝑢

𝑧
= 0 at 𝜂 = 0.

(13)

After eliminating the generalized pressure between (11) and
(12), we obtained

𝜌 [
𝜕Ω

𝜕𝑡
+ 𝑢
𝑟

𝜕Ω

𝜕𝑟
+
𝑢
𝑧

𝑠

𝜕Ω

𝜕𝜂
−
𝑢
𝑟

𝑟
Ω] = 𝜇 [∇

2

Ω −
Ω

𝑟2
] , (14)

where ∇2 is the Laplacian operator.
Defining velocity components as [5]

𝑢
𝑟
= −

𝑟

2𝑠 (𝑡)
V
𝑤
(𝑡) 𝑔
󸀠

(𝜂) ,

𝑢
𝑧
= V
𝑤
(𝑡) 𝑔 (𝜂)

(15)

we see that (10) is identically satisfied and (14) becomes

𝑑
4

𝑔

𝑑𝜂4
+ 𝑅[(𝜂 − 𝑔)

𝑑
3

𝑔

𝑑𝜂3
+ 2

𝑑
2

𝑔

𝑑𝜂2
] − 𝑄

𝑑
2

𝑔

𝑑𝜂2
= 0, (16)

where

𝑅 =
𝑠V
𝑤

𝜐
, 𝑄 =

𝑠
2

𝜐V
𝑤

𝑑V
𝑤

𝑑𝑡
. (17)

Here both𝑅 and𝑄 are functions of 𝑡 but we consider𝑅 and𝑄
constants for similarity solution. Since V

𝑤
= 𝑑𝑠/𝑑𝑡, Integrate

first equation of (17), we get

𝑠 (𝑡) = (𝑊𝑡 + 𝑆)
1/2

, (18)

where𝑊 and 𝑆 are constants.Theplatesmove away from each
other symmetrically with respect to 𝜂 when 𝑊 > 0 and 𝑆 >
0. Also the plates approach to each other and squeezing flow
exists with similar velocity profiles when𝑊 < 0, 𝑆 > 0, and
𝑠(𝑡) > 0. From (17) and (18) it follows that 𝑄 = −𝑅. Then (16)
becomes

𝑑
4

𝑔

𝑑𝜂4
+ 𝑅[(𝜂 − 𝑔)

𝑑
3

𝑔

𝑑𝜂3
+ 3

𝑑
2

𝑔

𝑑𝜂2
] = 0. (19)

Using (13) and (15) we determine the boundary conditions in
case of no-slip and slip at the upper plate as follows:

𝑔 (1) = 1, 𝑔
󸀠

(1) = 0

𝑔 (0) = 0, 𝑔
󸀠󸀠

(0) = 0
(No-slip at the wall) (20)

𝑔 (1) = 1, 𝑔
󸀠

(1) = 𝛾𝑔
󸀠󸀠

(1)

𝑔 (0) = 0, 𝑔
󸀠󸀠

(0) = 0
(Slip at the wall) . (21)

4. Basic Theory of OHAM [26, 29–32]
Let us apply OHAM to the following differential equation:

I [V (𝑥)] + 𝑓 (𝑥) + ℵ [V (𝑥)] = 0, 𝐵 (V,
𝑑V
𝑑𝑥

) = 0, (22)

where 𝑥 represents an independent variable, V(𝑥) is unknown
function and 𝑓(𝑥) is known function. 𝐵,ℵ,I are boundary,
nonlinear, and linear operators, respectively.

According to OHAM, we construct Homotopy Φ(𝑥, 𝑝):
R × [0, 1] → R which satisfies

(1 − 𝑝) [I (Φ (𝑥, 𝑝)) + 𝑓 (𝑥)]

= ℎ (𝑝) [I (Φ (𝑥, 𝑝)) + 𝑓 (𝑥) + ℵ (Φ (𝑥, 𝑝))] ,

𝐵(Φ (𝑥, 𝑝) ,
𝜕Φ (𝑥, 𝑝)

𝜕𝑥
) = 0,

(23)

where 𝑥 ∈ R and 𝑝 ∈ [0, 1] is an embedding parameter,
ℎ(𝑝) is a nonlinear auxiliary function for 𝑝 ̸= 0, ℎ(0) = 0

and Φ(𝑥, 𝑝) is an unknown function. Clearly, when 𝑝 = 0

and 𝑝 = 1, it holds that Φ(𝑥, 0) = V
0
(𝑥) and Φ(𝑥, 1) = Ṽ(𝑥),

respectively.
Thus, as 𝑝 varies from 0 to 1, the solution Φ(𝑥, 𝑝)

approaches from V
0
(𝑥) to Ṽ(𝑥).

We choose the auxiliary function ℎ(𝑝) in the form of

ℎ (𝑝) =

𝑚

∑

𝑘=0

𝑝
𝑘

𝐶
𝑘
, (24)

where 𝐶
𝑘
are convergence controlling constants to be deter-

mined.
To obtain an approximate solution, we expandΦ(𝑥, 𝑝, 𝐶

𝑖
)

in a Taylor series about 𝑝 as follows:

Φ(𝑥, 𝑝, 𝐶
𝑖
) = V
0
(𝑥) +

𝑚

∑

𝑘=1

V
𝑘
(𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑘
) 𝑝
𝑘

. (25)

Substituting (25) into (23) and equating the coefficients of like
powers of 𝑝, we obtain the following equations.
The zeroth-order problem is

I [V
0
(𝑥)] + 𝑓 (𝑥) = 0, 𝐵 (V

0
,
𝑑V
0

𝑑𝑥
) = 0. (26)

First-order problem is

I [V
1
(𝑥)] + 𝑓 (𝑥) = 𝐶

1
ℵ
0
[V
0
(𝑥)] , 𝐵 (V

1
,
𝑑V
1

𝑑𝑥
) = 0.

(27)

Second-order problem is

I [V
2
(𝑥)] +I [V

1
(𝑥)]

= 𝐶
2
ℵ
0
[V
0
(𝑥)] + 𝐶

1
{I [V
1
(𝑥)] + ℵ

1
[V
0
(𝑥) , V

1
(𝑥)]} ,

𝐵 (V
2
,
𝑑V
2

𝑑𝑥
) = 0.

(28)
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The general equations for V
𝑘
(𝑥) are given by

I [V
𝑘
(𝑥)] −I [V

𝑘−1
(𝑥)]

= 𝐶
1
ℵ
0
[V
0
(𝑥)]

+

𝑘−1

∑

𝑖=1

𝐶
𝑖
{I [V
𝑘−𝑖

(𝑥)]

+ℵ
𝑘−𝑖

[V
0
(𝑥) , V

1
(𝑥) , . . . , V

𝑘−1
(𝑥)]} ,

𝐵 (V
𝑘
,
𝑑V
𝑘

𝑑𝑥
) = 0,

𝑘 = 2, 3, . . . ,

(29)

where the coefficient of 𝑝𝑚 in the expansion of ℵ(Φ(𝑥, 𝑝))
about 𝑝 is ℵ

𝑚
[V
0
(𝑥), V
1
(𝑥), . . . , V

𝑚−1
(𝑥)].

ℵ(Φ (𝑥, 𝑝, 𝐶
𝑖
))

= ℵ
0
[V
0
(𝑥)] +

𝑚

∑

𝑚=1

ℵ
𝑚
[V
0
(𝑥) , V

1
(𝑥) , . . . , V

𝑚−1
(𝑥)] 𝑝

𝑚

.

(30)
It is noted that the convergence of the series (25) depends

upon𝐶
𝑘
. For convergence at𝑝 = 1, the𝑚th order approxima-

tion Ṽ is

Ṽ (𝑥, 𝐶
1
, 𝐶
2
, . . . 𝐶

𝑚
) = V
0
(𝑥) +

𝑚

∑

𝑗=1

V
𝑗
(𝑥, 𝐶
1
, 𝐶
2
, . . . 𝐶

𝑗
) .

(31)
Substituting (31) in (22), the expression for residual is

R (𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
)

= I [Ṽ (𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
)] + 𝑓 (𝑥)

+ ℵ [Ṽ (𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
)] .

(32)

If R = 0, then Ṽ will be the exact solution but usually this
does not happen in nonlinear problems.

There are various methods to find the optimal values of
𝐶
𝑖
, 𝑖 = 1, 2, . . .. We apply the method of least square and

Galerkin’s method in the following manner:
In method of least square

𝐽 (𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
) = ∫

𝑏

𝑎

R
2

(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
) 𝑑𝑥. (33)

Minimizing 𝐽(𝑥, 𝐶
1
, 𝐶
2
, . . . , 𝐶

𝑚
), we have

𝜕𝐽

𝜕𝐶
𝑖

= 0, 𝑖 = 1, 2, . . . , 𝑚. (34)

In Galerkin’s method, we solve the following system for
𝐶
𝑖
(𝑖 = 1, 2, . . . , 𝑚):

∫

𝑏

𝑎

R
𝜕Ṽ
𝜕𝐶
𝑖

𝑑𝑥 = 0, 𝑖 = 1, 2, . . . , 𝑚. (35)

To find appropriate 𝐶
𝑖
(𝑖 = 1, 2, . . . , 𝑚), we choose 𝑎 and 𝑏 in

the domain of the problem. Approximate solution of order𝑚
is well-determined with these known constants.

5. Application of OHAM in Case of
No-Slip Boundary

Using (19) and (20) various order problems are as follows:
Zeroth-order problem

V(𝑖V)
0

(𝜂) = 0,

V
0
(0) = 0, V󸀠󸀠

0
(0) = 0, V

0
(1) = 1, V󸀠

0
(1) = 0.

(36)

First-order problem

V(𝑖V)
1

(𝜂) = 3𝐶
1
𝑅V󸀠󸀠
0
(𝜂) + 𝐶

1
𝑅𝜂V󸀠󸀠󸀠
0
(𝜂) − 𝐶

1
𝑅V
0
(𝜂) V󸀠󸀠󸀠
0
(𝜂)

+ V(𝑖V)
0

(𝜂) + 𝐶
1
V(𝑖V)
0

(𝜂) ,

V
1
(0) = 0, V󸀠󸀠

1
(0) = 0, V

1
(1) = 0, V󸀠

1
(1) = 0.

(37)

Second-order problem

V(𝑖V)
2

(𝜂) = 3𝐶
1
𝑅V󸀠󸀠
1
(𝜂) − 𝐶

1
𝑅V
1
(𝜂) V󸀠󸀠󸀠
0
(𝜂) + 𝐶

1
𝑅𝜂V󸀠󸀠󸀠
1
(𝜂)

− 𝐶
1
𝑅V
0
(𝜂) V󸀠󸀠󸀠
1
(𝜂) + V(𝑖V)

1
(𝜂) + 𝐶

1
V(𝑖V)
1

(𝜂) ,

V
2
(0) = 0, V󸀠󸀠

2
(0) = 0, V

2
(1) = 0, V󸀠

2
(1) = 0.

(38)

Third-order problem

V(𝑖V)
3

(𝜂) = 3𝐶
1
𝑅V󸀠󸀠
2
(𝜂) − 𝐶

1
𝑅V
2
(𝜂) V󸀠󸀠󸀠
0
(𝜂)

− 𝐶
1
𝑅V
1
(𝜂) V󸀠󸀠󸀠
1
(𝜂) + 𝐶

1
𝑅𝜂V󸀠󸀠󸀠
2
(𝜂)

− 𝐶
1
𝑅V
0
(𝜂) V󸀠󸀠󸀠
2
(𝜂) + V(𝑖V)

2
(𝜂)

+ 𝐶
1
V(𝑖V)
2

(𝜂) ,

V
3
(0) = 0, V󸀠󸀠

3
(0) = 0, V

3
(1) = 0, V󸀠

3
(1) = 0.

(39)

Fourth-order problem

V(𝑖V)
4

(𝜂) = 3𝐶
1
𝑅V󸀠󸀠
3
(𝜂) − 𝐶

1
𝑅V
3
(𝜂) V󸀠󸀠󸀠
0
(𝜂)

− 𝐶
1
𝑅V
2
(𝜂) V󸀠󸀠󸀠
1
(𝜂) − 𝐶

1
𝑅V
1
(𝜂) V󸀠󸀠󸀠
2
(𝜂)

+ 𝐶
1
𝑅𝜂V󸀠󸀠󸀠
3
(𝜂) − 𝐶

1
𝑅V
0
(𝜂) V󸀠󸀠󸀠
3
(𝜂)

+ V(𝑖V)
3

(𝜂) + 𝐶
1
V(𝑖V)
3

(𝜂) ,

V
4
(0) = 0, V󸀠󸀠

4
(0) = 0, V

4
(1) = 0, V󸀠

4
(1) = 0.

(40)

By considering fourth-order solution, we have

Ṽ (𝜂) = V
0
(𝜂) + V

1
(𝜂) + V

2
(𝜂) + V

3
(𝜂) + V

4
(𝜂) . (41)

The residual of the problem is

R =
𝑑
4Ṽ (𝜂)
𝑑𝜂4

+ 𝑅[(𝜂 − Ṽ (𝜂))
𝑑
3Ṽ (𝜂)
𝑑𝜂3

+ 3
𝑑
2Ṽ (𝜂)
𝑑𝜂2

] . (42)
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We apply Galerkin’s method to find constant 𝐶
1
as follows:

∫

1

0

R
𝜕Ṽ
𝜕𝐶
1

𝑑𝑥 = 0. (43)

Solving (43) and keeping 𝑅 = 0.1, we get

𝐶
1
= 1.01328. (44)

Using above value of 𝐶
1
, the approximate solution is

Ṽ (𝜂) =
1

2
(3𝜂 − 𝜂

3

)

+
1

560
(3.74914𝜂 − 7.39694𝜂

3

+ 3.54648𝜂
5

+0.101328𝜂
7

)

+
1

776160
(95.6941𝜂 − 430.222𝜂

3

+ 514.14𝜂
5

−122.33𝜂
7

− 55.3411𝜂
9

− 1.94053𝜂
11

)

+
1

565045
(2544.14𝜂 + 14364.4𝜂

3

− 37116.4𝜂
5

+ 25023.2𝜂
7

− 8133.38𝜂
9

+ 2599.01𝜂
11

+696.10𝜂
13

+ 22.962𝜂
15

)

+
1

722737
(1.53702𝜂 − 1.87989 × 10

8

𝜂
3

+ 1.93991 × 10
8

𝜂
5

+ 8.28837 × 10
7

𝜂
7

− 8.03587 × 10
7

𝜂
9

− 2.92844 × 10
7

𝜂
11

+ 1.67506 × 10
7

𝜂
13

− 9.66217 × 10
6

𝜂
15

−1.6529 × 10
6

𝜂
17

− 48038.9𝜂
19

) .

(45)

6. Application of OHAM in Case of
Slip Boundary

Using (19) and (21) different order problems are as follows.
Zeroth-order problem

𝑢
(𝑖V)
0

(𝜂) = 0,

𝑢
0
(0) = 0, 𝑢

󸀠󸀠

0
(0) = 0, 𝑢

0
(1) = 1, 𝑢

󸀠

0
(1) = 𝛾𝑢

󸀠󸀠

0
(1) .

(46)

First-order problem

𝑢
(𝑖V)
1

(𝜂)

= 3𝐶
1
𝑅𝑢
󸀠󸀠

0
(𝜂) + 𝐶

1
𝑅𝜂𝑢
󸀠󸀠󸀠

0
(𝜂) − 𝐶

1
𝑅𝑢
0
(𝜂) 𝑢
󸀠󸀠󸀠

0
(𝜂)

+ 𝑢
(𝑖V)
0

(𝜂) + 𝐶
1
𝑢
(𝑖V)
0

(𝜂) ,

𝑢
1
(0) = 0, 𝑢

󸀠󸀠

1
(0) = 0, 𝑢

1
(1) = 0, 𝑢

󸀠

1
(1) = 𝛾𝑢

󸀠󸀠

1
(1) .

(47)

Second-order problem

𝑢
(𝑖V)
2

(𝜂) = 3𝐶
1
𝑅𝑢
󸀠󸀠

1
(𝜂) − 𝐶

1
𝑅𝑢
1
(𝜂) 𝑢
󸀠󸀠󸀠

0
(𝜂)

+ 𝐶
1
𝑅𝜂𝑢
󸀠󸀠󸀠

1
(𝜂) − 𝐶

1
𝑅𝑢
0
(𝜂) 𝑢
󸀠󸀠󸀠

1
(𝜂)

+ 𝑢
(𝑖V)
1

(𝜂) + 𝐶
1
𝑢
(𝑖V)
1

(𝜂)

𝑢
2
(0) = 0, 𝑢

󸀠󸀠

2
(0) = 0, 𝑢

2
(1) = 0, 𝑢

󸀠

2
(1) = 𝛾𝑢

󸀠󸀠

2
(1) .

(48)

Third-order problem

𝑢
(𝑖V)
3

(𝜂) = 3𝐶
1
𝑅𝑢
󸀠󸀠

2
(𝜂) − 𝐶

1
𝑅𝑢
2
(𝜂) 𝑢
󸀠󸀠󸀠

0
(𝜂)

− 𝐶
1
𝑅𝑢
1
(𝜂) 𝑢
󸀠󸀠󸀠

1
(𝜂) + 𝐶

1
𝑅𝜂𝑢
󸀠󸀠󸀠

2
(𝜂)

− 𝐶
1
𝑅𝑢
0
(𝜂) 𝑢
󸀠󸀠󸀠

2
(𝜂) + 𝑢

(𝑖V)
2

(𝜂)

+ 𝐶
1
𝑢
(𝑖V)
2

(𝜂) ,

𝑢
3
(0) = 0, 𝑢

󸀠󸀠

3
(0) = 0, 𝑢

3
(1) = 0, 𝑢

󸀠

3
(1) = 𝛾𝑢

󸀠󸀠

3
(1) .

(49)

Fourth-order problem

𝑢
(𝑖V)
4

(𝜂) = 3𝐶
1
𝑅𝑢
󸀠󸀠

3
(𝜂) − 𝐶

1
𝑅𝑢
3
(𝜂) 𝑢
󸀠󸀠󸀠

0
(𝜂)

− 𝐶
1
𝑅𝑢
2
(𝜂) 𝑢
󸀠󸀠󸀠

1
(𝜂) − 𝐶

1
𝑅𝑢
1
(𝜂) 𝑢
󸀠󸀠󸀠

2
(𝜂)

+ 𝐶
1
𝑅𝜂𝑢
󸀠󸀠󸀠

3
(𝜂) − 𝐶

1
𝑅𝑢
0
(𝜂) 𝑢
󸀠󸀠󸀠

3
(𝜂)

+ 𝑢
(𝑖V)
3

(𝜂) + 𝐶
1
𝑢
(𝑖V)
3

(𝜂) ,

𝑢
4
(0) = 0, 𝑢

󸀠󸀠

4
(0) = 0, 𝑢

4
(1) = 0, 𝑢

󸀠

4
(1) = 𝛾𝑢

󸀠󸀠

4
(1) .

(50)

By considering fourth-order solution, we have

𝑢̃ (𝜂) =

4

∑

𝑖=0

𝑢
𝑖
(𝜂, 𝐶
1
) . (51)

The residual of the problem is

𝜁 =
𝑑
4

𝑢̃ (𝜂)

𝑑𝜂4
+ 𝑅[(𝜂 − 𝑢̃ (𝜂))

𝑑
3

𝑢̃ (𝜂)

𝑑𝜂3
+ 3

𝑑
2

𝑢̃ (𝜂)

𝑑𝜂2
] . (52)

We apply Galerkin’s method to find constant 𝐶
1
as follows:

∫

1

0

𝜁
𝜕𝑢̃

𝜕𝐶
1

𝑑𝑥 = 0. (53)

Solving (53) and taking 𝑅 = 0.2 and 𝛾 = 1, we get

𝐶
1
= −1.06872. (54)



6 Mathematical Problems in Engineering

Table 1: OHAM solutions along with residuals for various 𝑅 in case of no-slip boundary.

𝜂
𝑅 = 0.1 𝑅 = 0.3 𝑅 = 0.5

Solution Residual Solution Residual Solution Residual
0.0 0. 0. 0. 0. 0. 0.
0.1 0.150158 5.37334 × 10−11 0.151534 −6.69283 × 10−9 0.152999 −6.23412 × 10−8

0.2 0.297237 3.14675 × 10−10 0.299827 1.66025 × 10−9 0.302582 6.58388 × 10−8

0.3 0.438170 8.51847 × 10−10 0.441661 2.33504 × 10−8 0.445373 3.42092 × 10−7

0.4 0.569900 1.51431 × 10−9 0.573869 3.93945 × 10−8 0.578082 4.93942 × 10−7

0.5 0.689397 1.90824 × 10−9 0.693354 2.81614 × 10−8 0.697548 2.42092 × 10−7

0.6 0.793661 1.33301 × 10−9 0.797122 −3.19654 × 10−8 0.800780 −6.53046 × 10−7

0.7 0.879734 −1.59255 × 10−9 0.882300 −2.21911 × 10−7 0.885004 −3.23415 × 10−6

0.8 0.944705 −1.02814 × 10−8 0.946167 −8.84707 × 10−7 0.947702 −1.2206 × 10−5
0.9 0.985722 −3.446 × 10−8 0.986180 −3.21268 × 10−6 0.986659 −4.41008 × 10−5

1.0 1. −1.03509 × 10−7 1. −1.11826 × 10−5 1. −1.54022 × 10−4

Using above value of 𝐶
1
, the approximate solution is

𝑢̃ (𝜂) =
1

2
(3𝜂 + 𝜂

3

)

+
1

4480
(−113.284𝜂 + 151.758𝜂

3

− 38.9012𝜂
5

+0.427486𝜂
7

)

+
1

248372
(−156189.𝜂 + 273825.𝜂

3

− 160808.𝜂
5

+45952.6𝜂
7

− 2814.27𝜂
9

+ 34.5387𝜂
11

)

+
1

723257
(−9.83844𝜂 + 1.149 × 10

8

𝜂
3

− 3.35388 × 10
7

𝜂
5

+ 4.04185 × 10
7

𝜂
7

− 2.68964 × 10
7

𝜂
9

+ 3.65673 × 10
6

𝜂
11

−157538.𝜂
13

+ 1724.2𝜂
15

)

+
1

370042
(−1.97195 × 10

13

𝜂 + 4.25372 × 10
13

𝜂
3

− 2.94213 × 10
13

𝜂
5

+ 6.06765 × 10
12

𝜂
7

− 1.39445 × 10
12

𝜂
9

+ 2.47846 × 10
12

𝜂
11

− 5.97188 × 10
11

𝜂
13

+ 5.08263 × 10
10

𝜂
15

−1.62422 × 10
9

𝜂
17

+ 1.52182 × 10
7

𝜂
19

) .

(55)

7. Results and Discussions

In this article we considered the unsteady axisymmetric flow
of nonconducting, incompressible Newtonian fluid between
two circular plates. The resulting nonlinear boundary value
problems are solved with OHAM and fourth-order Runge-
Kutta method using Mathematica 7.0.

−0.00001

−0.00002

−0.00003

−0.00004

R = 0.1

R = 0.3

R = 0.5

0.2 0.4 0.6 0.8 1.0

𝜂

Re
s

Figure 2: OHAM residuals at various values of 𝑅 in case of no-slip
boundary.

Tables 1, 3, and 5 reflect OHAM solutions along with
residuals in case of no-sip and slip boundaries for various
values of Reynolds number 𝑅 and slip parameter 𝛾. Also,
Tables 2, 4, and 6 represent RK4 solutions alongwith residuals
in case of no-slip and slip boundaries for various values of 𝑅
and 𝛾. All the tables demonstrate that results obtained using
OHAM are in agreement with RK4 by means of residuals.
In addition to above mentioned tables, Table 7 shows the
comparison of solutions obtained from OHAM and RK4 for
various values of Reynolds number 𝑅.

Furthermore, Figures 2, 3, and 4 indicate the OHAM
residuals in case of no-slip and slip boundaries for various
values of 𝑅 and 𝛾.

The effect of Reynolds number 𝑅 on velocity profiles
in case of no-slip boundary is shown in Figure 5. In these
profiles we varied 𝑅 as 𝑅 = 0.1, 1, 2, 3 and observed that the
normal velocity is increased with the increase of Reynolds
number (Figure 5(a)). It is also noted that the normal velocity
monotonically increases from 𝜂 = 0 to 𝜂 = 1 for fixed positive
value of 𝑅 at a given time. Figure 5(b) describes the impact of
𝑅 on the longitudinal velocity in case of no-slip boundary. It
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Table 2: RK4 solutions along with residuals for various 𝑅 in case of no-slip boundary.

𝜂
𝑅 = 0.1 𝑅 = 0.3 𝑅 = 0.5

Solution Residual Solution Residual Solution Residual
0.0 0. 2.88535 × 10−7 0. 9.66906 × 10−5 0. 5.30549 × 10−4

0.1 0.150158 3.88278 × 10−8 0.151534 5.71393 × 10−6 0.152999 3.04600 × 10−5

0.2 0.297237 −9.97789 × 10−9 0.299827 −1.41434 × 10−6 0.302582 −7.52772 × 10−6

0.3 0.438170 2.93767 × 10−9 0.441661 3.95997 × 10−7 0.445373 2.10296 × 10−6

0.4 0.569900 −7.51436 × 10−10 0.573869 −1.15203 × 10−7 0.578082 −6.18081 × 10−7

0.5 0.689397 −4.71705 × 10−10 0.693354 −9.6761 × 10−9 0.697548 −2.95916 × 10−8

0.6 0.793661 2.23004 × 10−9 0.797122 1.4593 × 10−7 0.800780 7.14133 × 10−7

0.7 0.879734 −7.18245 × 10−9 0.882300 −4.86272 × 10−7 0.885004 −2.39245 × 10−6

0.8 0.944705 2.68744 × 10−8 0.946167 1.77796 × 10−6 0.947702 8.70664 × 10−6

0.9 0.985722 −1.11599 × 10−7 0.986180 −7.28952 × 10−6 0.986659 3.56157 × 10−5

1.0 1. −2.71683 × 10−6 1. −1.47695 × 10−4 1. 6.90088 × 10−4

Table 3: OHAM solutions along with residuals for various values of 𝑅 in case of slip boundary.

𝜂
𝑅 = 0.2 𝑅 = 0.3 𝑅 = 0.4

Solution Residual Solution Residual Solution Residual
0.0 0. 0. 0. 0. 0. 0.
0.1 0.072692 3.18345 × 10−8 0.071220 3.15621 × 10−7 0.069593 1.74626 × 10−6

0.2 0.147091 −1.72789 × 10−8 0.144268 −9.14579 × 10−8 0.141147 −1.13148 × 10−7

0.3 0.224893 −1.96995 × 10−7 0.220953 −1.66461 × 10−6 0.216599 −7.79061 × 10−6

0.4 0.307773 −4.94482 × 10−7 0.303048 −4.29173 × 10−6 0.297832 −2.07401 × 10−5

0.5 0.397370 −7.99437 × 10−7 0.392277 −6.99917 × 10−6 0.386657 −3.41643 × 10−5

0.6 0.495283 −8.5784 × 10−7 0.490289 −7.5499 × 10−6 0.484784 −3.70689 × 10−5

0.7 0.603056 −2.1053 × 10−7 0.598654 −1.91141 × 10−6 0.593805 −9.6958 × 10−6

0.8 0.722172 1.87065 × 10−6 0.718841 1.62936 × 10−5 0.715176 7.91082 × 10−5

0.9 0.854042 6.40576 × 10−6 0.852211 5.59717 × 10−5 0.850196 2.72708 × 10−4

1.0 1. 1.46076 × 10−5 1. 1.27671 × 10−4 1. 6.22242 × 10−4

Table 4: RK4 solutions along with residuals for various values of 𝑅 in case of slip boundary.

𝜂
𝑅 = 0.2 𝑅 = 0.3 𝑅 = 0.4

Solution Residual Solution Residual Solution Residual
0.0 0. 4.12179 × 10−6 0. 7.56765 × 10−6 0. 3.62897 × 10−6

0.1 0.072692 1.74999 × 10−7 0.071220 2.16125 × 10−7 0.069593 −3.49994 × 10−7

0.2 0.147091 −4.21503 × 10−8 0.144268 −4.97423 × 10−8 0.141147 9.53266 × 10−8

0.3 0.224893 1.12883 × 10−8 0.220953 1.22294 × 10−8 0.216598 −3.0735 × 10−8

0.4 0.307773 −3.52272 × 10−9 0.303048 −4.30187 × 10−9 0.297832 7.2493 × 10−9

0.5 0.397370 7.80684 × 10−10 0.392276 3.06668 × 10−9 0.386657 8.46409 × 10−9

0.6 0.495283 1.10391 × 10−9 0.490289 −5.28586 × 10−9 0.484783 −3.36828 × 10−8

0.7 0.603056 −4.35033 × 10−9 0.598654 1.54159 × 10−8 0.593805 1.06816 × 10−7

0.8 0.722172 1.44198 × 10−8 0.718841 −6.05873 × 10−8 0.715175 −3.98519 × 10−7

0.9 0.854042 −5.53933 × 10−8 0.852211 2.59233 × 10−7 0.850196 1.65518 × 10−6

1.0 1. −1.97434 × 10−7 1. 7.96168 × 10−6 1. 3.89126 × 10−5

is experienced that this component of velocity deceases near
the wall but increases near the central axis of the channel.

The effect of Reynolds number 𝑅 on velocity profiles in
case of slip boundary is depicted in Figure 6. In these profiles,
we fixed slip parameter 𝛾 = 1 and varied Reynolds number
𝑅 as 𝑅 = 0.2, 0.6, 1, 1.5. It is noted that the normal velocity
decreases as the Reynolds number increases (Figure 6(a)).
It is also observed that longitudinal velocity decreases near

the central axis of the channel but increases near the walls
when 𝑅 increases (Figure 6(b)).

Figure 7 demonstrates the effect of slip parameter 𝛾 on the
velocity profiles. After fixing Reynolds number 𝑅 = 0.3 we
varied 𝛾 as 𝛾 = 0.6, 0.7, 0.8, 1. We find that normal velocity
increases as 𝛾 increases. It is also noted that longitudinal
velocity decreases near the walls but increases near central
axis of the channel.
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Table 5: OHAM solutions along with residuals for various values of 𝛾 in case of slip boundary.

𝜂
𝛾 = 0.5 𝛾 = 0.6 𝛾 = 0.7

Solution Residual Solution Residual Solution Residual
0.0 0. 0. 0. 0. 0. 0.
0.1 −0.00880011 −1.07933 × 10−6 0.0336596 −7.54858 × 10−8 0.0522402 −7.74445 × 10−9

0.2 −0.010881 −2.2445 × 10−6 0.0714091 −1.73419 × 10−7 0.1074223 −2.51485 × 10−8

0.3 0.000449012 −3.45224 × 10−6 0.117324 −3.00407 × 10−7 0.168479 −5.68899 × 10−8

0.4 0.0318278 −4.41058 × 10−6 0.175449 −4.32397 × 10−7 0.238322 −9.8056 × 10−8

0.5 0.0898133 −4.47787 × 10−6 0.249785 −5.00627 × 10−7 0.319832 −1.29675 × 10−7

0.6 0.18086 −2.60114 × 10−6 0.344278 −3.77978 × 10−7 0.415852 −1.13733 × 10−7

0.7 0.311298 2.65136 × 10−6 0.462801 1.30706 × 10−7 0.529175 1.20785 × 10−8

0.8 0.487312 1.28583 × 10−5 0.609145 1.28166 × 10−6 0.662538 3.36724 × 10−7

0.9 0.714929 2.91822 × 10−5 0.787012 3.34515 × 10−6 0.818613 9.67763 × 10−7

1.0 1. 5.14019 × 10−5 1. 6.49074 × 10−6 1. 2.00176 × 10−6

Table 6: RK4 solutions along with residuals for various values of 𝛾 in case of slip boundary.

𝜂
𝛾 = 0.5 𝛾 = 0.6 𝛾 = 0.7

Solution Residual Solution Residual Solution Residual
0.0 0. 2.04594 × 10−5 0. 7.34794 × 10−6 0. 3.56291 × 10−6

0.1 −0.00880012 7.72953 × 10−7 0.0336596 3.21066 × 10−7 0.0522402 1.63598 × 10−7

0.2 −0.0108811 −1.8406 × 10−7 0.0714091 −7.75305 × 10−8 0.1074223 −3.96814 × 10−8

0.3 0.000448983 4.82747 × 10−8 0.117324 2.08509 × 10−8 0.168479 1.0753 × 10−8

0.4 0.0318277 −1.54235 × 10−8 0.175449 −6.43999 × 10−9 0.238322 −3.28063 × 10−9

0.5 0.0898132 5.14031 × 10−9 0.249785 1.21029 × 10−9 0.319832 4.50154 × 10−10

0.6 0.18086 −6.51866 × 10−10 0.344278 2.64494 × 10−9 0.415852 1.84079 × 10−9

0.7 0.311298 −1.86837 × 10−9 0.462801 −9.88382 × 10−9 0.529175 −6.51979 × 10−9

0.8 0.487312 −1.33003 × 10−9 0.609145 3.37336 × 10−8 0.662538 2.27322 × 10−8

0.9 0.714929 2.66400 × 10−8 0.787012 −1.32232 × 10−7 0.818613 −9.05714 × 10−8

1.0 1. 5.55277 × 10−6 1. −1.1671 × 10−6 1. −1.1767 × 10−6

Table 7: Comparison of OHAM and RK4 solutions for various 𝑅 in case of slip and no-slip boundary.

𝜂

In case of no-slip boundary In case of slip boundary
|RK4 Solution −OHAM Solution| |RK4 Solution −OHAM Solution|

𝑅 = 0.1 𝑅 = 0.3 𝑅 = 0.5 𝑅 = 0.2 𝑅 = 0.3 𝑅 = 0.4

0.0 0. 0. 0. 0. 0. 0.
0.1 2.33147 × 10−15 1.62249 × 10−10 2.41725 × 10−9 8.44379 × 10−10 7.90896 × 10−9 4.1479 × 10−8

0.2 9.49241 × 10−14 3.14228 × 10−10 4.67809 × 10−9 1.6672 × 10−9 1.55832 × 10−8 8.15527 × 10−8

0.3 3.82361 × 10−13 4.46143 × 10−10 6.63065 × 10−9 2.44889 × 10−9 2.28102 × 10−8 1.18952 × 10−7

0.4 9.13492 × 10−13 5.47932 × 10−10 8.11705 × 10−9 3.1663 × 10−9 2.93539 × 10−8 1.52339 × 10−7

0.5 1.65451 × 10−12 6.07476 × 10−10 8.95202 × 10−9 3.77514 × 10−9 3.48026 × 10−8 1.79574 × 10−7

0.6 2.42317 × 10−12 6.09434 × 10−10 8.91445 × 10−9 4.18241 × 10−9 3.8327 × 10−8 1.96532 × 10−7

0.7 2.86218 × 10−12 5.36833 × 10−10 7.77928 × 10−9 4.22088 × 10−9 3.84569 × 10−8 1.96009 × 10−7

0.8 2.52039 × 10−12 3.78563 × 10−10 5.4278 × 10−9 3.65208 × 10−9 3.31085 × 10−8 1.67861 × 10−7

0.9 1.20232 × 10−12 1.54202 × 10−10 2.18716 × 10−9 2.24454 × 10−9 2.02732 × 10−8 1.02385 × 10−7

1.0 1.26281 × 10−16 2.53545 × 10−16 2.93337 × 10−17 1.7436 × 10−14 4.92715 × 10−14 3.8179 × 10−14

8. Conclusions

In this article, we find the similarity solution for unsteady
axisymmetric squeezing flow of incompressible Newtonian
fluid between two circular plates. We observed that the
similarity solution exists only when distance between the
plates varies as (𝑊𝑡 + 𝑆)

1/2, and squeezing flow occurs when

𝑊 < 0, 𝑆 > 0 and (𝑊𝑡+𝑆) > 0.The key findings of the present
analysis are as follows:

In case of no-slip at boundary;

(i) It has been found that increase in Reynolds number 𝑅
increases the normal velocity.
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Figure 3: OHAM residuals at various values of 𝑅 in case of slip boundary.
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Figure 4: OHAM residuals at various values of 𝛾 in case of slip boundary.
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Figure 5: Velocity profiles for various values of 𝑅 = 0.1, 1, 2, 3 in case of no-slip boundary.
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Figure 6: Velocity profiles for various values of 𝑅 = 0.2, 0.6, 1, 1.5 fixing 𝛾 = 1 in case of slip boundary.
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Figure 7: Velocity profiles for various values of 𝛾 = 0.6, 0.7, 0.8, 1 fixing 𝑅 = 0.3 in case of slip boundary.

(ii) It has been observed that normal velocity increases
monotonically from 𝜂 = 0 to 𝜂 = 1 for fixed positive
value of 𝑅 at a given time.

(iii) It has been seen that longitudinal velocity deceases
near the walls and increases near the central axis of
the channel.

In case of slip at boundary;

(i) It has been noted that after fixing slip parameter
𝛾 and varying the Reynolds number 𝑅, the normal
velocity profile decreases with the increase in 𝑅. Also
the longitudinal velocity increases near the walls but
decreases near the central axis of the channel.

(ii) It has been examined that for a fixed Reynolds
number 𝑅when we vary slip parameter 𝛾, the normal
velocity increases with the increase in 𝛾. Also the

longitudinal velocity decreases near the walls and
increases near the central axis of the channel.

(iii) It has been investigated that Reynolds number 𝑅 and
slip parameter 𝛾 have opposite effects on the normal
and longitudinal velocity components.

In case of slip versus no-slip boundary;

(i) It has been observed that Reynolds number 𝑅 has
opposite behavior on the normal velocity in case of
slip and no-slip boundaries.

(ii) It has been also noticed that Reynolds number 𝑅 has
opposite effect on the longitudinal velocity near the
central axis of the channel, while near the wall longi-
tudinal velocity increases in case of slip boundary and
decease in no-slip boundary. This is in conformance
to [33].
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